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Abstract—In this paper, we consider the problems of minimiz-
ing sum power and maximizing sum rate for multi-cell networks
with load coupling, where coupling relation occurs among cells
due to inter-cell interference. This coupling relation is character-
ized by the signal-to-interference-and-noise-ratio (SINR) coupling
model with cell load vector and cell power vector as the variables.
Due to the nonlinear SINR coupling model, the optimization
problems for multi-cell networks with load coupling is noncon-
vex. To solve these nonconvex problems, we first consider the
optimization problems for single-cell networks. Through variable
transformations, the optimization problems can be equivalently
transformed into convex problems. By solving the Karush-Kuhn-
Tucker (KKT), the optimal solutions to power minimization and
rate maximization problems can be obtained in closed form.
Based on the theoretical findings of optimization problems for
single-cell networks, we develop a distributed time allocation and
power control algorithm with low complexity for sum power
minimization in multi-cell networks. This algorithm is proved
to be convergent and globally optimal by using the properties
of standard interference function. For sum rate optimization
in multi-cell networks, we also provide a distributed algorithm
which yields suboptimal solution. Besides, the convergence for
this distributed algorithm is proved. Numerical results illustrate
the theoretical findings, showing the superiority of our solutions
compared to the conventional solution of allocating uniform
power for users in the same cell.

Index Terms—Load-coupled networks, power control, time
allocation, convex optimization.

I. INTRODUCTION

Sum power minimization, and sum rate maximization are
two fundamental optimization problems in wireless commu-
nication networks. To solve these two problems, resource
allocation and power control are often considered [1]–[8].

In time-division multiple access (TDMA) networks, the
base station (BS) serves multiple users through time division.
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Since users in the same cell can be allocated with differ-
ent resources by time division, intra-cell interference among
users is eliminated. Due to this distinction, wireless powered
communications networks using TDMA has arisen a great
interest [9]–[12]. The above works all assumed a single-cell
network. In practical networks, there are multiple cells and
different cells share the same resources due to the limitation
of resources [13]–[15]. Hence, inter-cell interference among
different cells is inevitable, resulting that the optimization
algorithm for a single-cell network cannot be directly applied
to a multi-cell network. Thus, the optimization problem of a
multi-cell network with TDMA is of great importance.

To characterize the inter-cell interference among cells, the
load coupling model was proposed in [16] for a multi-cell
network with OFDM. In [16], the considered OFDM network
assumed frequency-flat fading channels and only time re-
sources were scheduled. Thus, the so-called OFDM 1 network
in [16] is equivalent to a TDMA network. Different from the
conventional resource allocation problems [17]–[22], where
the subchannel assignment problem with integer variable is
always considered, the variables in resource allocation prob-
lems [23]–[28] with load are always continuous. The load of
a cell in [16] is defined as the average level of usage of time
resources. Specifically, the load coupling model shows that
the high load of a BS means a high probability for other
BSs to receive interference. The load coupling model with
fixed power has been shown to give a good approximation
for a multi-cell network especially at high data arrival rates in
[23]. Since the load coupling model has a good structure with
high accuracy for characterizing inter-cell interference, it has
been used in many applications [24], such as data offloading
[25], load balancing [26], location planning [27], and user
association [28] in multi-cell networks.

Previous works [16], [23]–[28] using load coupling model
all assumed fixed transmission power of BSs. To tackle the
problem of minimizing the sum transmission power in multi-
cell networks with load coupling, both load and power are
optimization variables. Recently, [29] considered the sum
power minimization problem where both load and power of
each cell are incorporated into the signal-to-interference-noise-
ratio (SINR) coupling model. The coupling was implicitly
characterized with load and power as the variables of interest

1In this paper, the OFDM network is the same as TDMA network since
only time resources are scheduled.
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using non-linear load and power coupling equation. It was
analytically shown that operating at full load is optimal, and an
iterative power adjustment algorithm for all BSs was provided
to achieve the full load. In [29], the transmission power is
different for users in different cells, but the same for users
in the same cell. However, exploiting multiuser diversity, the
sum power consumption can be additionally improved by
optimizing the power allocation in the same cell. Moreover,
the sum rate maximization problem for multi-cell networks
with load coupling is rarely considered.

In this paper, we consider multiuser diversity by allocating
users in the same cell with unequal power and fractions of
resources. We aim to jointly optimize time allocation and
power control for sum power minimization and sum rate
maximization in multi-cell networks with load coupling. Since
the power vectors in the Lagrangian of sum power minimiza-
tion and sum rate maximization cannot be decoupled, it is
difficult to establish the distributed algorithm using alternating
directions method of multipliers (ADMM) [30]–[32]. Instead
of using ADMM, we propose two distributed algorithms with
low complexity and limited information exchange. Based on
the optimization techniques, the main contributions in this
paper are summarized as follows:

1) By using variable transformations, sum power minimiza-
tion and sum rate maximization problems for a single-
cell network with load coupling can be transformed into
equivalent convex problems. We provide the globally op-
timal solutions in closed form to these two optimization
problems by solving the Karush-Kuhn-Tucker (KKT)
conditions. Using the KKT conditions, we prove that
operating with full time resources is optimal to minimize
sum power and maximize sum rate. Besides, we also
give the optimal conditions for power control of these
two problems.

2) To minimize sum power of BSs for a multi-cell network
with load coupling, we extend the load and power
coupling model in [29] for the case where users in the
same cell are allocated with unequal power. We develop
a distributed time allocation and power control algorithm
for sum power minimization. The distributed algorith-
m is provided along with its convergence and global
optimality proof by using the properties of standard
interference function.

3) Based on the optimization problems in a single-cell
network with load coupling, we propose a distributed
time allocation and power control algorithm for sum rate
maximization in a multi-cell network with load coupling.
We also prove the convergence of this distributed algo-
rithm.

This paper is organized as follows. In Section II, we
introduce the system model. Section III gives two common
optimization problems for single-cell networks and provides
the globally optimal solutions to these two problems. Sum
power minimization and sum rate maximization for multi-
cell networks are addressed in Section IV and Section V,
respectively. Some numerical results are displayed in Section
VI and conclusions are finally drawn in Section VII.

II. JOINT TIME ALLOCATION AND POWER CONTROL
PROBLEMS FOR MULTI-CELL NETWORKS

Consider a multi-cell network with load coupling, where
the set of BSs is denoted by N = {1, 2, · · · , N}. Each
BS i ∈ N serves one unique group of users, denoted by
set Ji = {Ji−1 + 1, Ji−1 + 2, · · · , Ji}, where J0 = 0,
Ji =

∑i
l=1 |Jl|, | · | is the cardinality of a set and |Ji| ≥ 1.

We focus on the downlink communication scenarios where
mutual interference exists among cells. Denote the power
spectral density of BS i for user j ∈ Ji by pij [16],
[27], [29]. For notational convenience, we collect all power
as vector ppp = (p11, · · · , p1J1 , · · · , pN(JN−1+1), · · · , pNJN )T .
User j ∈ Ji is served by BS i at achievable rate rij that has to
be greater than a rate demand Dij > 0. We collect all the rates
as vector rrr = (r11, · · · , r1J1 , · · · , rN(JN−1+1), · · · , rNJN

)T

and the corresponding minimal rate demands as vector DDD =
(D11, · · · , D1J1 , · · · , DN(JN−1+1), · · · , DNJN

)T . Thus, the
rate vector meets the rate demand constraints if rrr ≥DDD.

In this paper, we consider the load and power coupling
model as in [16]. Denote mij as the fraction of resources
that are allocated to user j ∈ Ji in cell i by time divi-
sion. Collect all the time fraction factors as vector mmm =
(m11, · · · ,m1J1 , · · · ,mN(JN−1+1), · · · ,mNJN )T , which can
be viewed as load vector in [16]. The load of BS i can be
calculated by the summation of load for serving every user
j ∈ Ji, which should satisfy

∑
j∈Ji

mij ≤ 1. It can be
observed that the average power of BS i is

∑
j∈Ji

mijpij . The
average power of each BS always has a maximal power limit,
i.e.,

∑
j∈Ji

mijpij ≤ Pmax
i . If the time allocation is randomly

distributed and we consider the long-term average interference
from other BSs, the average SINR of user j associated with
BS i can be expressed as [16], [23]–[28]

ηij =
pijgij∑

k∈N\{i}
∑

l∈Jk
mklpklgkj + σ2

, (1)

where gij is the channel gain from BS i to user j, A \ B =
{k|k ∈ A, k /∈ B}, and σ2 represents the noise power density.
Intuitively, mkl can be interpreted as the probability of receiv-
ing interference from BS k for serving l ∈ Jk in a long time
(see Fig. 1). Thus, the combined term mklpklgkj ∈ [0, pklgkj ]
is interpreted as the average interference taken over time.
Equation (1) with averaged interference power evaluated by
load variables has been shown to give a good approximation
for a multi-cell network especially at high data arrival rates
[23]. Thus, Equation (1) has been used in many applications
[24]–[28], as it has a good structure with high accuracy for
characterizing inter-cell interference.

The achievable rate rij of user j ∈ Ji can be formulated as

rij = Bmij log2

(
1 +

pijgij∑
k∈N\{i}

∑
l∈Jk

mklpklgkj + σ2

)
, fij(mmm,ppp), ∀i ∈ N ,∀j ∈ Ji, (2)

where B is the system bandwidth. From nonlinear Equation
(2), it is observed that the rate of a user in a specific cell is
coupled with the load and power of other cells.

We aim at solving the sum power and rate optimization
problems, subject to the power and load constraints for each
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Fig. 1. System model for multi-cell networks with load coupling.

BS and the rate demand constraint for every user. Formally, the
time allocation and power control problem can be formulated
as

min
000≤mmm,000≤ppp,000≤rrr

V (mmm,ppp,rrr) (3a)

s.t. rij = fij(mmm,ppp), ∀i ∈ N , ∀j ∈ Ji (3b)∑
j∈Ji

mijpij ≤ Pmax
i , ∀i ∈ N (3c)∑

j∈Ji

mij ≤ 1, ∀i ∈ N (3d)

DDD ≤ rrr, (3e)

where V (mmm,ppp,rrr) is the objective function, which can be
sum power

∑
i∈N

∑
j∈Ji

mijpij and negative sum rate
−
∑

i∈N
∑

j∈Ji
rij .

Obviously, the feasible set of Problem (3) is nonconvex. Ob-
taining global optimum of time allocation and power control
problems for multi-cell networks is known to be difficult even
by the centralized algorithm. In the following, we first solve
the time allocation and power control problems for single-
cell networks. Based on the theoretical findings for single-
cell networks, we devise two novel distributed algorithms
to deal with time allocation and power control problems
for multi-cell networks with low computational complexity,
respectively. Interestingly, the distributed algorithm for sum
power minimization in multi-cell networks can be proved to
be globally optimal.

III. JOINT TIME ALLOCATION AND POWER CONTROL FOR
SINGLE-CELL NETWORKS

In this section, we consider a downlink single-cell network
with M users. Denote the time division factor of user j by
mj , which should satisfy

M∑
j=1

mj ≤ 1. (4)

In a single-cell network without inter-cell interference, the
achievable rate rj of user j can be formulated as

rj = Bmj log2

(
1 +

pjgj
σ2

)
, (5)

where pj is the power spectral density of the BS for user j,
and gj denotes the channel gain between the BS and user j.
The average transmission power p of the BS can be calculated
by summing the power for serving all users,

p =

M∑
j=1

mjpj . (6)

Now, it is ready to formulate the sum power and rate
optimization problems for a single-cell network as

min
000≤m̃̃m̃m,000≤p̃̃p̃p

U(m̃̃m̃m, p̃̃p̃p) (7a)

s.t. Dj≤Bmj log2

(
1+

gjpj
σ2

)
, j=1, · · · ,M (7b)

M∑
j=1

mj ≤ 1 (7c)

M∑
j=1

mjpj ≤ Pmax, (7d)

where m̃̃m̃m = (m1, · · · ,mM )T , p̃̃p̃p = (p1, · · · , pM )T , Dj > 0
is the minimal transmission rate of user j, and Pmax is the
maximal power of the BS. U(m̃̃m̃m, p̃̃p̃p) is the objective function,
which can be sum power

∑M
j=1 pj or negative sum rate

−
∑M

j=1 Bmj log2
(
1 +

gjpj

σ2

)
.

Obviously, the feasible set of Problem (7) is nonconvex due
to constraints (7b) and (7d). In this case, we introduce a set of
new variables p̄j = mjpj , j = 1, · · · ,M . The new variable p̄j
can be viewed as the average transmission power of the BS for
user j in the scheduling time. Denoting p̄̄p̄p = (p̄1, · · · , p̄M )T ,
Problem (7) is equivalent to the following problem:

min
000≤m̃̃m̃m,000≤p̄̄p̄p

Ū(m̃̃m̃m, p̄̄p̄p) (8a)

s.t. Dj≤Bmj log2

(
1+

gj p̄j
σ2mj

)
, j=1, · · · ,M (8b)

M∑
j=1

mj ≤ 1 (8c)

M∑
j=1

p̄j ≤ Pmax, (8d)

where we define Bmj log2

(
1 +

gj p̄j

σ2mj

)
= 0 for mj = 0.

It can be easily verified that the feasible set of Problem
(8) is convex. In the following, we solve the sum power
minimization problem, and sum rate maximization problem,
separately.

A. Sum Power Minimization Problem
We consider the sum power minimization problem with

objective function

Ū(m̃̃m̃m, p̄̄p̄p) =
M∑
j=1

p̄j , (9)

and constraints (8b)-(8c). The objective function is linear and
the sum power minimization problem is convex. The optimal
solution of Problem (8) can be effectively obtained in closed
form by solving the KKT conditions as in Appendix A.
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B. Sum Rate Maximization Problem

We consider the sum rate maximization problem with ob-
jective function

Ū(m̃̃m̃m, p̄̄p̄p) = −
M∑
j=1

Bmj log2

(
1 +

gj p̄j
σ2mj

)
, (10)

and constraints (8b)-(8d). Obviously, the sum rate maximiza-
tion problem is convex. To obtain the globally optimal solution
in closed form, the details of solving KKT conditions can be
found in Appendix B.

From Appendix A and Appendix B, we have the following
theorem about the optimal conditions.

Theorem 1: To minimize sum power and maximize sum
rate, it is optimal to transmit with full time resources, i.e.,∑M

j=1 m
∗
j = 1. To minimize sum power, the time and power

are optimized to just satisfy the minimal rate requirements.
To maximize sum rate, it is optimal to transmit with maximal
power, i.e.,

∑M
j=1 p̄

∗
j = Pmax. Besides, the optimal power

allocation strategy is to allocate the additional power to
the user with the best channel gain, while other users are
allocated with the minimal power to maintain their minimal
rate requirements.

Theorem 1 is different from the conventional waterfilling
algorithm [33, Section 5.3.3]. According to the waterfilling
algorithm, the transmitter allocates more power to the strong
users, taking advantage of the better channel conditions, and
less or even no power to the weaker ones. This means that
the additional power can be allocated to some users with
better channel conditions in the waterfilling algorithm, while
the proposed sum rate maximization algorithm for single-cell
networks states that the additional power should be allocated
to only one user with the strongest channel gain. The reason
is that the proposed sum rate maximization Problem (8)
considers joint time allocation and power control, while only
power control is considered in the conventional power control
problem [33, Section 5.3.3].

IV. SUM POWER MINIMIZATION PROBLEM FOR
MULTI-CELL NETWORKS

In this section, based on the results about sum power
minimization for single-cell networks, we solve the sum power
minimization Problem (3) with V (mmm,ppp,rrr) =

∑
i∈N

∑
j∈Ji

mijpij . We establish a distributed time allocation and power
control algorithm, and provide the proof of convergence and
global optimality for this distributed algorithm.

A. Optimal Condition

We establish the optimal condition for rate vector rrr and load
vector mmm as follows.

Theorem 2: If Problem (3) is feasible, the optimal solution
to sum power minimization problem is such that the rate vector
reaches the minimal rate constraints rrr∗ = DDD, and the load
vector satisfies

∑
j∈Ji

m∗
ij = 1, ∀i ∈ N .

Theorem 2 can be proved by using the same method in [29,
Lemma 2]. Thus, the proof of Theorem 2 is omitted. For the
convenience of analysis, we substitute rrr = DDD into Problem
(3) in the following of this section.

B. Distributed Time Allocation and Power Control
We introduce qi as the average transmission power of BS

i, which is given by

qi =
∑
j∈Ji

mijpij . (11)

Applying this result to Equation (2) yields

mij =
Dij

B log2

(
1 +

pijgij∑
k∈N\{i} qkgkj+σ2

) . (12)

Based on (12), we use mij to represent pij ,

pij =

∑
k∈N\{i} qkgkj + σ2

gij

(
e

ln(2)Dij
Bmij − 1

)
, hij(mij , qqq−i, Dij), ∀i ∈ N , ∀j ∈ Ji, (13)

where qqq−i = (q1, · · · , qi−1, qi+1, · · · , qN )T . Plugging (13)
into (11), we have

qi =
∑
j∈Ji

mijhij(mij , qqq−i, Dij), ∀i ∈ N . (14)

By adopting the new power notation qqq = (q1, · · · , qN )T ,
we have the following theorem.

Theorem 3: If the feasible set of Problem (3) is not empty,
sum power minimization Problem (3) is equivalent to the
following problem,

min
000≤mmm

000≤qqq≤QQQmax

∑
i∈N

qi (15a)

s.t.
∑
j∈Ji

mijhij(mij , qqq−i, Dij) ≤ qi, ∀i ∈ N (15b)∑
j∈Ji

mij ≤ 1, ∀i ∈ N , (15c)

where QQQmax = (Pmax
1 , · · · , Pmax

N )T .
Proof: Please refer to Appendix C.

According to Theorem 3, the optimal solution of Problem
(3) can be obtained by solving Problem (15). However, the
globally optimal solution of Problem (15) is also difficult to
be effectively obtained due to nonconvex constraints (15b). To
solve Problem (15), we provide a novel distributed algorithm.
Denote mmmi = (mi(Ji−1+1),mi(Ji−1+2), · · · ,miJi)

T , which
can be viewed as the load vector of BS i. Let mmm−i =
(mmmT

1 , · · · ,mmmT
i−1,mmm

T
i+1, · · · ,mmmT

N )T . With qqq−i and mmm−i fixed,
BS i should solve the following optimization problem,

min
000≤mmmi

0≤qi≤Pmax
i

qi (16a)

s.t.
∑
j∈Ji

mijhij(mij , qqq−i, Dij) ≤ qi (16b)∑
l∈Jk

mklhkl(mkl, qqq−k, Dkl)≤qk, ∀k∈N \{i} (16c)∑
j∈Ji

mij ≤ 1. (16d)

Substituting (13) into constraints (16c), we have∑
l∈Jk

mkl

qigil+
∑

n∈N\{k,i} qngnl + σ2

gkl

(
e

ln(2)Dkl
Bmkl −1

)
≤ qk,
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which is a linear constraint with qi, ∀k ∈ N \{i} . Combining
(16b) and (16c), we find that for any optimal solution to
Problem (16), (16b) holds with equality, as otherwise (16a)
can be improved, contradicting that the solution is optimal.
Thus, the optimal q∗i of Problem (16) satisfies

q∗i = min
000≤mmmi∑

j∈Ji
mij≤1

∑
j∈Ji

mijhij(mij , qqq−i, Dij) (17)

From (17), we can observe that the optimal power qi of BS
i is only determined by power qqq−i of all other BSs and the
load vector mmmi of BS i. In our distributed power optimization
design, the load of each user is determined by its served BS.
Thus, given other BSs’ power qqq−i, BS i should solve the
following optimization problem to obtain the optimal qi.

min
000≤mmmi

∑
j∈Ji

aijmij

(
e

bij
mij − 1

)
(18a)

s.t.
∑
j∈Ji

mij ≤ 1, (18b)

where aij =
∑

k∈N\{i} qkgkj+σ2

gij
, bij =

ln(2)Dij

B , ∀j ∈ Ji.
Noth that variable qi cannot be directly found in power
minimization Problem (18). To the optimal solution of problem
(18), qi equals to the objective function (18a).

According to (26) in Appendix A, it can be verified that
Problem (18) is a convex problem. The Lagrangian function
of Problem (18) is

L1(mmmi, λi) =
∑
j∈Ji

aijmij

(
e

bij
mij − 1

)
+λi

∑
j∈Ji

mij − 1

 ,

where λi is the non-negative Lagrange multiplier associated
with constraint (18b).

Since Problem (18) is similar to Problem (25) in Appendix
A, the optimal solution of Problem (18) can be obtained by
using the same method in Appendix A. Here, we directly give
the results and the details can be found in Appendix A. Define
function u(x) = xex − ex + 1, and u−1(x) is the inverse
function of u(x), x ≥ 0. The Lagrangian variable λi satisfies
the following equation,

1 =
∑
j∈Ji

bij

u−1
(

λi

aij

) , ûi(λi), (19)

and the unique value of λi can be obtained by using the
bisection method. Having obtained the Lagrangian variable
λi, the optimal mmmi is calculated as

mij =
bij

u−1
(

λi

aij

) , ∀j ∈ Ji. (20)

In the following, we provide a distributed time allocation
and power control algorithm to solve sum power optimization
Problem (3) in Algorithm 1.

Algorithm 1 Distributed Time Allocation and Power Control
for Power Minimization (DTAPC-PM)

1: Initialize q
(0)
i = Pmax

i , ∀i ∈ N . Set iteration number
n = 1, and maximal iteration number Nmax.

2: for i = 1, 2, · · · , N do
3: With power qqq

(n−1)
−i fixed, calculate a

(n−1)
ij =∑

k∈N\{i} q
(n−1)
k gkj+σ2

gij
, ∀j ∈ Ji;

4: Use the bisection method to obtain the optimal λ
(n)
i

such that ûi(λ
(n)
i ) = 1;

5: Update m
(n)
ij = bij

/
u−1

(
λ
(n)
i

a
(n−1)
ij

)
, ∀j ∈ Ji, q

(n)
i =∑

j∈Ji
m

(n)
ij hij(m

(n)
ij , qqq

(n−1)
−i , Dij);

6: end for
7: If n > Nmax or objective function (15a) converges, output

mmm∗ =mmm(n), p∗ij = hij(m
(n)
ij , qqq

(n)
−i , Dij),∀i ∈ N , ∀j ∈ Ji,

rrr∗ =DDD, and terminate. Otherwise, set n = n+ 1 and go
to step 2.

C. Convergence and Global Optimality of DTAPC-PM

To show the convergence and global optimality of DTAPC-
PM algorithm, we recap the standard interference function
introduced in [34]. Consider an arbitrary interference func-
tion III(qqq) = (I1(qqq), · · · , IN (qqq)), we say III(qqq) is a standard
interference function if for all qqq ≥ 000, the following properties
are satisfied.

1) Positivity: III(qqq) > 000.
2) Monotonicity: If qqq(1) ≥ qqq(2), then III(qqq(1)) ≥ III(qqq(2)).
3) Scalability: For all α > 1, αIII(qqq) > III(αqqq).
Denote the solution of Problem (18) as vi(qqq), ∀i ∈ N .

Letting vvv = (v1, · · · , vN ), we have the following theorem.
Theorem 4: vvv(qqq) is a standard interference function.

Proof: Please refer to Appendix D.
Based on Theorem 4, we have the following corollaries.
Corollary 1: If there exists qqq such that qqq ≥ vvv(qqq), the

iterative fixed-point method qqq(i+1) = vvv(qqq(i)) will converge
to the unique fixed point qqq∗ = vvv(qqq∗) with any initial point
qqq(0).

Proof: Please refer to [34, Theorem 2].
Corollary 2: Problem (15) is feasible, if and only if there

exists qqq∗ = vvv(qqq∗) and qqq∗ ≤ QQQmax, where QQQmax =
(Pmax

1 , · · · , Pmax
N ).

Proof: Please refer to Appendix E.
Corollary 3: If Problem (15) is feasible, the optimal solu-

tion (mmm∗, qqq∗) of Problem (15) is unique and qqq∗ = vvv(qqq∗).
Proof: : Please refer to Appendix F.

Corollary 4: If Problem (15) is feasible, the optimal qqq∗ of
Problem (15) is component-wise minimum in the sense that
any other feasible solution (mmm′, qqq′) that satisfies (15b) and
(15c) must satisfy qqq′ ≥ qqq∗.

Since Corollary 4 can be easily proved from Corollary 1
and Corollary 2, the proof of Corollary 4 is omitted.

Remark: In Algorithm 1, each BS solves a convex prob-
lem in each iteration. According to [34], when the iterative
relation of the algorithm is a standard interference function
and the problem is feasible, the algorithm always converges
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and the convergent solution is globally optimal. Consequently,
Algorithm 1 converges to the globally optimal solution based
on the property of a standard interference function. As a
standard interference function, the iterative relation of Problem
(18) satisfies three properties. The positivity property should
be satisfied since the transmission power of each BS should
be positive to meet the positive rate demands of all users.
When the transmission power of some BSs increases, the
transmission power of all BSs should be accordingly increased
to meet the rate demands for all users, which implies the
monotonicity property. The scalability property states that the
scaled input transmission power of all BSs results in upper-
bounded output transmission power of all BSs.

D. Complexity Analysis

For simplicity of analysis, it is assumed that the number
of users in each cell is K. For the DTAPC-PM algorithm, in
each iteration the major complexity lies in the computation
of Lagrange multiplier λi. The computation of λi involves
the inverse function u−1(x) in (19), and the complexity
of computing u−1(x) is O(log2(1/ϵ0)) by using bisection
method for accuracy ϵ0. To solve λi from (19), the complex-
ity is O(K log2(1/ϵ0) log2(1/ϵ1)) with ϵ1 as the accuracy
required for bisection method. Thus, the total complexity
of the DTAPC-PM is O(LPMNK2 log2(1/ϵ0) log2(1/ϵ1))),
where LPM denotes the total number of iterations of the
DTAPC-PM algorithm. For the optimal power vector for
power minimization (OPV-PM) algorithm in [29], the main
computational complexity lies in the bisection search of
power, which involves a complexity of O(K log2(1/ϵ2)) for
accuracy ϵ2. Then, the total complexity of the OPV-PM is
O(LOPVNK log2(1/ϵ2)), where LOPV denotes the total num-
ber of iterations by using the OPV-PM algorithm. According
to Fig. 9 in Section VI.B, the values of LPM and LOPV are
small. The typical numbers of iterations are LPM=LPM=10
from Fig. 9.

E. Implementation Method

To successfully implement the DTAPC-PM algorithm, each
BS i needs to compute load vector mmmi, which includes the
coefficients aij , ∀j ∈ Ji. Since aij =

∑
k∈N\{i} qkgkj+σ2

gij
, the

denominator gij can be estimated by BS i according to channel
reciprocity. For the numerator of aij ,

∑
k∈N\{i} qkgkj + σ2 is

the total interference and noise power of user j served by BS
i and the numerator of aij can be calculated by user j. Thus,
the numerator of aij can be obtained by the message sent from
user j. It is assumed that each BS knows the rate demands of
its served users and the channel gains between the BS and its
served users remain unchanged during the resource scheduling
time. In summary, every user calculates the value of received
total interference power and sends this message to its served
BS, then each BS i estimates the channel gains between its
served users and BS i. Moreover, each BS i calculates the
optimal mmmi of Problem (18), and pij = aij(ebij/mij −1), ∀j ∈
Ji. Each BS updates its load vector and transmission power
vector until the total interference power of each user converges.

F. Comparison with the Distributed Algorithm Using Alter-
nating Directions Method of Multipliers

To solve the sum power optimization Problem (3) with
V (mmm,ppp,rrr) =

∑
i∈N

∑
j∈Ji

mijpij , there are two advantages
in Algorithm 1:

1) The globally optimal solution of Problem (3) with
V (mmm,ppp,rrr) =

∑
i∈N

∑
j∈Ji

mijpij is obtained via Al-
gorithm 1.

2) Algorithm 1 can be implemented in practice since each
BS can calculate the its own strategy according to the
channel gains between this BS and its served users and
the messages of total interference and noise power sent
from its served users.

For the distributed algorithm using alternating directions
method of multipliers (ADMM) [30]–[32], it is hard to obtain
the globally optimal solution of Problem (3) with V (mmm,ppp,rrr) =∑

i∈N
∑

j∈Ji
mijpij due to that Problem (3) is nonconvex.

Besides, since the power vectors of different BSs in the
Lagrangian of Problem (3) cannot be decoupled, it is difficult
to establish the distributed algorithm using ADMM.

V. SUM RATE MAXIMIZATION PROBLEM FOR MULTI-CELL
NETWORKS

In this section, based on the results about sum rate maxi-
mization for single-cell networks, we solve the sum rate opti-
mization Problem (3) with V (mmm,ppp,rrr) = −

∑
i∈N

∑
j∈Ji

rij
for multi-cell networks. We establish a distributed time allo-
cation and power control algorithm, and provide the proof of
convergence for this distributed algorithm.

A. Distributed Time Allocation and Power Control
Due to nonconvex constraints (3b) and (3c), the glob-

ally optimal solution of Problem (3) is difficult to be
effectively obtained. To solve Problem (3), we provide
a novel distributed algorithm to obtain a suboptimal so-
lution. Denote pppi = (pi(Ji−1+1), pi(Ji−1+2), · · · , piJi)

T ,
rrri = (ri(Ji−1+1), ri(Ji−1+2), · · · , riJi)

T , which can be
viewed as the power and rate vector of BS i, respec-
tively. Let ppp−i = (pppT1 , · · · , pppTi−1, ppp

T
i+1, · · · , pppTN )T , rrr−i =

(rrrT1 , · · · , rrrTi−1, rrr
T
i+1, · · · , rrrTN )T . Plugging (2) into (3), BS i

should solve the following optimization problem with given
mmm−i, ppp−i and rrr−i,

min
000≤mmmi,000≤pppi

−
∑
j∈Ji

Bmij log2 (1 + pij ḡij) (21a)

s.t. Bmij log2 (1+pij ḡij)≥Dj , ∀j∈Ji (21b)

Bmkl log2

(
1+

pklgkl
Ekli +

∑
j∈Ji

mijpijgil

)
≥rkl,

∀k∈N \ {i}, l∈Jk (21c)∑
j∈Ji

mijpij ≤ Pmax
i , (21d)∑

j∈Ji

mij ≤ 1 (21e)

where ḡij =gij

/(∑
k∈N\{i}

∑
l∈Jk

mklpklgkj+σ2
)

, Ekli =∑
s∈N\{i,k}

∑
t∈Js

mstpstgsl + σ2, ∀k ∈ N \ {i}, l ∈ Jk.
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To solve nonconvex Problem (21), we introduce a set of new
non-negative variables: p̄ij = mijpij , ∀j ∈ Ji. Then, Problem
(21) is equivalent to the following convex problem.

min
000≤mmmi,000≤p̄̄p̄pi

−
∑
j∈Ji

Bmij log2

(
1 +

p̄ij ḡij
mij

)
(22a)

s.t. Bmij log2

(
1+

p̄ij ḡij
mij

)
≥Dj , ∀j∈Ji (22b)∑

j∈Ji

p̄ij ≤ P̄max
i , (22c)∑

j∈Ji

mij ≤ 1 (22d)

where p̄̄p̄pi = (p̄i(Ji−1+1), p̄i(Ji−1+2), · · · , p̄iJi)
T , P̄max

i =
min{Pmax

i ,mink∈N\{i},l∈Jk
{P̄max

kli }}, and

P̄max
kli =

p̄klgkl

mklgil

(
2

rkl
Bmkl − 1

) − Ekli

gil
, k ∈ N \{i}, l ∈ Jk.

(23)
It is interesting to observe that Problem (22) has the same
structure of sum rate optimization Problem (8) in single-
cell networks. Thus, Problem (22) can be effectively solved
by using the same method in Appendix B. Define ḡij as
the effective channel gain of user j, which is the ratio of
channel gain and inter-cell interference pulsed noise power.
From Appendix B, we can obtain the following theorem.

Theorem 5: To maximize the sum rate of multi-cell net-
works, it is optimal for each BS to transmit with full time
resources, i.e.,

∑
j∈Ji

m∗
ij = 1, ∀i ∈ N . Besides, the

optimal power allocation strategy for each BS is to allocate
the additional power to the user with the best effective channel
gain, while other users are allocated with the minimal power
to maintain their minimal rate requirements.

In the following, we provide a distributed time allocation
and power control algorithm to solve sum rate optimization
Problem (3) in Algorithm 3.

Algorithm 2 Distributed Time Allocation and Power Control
for Rate Maximization (DTAPC-RM)

1: Initialize feasible solution (mmm(0), ppp(0), rrr(0)). Set iteration
number n = 1, and maximal iteration number Nmax.

2: for i = 1, 2, · · · , N do
3: With mmm

(n−1)
−i = (mmm

(n)
1 ;· · ·,mmm(n)

i−1 ;mmm
(n−1)
i+1 ;· · ·;mmm(n−1)

N ),
ppp
(n−1)
−i = (ppp

(n)
1 ;· · ·;ppp(n)i−1 ;ppp

(n−1)
i+1 ;· · ·;ppp(n−1)N ), and rrr

(n−1)
−i =

(rrr
(n)
1 ; · · · ;rrr(n)i−1;rrr

(n−1)
i+1 ; · · · ;rrr(n−1)

N ) fixed, obtain mmm
(n)
i ,

p̄̄p̄p
(n)
i by solving convex Problem (22);

4: p
(n)
ij =

p̄
(n)
ij

m
(n)
ij

, r(n)ij = Bm
(n)
ij log2

(
1 +

p̄
(n)
ij ḡij

m
(n)
ij

)
, ∀j ∈

Ji.
5: end for
6: If n > Nmax or objective function (3a) converges, output

mmm∗ = (mmm
(n)
1 ; · · · ;mmm(n)

N ), ppp∗ = (ppp
(n)
1 ; · · · ;ppp(n)N ), rrr∗ =

(rrr
(n)
1 ; · · · ;rrr(n)N ), and terminate. Otherwise, set n = n+1

and go to step 2.

B. Convergence of DTAPC-RM

Theorem 6: Assuming Nmax → ∞, the sequence of load,
power and rate vectors generated by the sequential updating
DTAPC-RM algorithm will converge.

Proof: Please refer to Appendix G.

C. Complexity Analysis

Assume that the number of users in each cell is K. For the
DTAPC-RM algorithm, in each iteration the major complexity
lies in solving convex Problem (22). To obtain the optimal
solution of Problem (22), the KKT conditions are solved
in Appendix B. To solve Lagrange variable γ, the com-
plexity is O(K log2(1/ϵ3) log(1/ϵ4)), where O(log2(1/ϵ3)
is the complexity of solving (53) with bisection method
for accuracy ϵ3 and O(log2(1/ϵ4) is the complexity of ob-
taining the inverse function w−1(x) in (47) and (50) with
bisection method for accuracy ϵ4. Thus, the complexity of
solving convex Problem (22) is O(K2 log2(1/ϵ3) log(1/ϵ4)).
As a result, the total complexity of the DTAPC-RM is
O(LRMNK2 log2(1/ϵ3) log(1/ϵ4)), where LRM denotes the
total number of iterations of the DTAPC-RM algorithm. From
Fig. 10 in Section VI.B, the typical value of LRM is 10.

D. Implementation Method

To implement the proposed DTAPC-RM algorithm, each BS
i needs to update the load vector mmmi and power vector p̄̄p̄pi by
solving Problem (22). Solving Problem (22) involves effective
channel gain ḡij and maximal transmission power P̄max

i . Since
ḡij =

gij∑
k∈N\{i} qkgkj+σ2 , numerator gij is the channel gain

between BS i and its served user j. Obviously, gij can be
detected by channel reciprocity. Beside,

∑
k∈N\{i} qkgkj + σ2

is the total interference power of user j served by BS i, and
the value of interference power can be detected by user j.
Since P̄max

i = min{Pmax
i ,mink∈N\{i},l∈Jk

{P̄max
kli }}, P̄max

kli

should be obtained before calculating P̄max
i . According to

(23), obtaining P̄max
kli involves p̄kl, gkl, rkl, mkl, gil and Ekli.

Since p̄kl and mkl respectively are the power spectral density
and fraction of resources of BS k allocated to its served user
l, p̄kl and mkl are known by BS k. The channel gain gkl
between BS k and its served user l can be estimated by channel
reciprocity. Achievable rate rkl of user l served by BS k can
be known by BS k. For cross channel gain gil between BS
i and user l served by BS k ̸= i, gil can be estimated at
BS i for receiving the pilot from user l according to channel
reciprocity. To calculate Ekli,

Ekli =
∑

s∈N\{i,k}

∑
t∈Js

p̄stgsl + σ2 = Ikl −
∑
j∈Ji

p̄ijgil,

where Ikl =
∑

s∈N\{k}
∑

t∈Js
p̄stgsl + σ2 is the total in-

terference and noise received from user l, and
∑

j∈Ji
p̄ij is

the sum power spectral density of BS i. As a result, user
l ∈ Jk sends its overall received interference and noise to BS
k. Then, having obtained the messages from users in Jk, BS
k sends these obtained messages as well as its strategy (p̄̄p̄pk,
mmmk, rrrk) to BS i. As a result, BS i calculates the optimal load
vector mmmi and power vector p̄̄p̄pi by solving Problem (23). Each



8

1 2 3 4 5 6 7 8 9
−25

−20

−15

−10

−5

0

User ID 

C
h
an
n
el
 g
ai
n
 (
d
B
)

Fig. 2. Channel gains for different users.

BS updates its load vector and power vector until the total
interference power of each user converges.

VI. NUMERICAL RESULTS

A. Optimization for A Single-Cell Network

We consider a single-cell network with 9 users. The path
loss model is the NLOS scenario of Urban Micro cell and the
standard deviation of shadow fading is 4 dB [35]. The noise
power σ2 = −174 dBm/Hz, and the bandwidth of the system
is B = 18 MHz. We assume equal rate demand for all users,
i.e., Dj = D, ∀j. We compare the following two algorithms:
sum power minimization for a single cell (labeled as ‘PM-
SC’), and sum rate maximization for a single cell (labeled as
‘RM-SC’).

Fig. 2 to Fig. 5 illustrate the channel gains, time allocation,
power control and rate distribution for different users, respec-
tively. In Fig. 3 to Fig. 5, we set D = 2.5 Mbps and maximal
power Pmax = 1 W. For simplicity, the power of each BS is
measure in watt in the following. Summing the fractions of
time resources for all users in Fig. 3, we can find that the BS
uses full time resources for both PM-SC and RM-SC. Thus,
to minimize sum power, or maximize sum rate, it is always
optimal for the BS to use all the time resources, which verifies
the theoretical findings in Theorem 1. The channel for user 7
is better than user 8 according to Fig. 2, while the allocated
fraction of time for user 7 is smaller than the allocated fraction
of time for user 8 based on Fig. 3. We can observe that the key
to save energy or increase throughput is to allocate more time
to the users with poor channel gains. From Fig. 2 and Fig. 3,
we can find that the majority of time resources are allocated to
the user with highest channel gain for RM-SC, while most of
time resources are allocated to the user with weakest channel
gain for PM-SC. This is due to the fact that a great number of
time resources allocated to the user with highest channel gain
can produce high data rate and these resources allocated to the
user with weakest channel gain can significantly decrease the
required power. To maximize sum rate, we observe that the BS
allocates highest power to the user with highest channel gain
for RM-SC according to Fig. 4. In Fig. 5, it is observed that
all the users are set with minimal rate demands for PM-SC,
while the user with highest channel gain is set with highest
rate for RM-SC.

The sum power and sum rate performance under different
rate demands are shown in Fig. 6 and Fig. 7, respectively.
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Fig. 3. Time allocation for different users.
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Fig. 4. Power control for different users.

From Fig. 6, it is observed that sum power is always maximal
for RM-SC, while sum power increases with rate demand for
PM-SC. This is because maximal power should be always
used to maximize sum rate, and the increase of rate demand
requires additional power for PM-SC. Obviously, sum power
of PM-SC outperforms RM-SC. In Fig. 7, sum rate of RM-SC
is superior over PM-SC especially when the rate demand is
low. From Fig. 6 and Fig. 7, we can conclude that RM-SC
outperforms PM-SC in terms of sum rate at the increase of
power consumption.

B. Optimization for A Multi-Cell Network

We consider a multi-cell network consisting of 15 cells and
450 users. The three-sector antenna pattern is used for each
site and the gain for the three-sector, of which 3dB beamwidth
in degrees is 70 degrees, is 14dBi. The path loss model is
the NLOS scenario of Urban Micro cell and the standard
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Fig. 5. Rate distribution for different users.
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deviation of shadow fading is 4 dB [35]. Each user selects
the BS with the highest channel gain (the user randomly
chooses one BS if there would be multiple BSs with the
highest channel gain). We assume equal maximal transmission
power (i.e., Pmax

i = Pmax = 10 W, ∀i ∈ N ) for all BSs and
equal rate demand (i.e., Dij = D, ∀i ∈ N , j ∈ Ji) for all
users. We compare the performance of proposed DTAPC-PM
and DTAPC-RM with the OPV-PM algorithm in [29], where
uniform power is allocated to users in the same cell, and the
WMMSE-RM algorithm to solve sum rate optimization (3)
by iterative solving the time allocation problem and power
control problem where the power control problem is solved via
the minimization of weighted mean-square error (WMMSE)
approach [36].

In Fig. 8, we illustrate the power solutions of each BS by
using OPV-PM and DTAPC-PM. The proposed DTAPC-PM
significantly outperforms the OPV-PM in terms of requiring
lower power for every BS. The total transmission power of all
cells by the proposed DTAPC-PM is about 39% lower than
by OPV-PM. This is due to the fact that OPV-PM assumes
equal power allocation for users served by the same BS,
while DTAPC-PM assumes unequal power allocation for users
served by the same BS to further exploit multiuser diversity.

Fig. 9 shows the convergence behavior of OPV-PM and
DTAPC-PM. It can be seen that both OPV-PM and DTAPC-
PM monotonically increase and converge quickly. Obviously,
the sum power of DTAPC-PM outperforms OPV-PM. This is
due to that DTAPC-PM further exploits multiuser diversity
by setting users served by the same BS with unequal power
allocation, which requires more computations in each iteration
than OPV-PM according to the complexity analysis in Section

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

Cell ID

P
o

w
er

  
co

n
su

m
p

ti
o

n
 (

W
)

 

 

OPV−PM

DTAPC−PM

Fig. 8. Power consumption in each cell under D = 1 Mbps.
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Fig. 9. Convergence behavior of OPV-PM and DTAPC-PM under D = 1
Mbps.

IV.D. Thus, we can conclude that the DTAPC-PM achieves a
significant performance gain at the cost of some additional
computations. Fig. 10 shows the convergence behavior of
WMMSE-RM and DTAPC-RM. It can be observed that the
sum rate of DTAPC-RM is superior over WMMSE-RM. For
both WMMSE-RM and DTAPC-RM, the sum rate mono-
tonically increases and converges rapidly, which makes the
algorithms suitable for practical applications.

We try multiple starting points in the simulations to ex-
haustively obtain a near globally optimal solution. We test
30 randomly generated channels shown in Fig. 11, where
DTAPC-EXH refers to the DTAPC-RM algorithm with 1000
starting points for each channel realization. It can be seen
that the sum rate of DTAPC-RM is almost the same as that
of DTAPC-EXH, implying that the proposed DTAPC-RM
approaches the near globally optimal solution.

The sum power, and sum rate performance under different
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Fig. 10. Convergence behavior of MMSE-RM and DTAPC-RM under D = 1
Mbps.
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Fig. 12. Sum power performance under different rate demands for a multi-
cell network.

rate demands for a multi-cell network are shown in Fig. 12
and Fig. 13, respectively. According to Fig. 12, DTAPC-PM
outperforms the other three algorithms and sum power is
greatly reduced by using DTAPC-PM compared to OPV-PM
when the rate demand is large. It is also observed that sum
power monotonically increases with the minimal rate demand
for all algorithms. Different from Fig. 6, where sum power is
always maximal to maximize sum rate in a single-cell network,
sum power monotonically increases with the minimal rate de-
mand for DTAPC-RM in a multi-cell network. This is because
that maximal transmission power is not always optimal due
to mutual interference among cells. In Fig. 13, sum rate of
DTAPC-RM is largest among four algorithms. The DTAPC-
RM outperforms the WMMSE-RM especially when the rate
demands are large. Besides, sum rate monotonically decreases
with the minimal rate demand for DTAPC-RM. This is due
to the fact that high rate demand requires large transmission
power of each BS, causing large mutual interference among
cells and low achievable rate for users.

VII. CONCLUSIONS

In this paper, we have optimized sum power and rate
through time allocation and power control for multi-cell
networks with load coupling. We first obtain the globally
optimal solutions for single-cell networks by solving KKT
conditions. Based on the results in single-cell networks, we
propose two distributed time allocation and power control
algorithms for optimization problems in multi-cell networks.
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Fig. 13. Sum rate performance under different rate demands for a multi-cell
network.

These two distributed algorithms can both be proved conver-
gent, and interestingly the distributed algorithm for sum power
minimization can be rigorously proved globally optimal. Our
analytical results suggest that maximal use of time resources
is optimal to minimize sum power and maximize sum rate
for both single-cell networks and multi-cell networks. To
minimize sum power for single-cell networks, we show that
all users are allocated with minimal power to satisfy the rate
demands. To maximize sum rate for single-cell networks, we
show that user with the best channel gain is allocated with
additional power, while other users are allocated with minimal
power to satisfy the rate demands. These optimal conditions
about power control strategy for single-cell networks are also
applicable to multi-cell networks with channel gain replaced
by effective channel gain, which is defined as the channel gain
divided by the totally received interference power including
inter-cell interference and noise power.

APPENDIX A
KKT CONDITIONS OF SUM POWER MINIMIZATION

PROBLEM

To minimize sum power, we find that constraint (8b) holds
with equality for optimal solution, as otherwise (8a) can be
improved by decreasing power. Setting constraint (8b) with
equality, we have

p̄j = ajmj

(
e

bj
mj − 1

)
, j = 1, · · · ,M, (24)

where aj = σ2/gj and bj = (ln 2)Dj/B. Substituting (24)
into (8), we have the following equivalent problem,

min
000≤m̃̃m̃m

M∑
j=1

ajmj

(
e

bj
mj − 1

)
(25a)

s.t.
M∑
j=1

mj ≤ 1. (25b)

It can be proved that Problem (25) is convex. To show this,

d2ajmj(e
bj/mj − 1)

dm2
j

=
b2j
m3

j

e
bj
mj > 0, ∀mj > 0, (26)
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which indicates that the objective function (25a) is convex.
The lagrangian of Problem (25) is

L2(m̃̃m̃m, λ) =
∑
j∈Ji

ajmj

(
e

bj
mj − 1

)
+ λ

 M∑
j=1

mij − 1

 ,

(27)
where λ is the non-negative Lagrange multiplier associated
with constraint (25b). Since limmj→0+ mjebj/mj = +∞, we
observe that for the optimal solution of Problem (26), m̃̃m̃m > 000.

According to [37], the KKT conditions of (25) are

∂L2

∂mj
= aj

(
e

bj
mj − bj

mj
e

bj
mj − 1

)
+ λ = 0, j = 1, · · · ,M

(28a)

λ

 M∑
j=1

mj − 1

 = 0 (28b)

M∑
j=1

mj − 1 ≤ 0 (28c)

λ ≥ 0, m̃̃m̃m > 000. (28d)

From (28a), we have

λ = aj

(
−e

bj
mj +

bj
mj

e
bj
mj + 1

)
. (29)

Define function u(x) = xex−ex+1, x ≥ 0. We have u′(x) =
xex > 0, ∀x > 0. Thus, function u(x) is strictly increasing
and u(x) > u(0) = 0, ∀x > 0. Based on (29), we have

mj =
bj

u−1
(

λ
aj

) , j = 1, · · · ,M, (30)

where u−1(x) is the inverse function of u(x). According to
(29), λ = aju

(
bj
mj

)
> 0, which implies that (28c) holds with

equality. Plugging (30) into (28c) yields

1 =

M∑
j=1

bj

u−1( λ
aj
)
, û(λ). (31)

Equation (31) has a unique solution λ > 0. Since u(x)
is strictly increasing, inverse function u−1(x) is also strictly
increasing in (0,+∞). Thus, û(λi) is a strictly decreasing
function in (0,+∞). Owing to the fact that limλ→0+ û(λ) =
+∞ and limλ→+∞ û(λ) = 0, there exists one unique λ
satisfying û(λ) = 1, and the solution can be obtained by
using the bisection method. Having obtained the value of λ,
the optimal m̃̃m̃m and p̄̄p̄p can be obtained from (30) and (24),
respectively.

APPENDIX B
KKT CONDITIONS OF SUM RATE MAXIMIZATION

PROBLEM

In the sum rate maximization problem, the Lagrangian
function of Problem (8) is

L3(m̃̃m̃m, p̄̄p̄p,ααα, β, γ,µµµ,ννν) = −
M∑
j=1

Bmj

ln 2
ln

(
1 +

gj p̄j
σ2mj

)

+

M∑
j=1

αj

(
Dj −

Bmj

ln 2
ln

(
1 +

gj p̄j
σ2mj

))

+β

 M∑
j=1

mj − 1

+ γ

 M∑
j=1

p̄j − Pmax


−

M∑
j=1

µjmj −
M∑
j=1

νj p̄j ,

where ααα = (α1, · · · , αM )T , ααα = (α1, · · · , αM )T , ααα =
(α1, · · · , αM )T . ααα, β, γ, µµµ, and ννν are the non-negative La-
grange multipliers associated with corresponding constraints
of Problem (8). According to [37], the KKT conditions of (8)
are

∂L3

∂mj
=β−B(1+αj)

ln 2
ln

(
1+

gj p̄j
σ2mj

)
+

B(1+αj)gj p̄j
(ln 2)(σ2mj+gj p̄j)

− µj = 0, j = 1, · · · ,M (32a)
∂L3

∂p̄j
=− Bgj(1 + αj)mj

(ln 2)(σ2mj+gj p̄j)
+γ−νj=0, j=1, · · · ,M

(32b)

αj

(
Dj−

Bmj

ln 2
ln

(
1+

gj p̄j
σ2mj

))
=0, j=1, · · · ,M (32c)

β

 M∑
j=1

mj − 1

 = 0 (32d)

γ

 M∑
j=1

p̄j − Pmax

 = 0 (32e)

µjmj = 0, νj p̄j = 0, j = 1, · · · ,M (32f)

Dj −
Bmj

ln 2
ln

(
1 +

gj p̄j
σ2mj

)
≤ 0, j = 1, · · · ,M (32g)

M∑
j=1

mj − 1 ≤ 0 (32h)

M∑
j=1

p̄j − Pmax ≤ 0 (32i)

ααα ≥ 0, β ≥ 0, γ ≥ 0,µµµ ≥ 000, ννν ≥ 000, m̃̃m̃m ≥ 000, p̄̄p̄p ≥ 000. (32j)

We first show that µµµ = ννν = 000. If there exists µj >
0, we can obtain mj = 0 from (32f). Then, we have
Bmj

ln 2 ln
(
1 +

gj p̄j

σ2mj

)
= 0 < Dj , which contradicts constraint

(8b). Thus, we have µµµ = 000 and m̃̃m̃m > 000. Similarly, we can
obtain ννν = 000 and p̄̄p̄p > 000.

From (32a), we can obtain

β =
B(1 + αj)

ln 2

(
ln

(
1 +

gj p̄j
σ2mj

)
− gj p̄j

σ2mj + gj p̄j

)
, (33)
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for all j = 1, · · · ,M . To show that β > 0, we introduce
function

t(p̄j) = ln

(
1 +

gj p̄j
σ2mj

)
− gj p̄j

σ2mj + gj p̄j
, ∀p̄j ≥ 0. (34)

Then, we can obtain

t′(p̄j) =
g2j p̄j

σ2mj + gj p̄j
> 0, (35)

which implies that t(p̄j) is strictly increasing. Thus,

β =
B(1 + αj)

ln 2
t(p̄j) >

B(1 + αj)

ln 2
t(0) = 0. (36)

According to (32b), we have

γ =
Bgj(1 + αj)mj

(ln 2)(σ2mj + gj p̄j)
> 0, j = 1, · · · ,M. (37)

Rearrange the structure of (32b), we can obtain

σ2mj

σ2mj + gj p̄j
=

(ln 2)σ2γ

Bgj(1 + αj)
, j = 1, · · · ,M. (38)

Substituting the (38) into (32a), we have

β =
B(1 + αj)

ln 2

(
ln

Bgj(1 + αj)

(ln 2)σ2γ
− 1 +

(ln 2)σ2γ

Bgj(1 + αj)

)
, v(gj , αj), j = 1, · · · ,M. (39)

In the following, we show that function v(gj , αj) is strictly
increasing with both gj and αj . According to (39), we have

∂v(gj , αj)

∂gj
=

B(1 + αj)

(ln 2)gj
− σ2γ

g2j
. (40)

From (38),

(ln 2)σ2γ

Bgj(1 + αj)
=

σ2mj

σ2mj + gj p̄j
< 1, j = 1, · · · ,M. (41)

Combining (40) and (41), we have ∂v(gj ,αj)
∂gj

> 0. Defining
function w(x) = x(lnx− 1 + 1/x), (39) can be reformulated
as

v(gj , αj) =
σ2γ

gj
w

(
Bgj(1 + αj)

(ln 2)σ2γ

)
, j = 1, · · · ,M. (42)

Since w′(x) = lnx > 0, ∀x > 1, we can obtain that
∂v(gj ,αj)

∂αj
> 0.

In the practical systems, the probability that gi = gj for
i ̸= j is always 0. Thus, without loss of generality, it can
be assumed that gj is arranged in a decreasing order, i.e.,
g1 > g2 > · · · > gM . Due to the fact that β = v(gj , αj) and
function v(gj , αj) is strictly increasing with both gj and αj ,
j = 1, 2, · · · ,M , we have αM > · · · > α2 > α1 ≥ 0.

For α1, we consider the two cases, α1 > 0 and α1 = 0.
If α1 > 0, every user transmits with minimal data rate
according to (32c) and (32g). As a result, the optimal value
of sum rate maximization Problem (8) is

∑M
j=1 Dj . Denote

D̄̄D̄D = (D1, · · · , DM )T and the optimal value of sum power
minimization Problem (25) as Pmin(D̄̄D̄D), which can be viewed
as the minimal power to maintain the minimal rate demand
vector D̄̄D̄D. Then, we can declare that α1 > 0 if and only if
Pmin(D̄̄D̄D) = Pmax, as otherwise the objective function could

be further improved with additional power. When α1 > 0, the
optimal m̃̃m̃m and p̄̄p̄p can be obtained from (30) and (24) as in
Appendix A.

When Pmin(D̄̄D̄D) < Pmax, we can obtain α1 = 0. Substitut-
ing α1 = 0 into (39), we have

β =
B

ln 2
ln

Bg1
(ln 2)σ2γ

− B

ln 2
+

σ2γ

g1
, (43)

which indicates that β is a function of γ. Based on (39) and
(42), we have

αj =
(ln 2)σ2γ

Bgj
w−1

(
gjβ

σ2γ

)
− 1, j = 2, · · · ,M. (44)

where w−1(x) is the inverse function of w(x). Plugging (44)
into (37), we can obtain

1 +
gj p̄j
σ2mj

= w−1

(
gjβ

σ2γ

)
, j = 2, · · · ,M. (45)

Since αM > · · · > α2 > α1 = 0, constraints (32g) hold with
equality for j = 2, · · · ,M . Applying (45) to (32g) yields

mj =
(ln 2)Dj

B ln
(
w−1

(
gjβ
σ2γ

)) , j = 2, · · · ,M. (46)

Combining (45) and (46), we have

p̄j =
(ln 2)Djσ

2
(
w−1

(
gjβ
σ2γ

)
− 1
)

Bgj ln
(
w−1

(
gjβ
σ2γ

)) , j = 2, · · · ,M, (47)

where β is a function of γ from (43). According to (47), we
find that p̄j is a function of γ for j = 2, · · · ,M . Then, we
show that p̄j is decreasing with γ, ∀j ≥ 2. According to (43),
we have

∂
(

gjβ
σ2γ

)
∂γ

= − Bgj
(ln 2)σ2γ2

ln
Bg1

(ln 2)σ2γ
< 0, (48)

which implies that gjβ
σ2γ is decreasing for γ. Moreover, we also

can obtain
∂
(
x−1
ln x

)
∂x

=
x lnx− x+ 1

x ln2(x)
> 0, ∀x > 1. (49)

According to the chain rule of composition function, we can
observe that p̄j is decreasing with γ from (47), (48) and (49),
j = 2, · · · ,M .

Owing to the fact that β > 0 implied by (36), constraint
(32h) holds with equality from (32d). Substituting (46) into
(32h), we have

m1 = 1−
M∑
j=2

(ln 2)Dj

B ln
(
w−1

(
gjβ
σ2γ

)) . (50)

Applying α1 = 0 to (37) yields

p̄1 =
Bg1 − (ln 2)σ2γ

(ln 2)g1γ
m1. (51)

Substituting (50) into (51), we have

p̄1 =
Bg1 − (ln 2)σ2γ

(ln 2)g1γ

1−
M∑
j=2

(ln 2)Dj

B ln
(
w−1

(
gjβ
σ2γ

))
 .

(52)
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Because both positive-valued function Bg1−(ln 2)σ2γ
(ln 2)g1γ

and 1 −∑M
j=2

(ln 2)Dj

B ln
(
w−1

(
gjβ

σ2γ

)) are decreasing with γ, we can prove

that p̄1 is decreasing with γ. Since γ > 0 according to (37),
constraint (32i) holds with equality from (32e), i.e.,

M∑
j=1

p̄j = Pmax. (53)

From the above analysis, we prove that the left term of
Equation (53) is decreasing with γ, which means that the
unique γ can be solved from (53) by using the bisection
method. Having obtained the value of γ, the optimal m̃̃m̃m and q̄̄q̄q
can be obtained from (43), (46), (47), (50) and (51).

APPENDIX C
PROOF OF THEOREM 3

To show this, if the pair (mmm,ppp,DDD) is feasible in (3), then
the pair (mmm,qqq), where power qi =

∑
j∈Ji

mijpij , ∀i ∈ N ,
is feasible in (15), with the same objective value

∑
i∈N qi =∑

i∈N
∑

j∈Ji
mijpij . It follows that the optimal value of (3)

is greater than or equal to the optimal value of (15).
Conversely, if (mmm,qqq) is the optimal solution of (15), we can

claim that

qi =
∑
j∈Ji

mijhij(mij , qqq−i, Dij), ∀i ∈ N . (54)

If there exists at least one n ∈ N which satisfies qn >∑
j∈Jn

mnjhnj(mnj , qqq−n, Dnj). With mmm and qqq−n fixed, let
q′n =

∑
j∈Jn

mnjhnj(mnj , qqq−n, Dnj). Denote the new aver-
age power of BSs as qqq′ = (q1, · · · , qn−1, q

′
n, qn+1, · · · , qN )T .

From (13) and (14), for all k ̸= n, we have∑
l∈Jk

mklhkl(mkl, qqq
′
−k, Dkl)<

∑
l∈Jk

mklhkl(mkl, qqq−k, Dkl)≤qk.

Then, (mmm,qqq′) is feasible with

q′n +
∑

k∈N\{n}

qk <
∑
i∈N

qi, (55)

which contradicts the fact that (m, qm, qm, q) is the optimal solution.
Thus, qi =

∑
j∈Ji

mijhij( mij , qqq−i, Dij), ∀i ∈ N . The pair
(m, p,Dm, p,Dm, p,D), where pij = hij(mij , qqq−i, Dij),∀i ∈ N , ∀j ∈ Ji,
is feasible in Problem (3) with the same objective value∑

i∈N
∑

j∈Ji
mijpij =

∑
i∈N qi. Thus, we conclude that the

optimal value of (3) is less than or equal to the optimal value
of (15). Hence, Problem (3) is equivalent to Problem (15).

APPENDIX D
PROOF OF THEOREM 4

We prove each of the three properties required for standard
function below.

Positivity: Through above analysis in V-B, we have vi(qqq) =∑
j∈Ji

aijmij(ebij/mij − 1), where mij = bij/u
−1(λi/aij)

and λi satisfies ûi(λi) = 1. For all qqq ≥ 000, aij =∑
k∈N\{i} qkgkj+σ2

gij
> 0, bij =

ln(2)Dij

B > 0, ∀j ∈ Ji. Thus,
according to (19), λi > 0, mij > 0, ∀j ∈ Ji and vi(qqq) > 0,
∀i ∈ N , i.e., vvv(qqq) > 000.

Monotonicity: Let power vector qqq(1) = (q
(1)
1 , · · · , q(1)N )T

and qqq(2) = (q
(2)
1 , · · · , q(2)N )T be such that q(1)k ≥ q

(2)
k , ∀k ∈

N . Define a
(1)
ij = (

∑
k∈N\{i} q

(1)
k gkj + σ2)/gij and a

(2)
ij =

(
∑

k∈N\{i} q
(2)
k gkj + σ2)/gij , ∀j ∈ Ji. Obviously, we have

a
(1)
ij ≥ a

(2)
ij , ∀j ∈ Ji. We also define λ

(1)
i and λ

(2)
i which

satisfy∑
j∈Ji

bij

u−1

(
λ
(1)
i

a
(1)
ij

) = 1,
∑
j∈Ji

bij

u−1

(
λ
(2)
i

a
(2)
ij

) = 1. (56)

Denote the load m
(1)
ij = bij/u

−1(λ
(1)
i /a

(1)
ij ) and m

(2)
ij =

bij/u
−1(λ

(2)
i /a

(12)
ij ), ∀j ∈ Ji. Then, we have

vi(qqq
(1)) =

∑
j∈Ji

a
(1)
ij m

(1)
ij (ebij/m

(1)
ij − 1)

≥
∑
j∈Ji

a
(2)
ij m

(1)
ij (ebij/m

(1)
ij − 1)

≥
∑
j∈Ji

a
(2)
ij m

(2)
ij (ebij/m

(2)
ij − 1) = vi(qqq

(2)). (57)

The first inequality follows from the fact that a
(1)
ij ≥

a
(2)
ij , ∀j ∈ Ji. The second inequality follows because

(m
(2)
i(Ji−1+1), · · · ,m

(2)
iJi

)T is the optimal solution of (18) with

objective function
∑

j∈Ji
a
(2)
ij mij(e

bij/mij − 1). As a result,
vi(qqq

(1)) ≥ vi(qqq
(2)), ∀i ∈ N .

Scalability: Let qqq ≥ 000 and α > 1. Denote load
vector (mi(Ji−1+1), · · · ,miJi)

T as the optimal solution of
Problem (18). Let a′ij = (

∑
k∈N\{i} αqkgkj + σ2)/gij and

(m′
i(Ji−1+1), · · · ,m

′
iJi

)T the optimal solution of Problem (18)
with objective function

∑
j∈Ji

a′ijmij(e
bij/mij − 1) and con-

straint (18b). Then, we have

αvi(qqq) =
∑
j∈Ji

αaijmij(ebij/mij − 1)

>
∑
j∈Ji

a′ijmij(ebij/mij − 1)

≥
∑
j∈Ji

a′ijm
′
ij(e

bij/m
′
ij − 1) = vi(αqqq). (58)

The first inequality follows from the observation that noise
power σ2 > 0 and αaij = (

∑
k∈N\{i} αqkgkj + ασ2)/gij >

(
∑

k∈N\{i} αqkgkj + σ2)/gij = a′ij . Meanwhile, it is obvi-
ous that both (mi(Ji−1+1), · · · ,miJi)

T and (m′
i(Ji−1+1), · · · ,

m′
iJi

)T satisfy the constraint (18b). Similarly to the proof of
monotonicity, the second inequality follows from the definition
of (m′

i(Ji−1+1), · · · ,m
′
iJi

)T . As a result, αvi(qqq) > vi(αqqq),
∀i ∈ N .

APPENDIX E
PROOF OF COROLLARY 2

On one hand, if Problem (15) is feasible, there exists one
pair (mmm,qqq) satisfies (15b), (15c) and qqq ≤ QQQmax. Since vi(qqq)
is the optimal solution of Problem (18), we have

vi(qqq) ≤
∑
j∈Ji

mijhij(mij , qqq−i, dij) ≤ qi, ∀i ∈ N . (59)
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Thus, QQQmax ≥ qqq ≥ vvv(qqq). Suppose vvv(k−1)(qqq) ≥ vvv(k)(qqq), then

vvv(k)(qqq) = vvv(vvv(k−1)(qqq)) ≥ vvv(vvv(k)(qqq)) = vvv(k+1)(qqq) (60)

is satisfied by the monotonicity property of Theorem 4. By us-
ing induction method, QQQmax ≥ vvv(qqq) ≥ vvv2(qqq)) ≥ · · · ≥ vvvn(qqq).
From Corollary 1, the iterative fixed-point method converges,
and QQQmax ≥ limn→∞ vvvn(qqq) = qqq∗.

On the other hand, if there exists qqq∗ = vvv(qqq∗) and qqq∗ ≤
QQQmax, the optimal mmm∗

i can be obtained by solving Problem
(18) with fixed qqq∗−i. Denote mmm∗ = ((mmm∗

1)
T , · · · , (mmm∗

N )T )T .
Obviously, the pair (mmm∗, qqq∗) satisfies all the constraints of
Problem (15). Thus, Problem (15) is feasible.

APPENDIX F
PROOF OF COROLLARY 3

According to the definition of vi(qqq), constraints (15b) and
(15c) indicate that vi(qqq) ≤ qi, ∀i ∈ N . As a result, Problem
(15) can be equivalently transformed into

min
000<qqq≤QQQmax

∑
i∈N

qi (61a)

s.t. vi(qqq) ≤ qi, ∀i ∈ N . (61b)

To show the equivalence of Problem (15) and Problem (61),
if the pair (mmm,qqq) is feasible in (61), then the pair (qqq) is feasible
in (15), with the same objective value. It follows that the
optimal value of (15) is greater than or equal to the optimal
value of (61). From Theorem 4, vvv(qqq) is strictly increasing.
Conversely, assume that qqq is feasible (15). Denote the optimal
solution of Problem (18) asmmmi which satisfies constraint (18b).
The pair (mmm,qqq), where mmm = (mmmT

1 , · · · ,mmmT
N )T is feasible in

(61) with the same objective value. Thus, we conclude that the
optimal value of (15) is less than or equal to the optimal value
of (61). As a result, Problem (15) is equivalent to Problem
(61).

From Theorem 4, vvv(qqq) is strictly increasing. Hence, if
Program (61) is feasible, then for any optimal solution to (61),
constraints (61b) hold with equality, as otherwise (61a) can
be improved, contradicting that the solution is optimal. As a
result, the optimal qqq∗ of Problem (15) satisfies qqq∗ = vvv(qqq∗).
According to Corollary 1, the solution of qqq∗ is unique. With
fixed qqq∗−i, the optimal mmm∗

i can be obtained by solving Problem
(18). Since Equation (19) has unique solution λ∗

i > 0 and
m∗

ij =
bij

u−1

(
λ∗
i

aij

) , the optimal mmm∗
i is also unique. Thus, the

optimal solution (mmm∗, qqq∗) of Problem (15) is unique.

APPENDIX G
PROOF OF THEOREM 6

The proof is established by showing that when one B-
S updates its load and power vector by solving Prob-
lem (21), the sum rate of all BSs is non-decreasing. Let
mmm = (mmmT

1 , · · · ,mmmT
N )T , ppp = (pppT1 , · · · , pppTN )T and rrr =

(rrrT1 , · · · , rrrTN )T respectively denote the load, power and rate
vectors of all BSs before BS i starts to update its load, power
and rate vectors. Assume that (mmm,ppp,rrr) is a feasible solution of
Problem (3). Let (m̃̃m̃mi, p̃̃p̃pi, r̃̃r̃ri) denote the updated load, power
and rate vectors of BS i with given (mmm−i, ppp−i, rrr−i). According

to (21) and (22), we can observe that (m̃̃m̃m, p̃̃p̃p, r̃̃r̃r) is also a feasible
solution of sum rate optimization Problem (3). Then, we have∑

i∈N

∑
j∈Ji

rij =
∑
k∈N

∑
l∈Jk

rkl +
∑
j∈Ji

rij

≤
∑
k∈N

∑
l∈Jk

rkl +
∑
j∈Ji

r̃ij ≤
∑
i∈N

∑
j∈Ji

r̃ij ,

where the first and second equality follow from the fact that
(m̃̃m̃mi, p̃̃p̃pi, r̃̃r̃ri) is the load, power and rate vectors of BS i by
solving (21) with given (mmm−i, ppp−i, rrr−i). Hence, the DTAPC-
RM algorithm must converge.
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