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A Fair Relay Selection Scheme for a DF
Cooperative Network With Spatially Random Relays

Masoumeh Sadeghi and Amir Masoud Rabiei

Abstract—A new, fair relay selection scheme is proposed
for a dual-hop decode-and-forward network with randomly-
distributed relays. Most of the reported works in the literature
achieve fairness at the expense of degrading the outage prob-
ability performance. In addition, they often assume that the
number and locations of the relays are known. In contrast, the
proposed scheme achieves fairness in a random field of relays
without deteriorating the outage probability performance. In this
scheme, each relay maintains a countdown timer whose initial
value is a function of the relay location and a tunable parameter
which controls the level of fairness. The optimum value of this
parameter is evaluated in an offline manner so as to achieve
fairness by making the average powers consumed by the relays
as close as possible. An exact analytical expression is derived for
the average power consumed by each relay. This expression is
then used to show the superiority of the proposed scheme over
opportunistic relaying and random relay selection schemes.

Index Terms—Decode-and-forward (DF) relaying, fairness,
outage probability, Poisson point process, stochastic geometry.

I. INTRODUCTION

Cooperative communication is known to be an effective
means for combating the adverse effect of multipath fading
on wireless communication systems [1], [2]. In a cooperative
system, idle users (referred to as relays in the sequel) serve as
virtual antennas for the source and destination nodes allowing
them to achieve spatial diversity [3].

Cooperative communication was first introduced in [4]
and then further investigated in [5] and more recently in
[2]. Several cooperation protocols have been proposed in
the literature among which amplify-and-forward (AF) and
decode-and-forward (DF) have received much attention owing
to their simplicity and effectiveness [2], [6]. In order to
take better advantage of relaying, signals received from the
source and relays have to be properly combined at destination.
Opportunistic relaying [7], is a simple yet effective combining
scheme in which only a single relay participates in coopera-
tion. This relay should be among the set of relays that can
correctly decode the source signal. In addition, it should have
the largest relay-destination signal-to-noise power ratio (SNR).
An important but less investigated issue in relay networks is
to design a fair relaying strategy, i.e., a strategy in which
the average powers consumed by the relays are approximately
the same. Despite its many advantages, opportunistic relaying
suffers from lack of fairness among relays, i.e., a relay with
slightly better average channel gain than others is always
chosen for cooperation and, hence, its power drains much
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faster than those of other relays. As a result, it is crucial to
design a fair relay assignment strategy in which the relays
participating in cooperation consume approximately the same
amount of power [8]–[10].

In [8], a fair relay selection technique has been proposed for
an AF relaying network which attempts to equally divide the
total consumed power among relays. This technique, however,
has a larger outage probability than that of the opportunistic
relaying except when the received SNR is large, or when the
number of relays is small. Hence, in this technique the quality
of service (QoS) may be compromised to establish fairness
among the relays. In contrast to [8], in [9] a relay selection
scheme (known as outage priority based proportional fair
scheduling) has been proposed which gives a higher priority
to outage probability than fairness. This scheme improves
fairness among relays without degrading the outage probability
performance compared to opportunistic relaying. Again, this
improvement is significant only when the SNR is large. In
[10], a fair power allocation scheme has been proposed under
outage probability constraint. In this scheme, each relay has
a threshold value which is used to determine whether it can
participate in cooperation or not. The optimum values of the
thresholds are obtained by solving an optimization problem
that minimizes the total power consumption under a set of
constraints imposed by the QoS and fairness requirements.

Although there is a large body of research focused on fair
cooperative networks, in most of them the total number of
relays and their positions are assumed to be fixed. However,
in many practical scenarios the relays are mobile. Therefore,
it is reasonable to assume that the relays are distributed
randomly in their deployment region. In references [11], [12],
the outage performance of AF and DF relaying protocols are
investigated for the case where the relays are distributed as
a homogeneous two-dimensional (2D) Poisson point process
(PPP) with constant density. An exact statistical analysis has
been conducted for the distance between a reference node and
its communication best neighbor in a Poisson field of nodes
in [13]. In [14], a probabilistic relay assignment strategy has
been proposed which decreases the total power consumed by
the relays through reducing the number of relay deployments.

In this paper, we propose a fair relay selection strategy
for a two-hop DF relaying network with randomly distributed
relays. To the best of authors’ knowledge, only few works
reported in the literature consider fairness among relays in
a random field of relays. Our relay selection scheme aims
to improve fairness among relays while achieving the same
average outage probability as does the opportunistic relaying.
To this end, we first form a set of relays that can successfully
forward the source signal to destination. Each relay in this set

ar
X

iv
:1

61
1.

09
51

2v
1 

 [
cs

.N
I]

  2
9 

N
ov

 2
01

6



2
2

S D

Rj ∈ A
Rj /∈ A

F

ℓSD

Rj

ℓS,jℓj,D

Fig. 1. A typical dual-hop DF relay network.

has a countdown timer whose initial value is determined in a
way that a desired level of fairness among relays is achieved.
The initial value of each relay’s timer is a function of the
relay’s location and a tunable parameter, referred to as β, that
controls the level of fairness among relays. We derive an exact
analytical expression for the average power consumed by each
relay and use this result to find the optimum value of β. We
also use this expression to demonstrate the superiority of our
proposed scheme over opportunistic relaying and random relay
selection schemes. among relays.

The remainder of this paper is organized as follows. In
Section II, the system model is introduced. Our fair relay
selection scheme is proposed in Section III. In Section IV, we
derive an exact solution for the average power consumed by an
arbitrary relay in the network. Numerical results are presented
in Section V. Concluding remarks are given in Section VI.

II. SYSTEM MODEL

A typical dual-hop DF relay network is shown in Fig. 1.
This network consists of a source node, S, a destination node,
D, at distance ℓSD of the source node and a number of relays.
As mentioned earlier, we assume that the relays constitute a
2D homogeneous PPP with constant intensity λ. For simplicity
of our analysis, we assume the relay deployment region, F , is
arbitrarily large. Clearly, when a relay is far from the source
and destination nodes, the attenuation due to path loss becomes
quite significant. As a result, such relay is quite unlikely to
take part in cooperation [11].

Suppose that the transmission channels are subject to path
loss and small scale fading. Then, the instantaneous SNR of
the S–D link is given by [11]

ΓSD =
K0 PS

N0ℓα
SD

ΩSD (1a)

where PS is the source power, α ∈ [2, 7] is the path loss
exponent and K0 is a constant that is determined by the
system parameters (e.g., antenna gain), N0 is the noise power
at destination, and ΩSD is the fading power in the S–D channel

with E{ΩSD} = 1. Denoting by Rj the jth relay in the system,
the instantaneous SNRs of the S–Rj and Rj–D links are

ΓS,j = γS,j ΩS,j (2a)
Γj,D = γj,D Ωj,D (2b)

where ΩS,j and Ωj,D are the fading powers of S–Rj and Rj–D
links, respectively. We assume ΩS,j and Ωj,D are independent
unit-mean random variables with the same cumulative distri-
bution function (CDF) FΩ(·). Also in (2a) and (2b)

γS,j =
KR PS

NR ℓα
S,j

(3a)

γj,D =
KD PR

ND ℓα
j,D

(3b)

where PR is the transmitted power of Rj when it is chosen
for cooperation, ℓS,j and ℓj,D are S–Rj and Rj–D distances,
respectively. In addition, KR and KD are constants that depend
on the system parameters, and NR and ND are the noise powers
at relays and destination, respectively.

In this paper, we consider a dual-hop DF relaying system
in which a relay Rj is qualified for cooperation provided that

1) Rj can correctly decode the received signal from the
source, i.e., ΓS,j ≥ γ th

R
2) destination node can correctly decode the signal that is

forwarded by Rj , i.e., Γj,D ≥ γ th
D

where γ th
R and γ th

D are given thresholds that are properly set so
as to meet the system requirements. As a result, the set of all
such relays is defined as

A !
{

Rj

∣∣ΓS,j ≥ γ th
R , Γj,D ≥ γ th

D

}
. (4)

If A is an empty set, no cooperation takes place, i.e., an outage
occurs in the network. When A is not empty, each relay in
this set is assigned a timer and the relay whose timer expires
first is selected for cooperation. All other relays in A are
then requested to back-off [7]. The timer assignment strategy
depends on the relaying scheme that is used. For example,
in opportunistic relaying the relay which provides the largest
SNR at destination is chosen for cooperation. Therefore, in
opportunistic relaying, the jth relay’s timer should be inversely
proportional to Γj,D. Clearly, in opportunistic relaying, relays
with good channel conditions in both S–R and R–D links are
more likely to be selected for cooperation. This can put the
burden of cooperation on some specific relays and result in
poor fairness among relays.

III. FAIR RELAY SELECTION

In this section, we assume that fairness is achieved when
the average powers consumed by the relays are approximately
the same. Then, we propose a relay selection scheme that aims
to make the average consumed powers as close as possible.

Suppose that Cj denotes the event that Rj is chosen for
cooperation. Then, we define Pj as

Pj !
{

PR, Cj occurs
0, otherwise. (5)

Fig. 1. A typical dual-hop DF relay network.

has a countdown timer whose initial value is determined in a
way that a desired level of fairness among relays is achieved.
The initial value of each relay’s timer is a function of the
relay’s location and a tunable parameter, referred to as β, that
controls the level of fairness among relays. We derive an exact
analytical expression for the average power consumed by each
relay and use this result to find the optimum value of β. We
also use this expression to demonstrate the superiority of our
proposed scheme over opportunistic relaying and random relay
selection schemes. among relays.

The remainder of this paper is organized as follows. In
Section II, the system model is introduced. Our fair relay
selection scheme is proposed in Section III. In Section IV, we
derive an exact solution for the average power consumed by an
arbitrary relay in the network. Numerical results are presented
in Section V. Concluding remarks are given in Section VI.

II. SYSTEM MODEL

A typical dual-hop DF relay network is shown in Fig. 1.
This network consists of a source node, S, a destination node,
D, at distance `SD of the source node and a number of relays.
As mentioned earlier, we assume that the relays constitute a
2D homogeneous PPP with constant intensity λ. For simplicity
of our analysis, we assume the relay deployment region, F , is
arbitrarily large. Clearly, when a relay is far from the source
and destination nodes, the attenuation due to path loss becomes
quite significant. As a result, such relay is quite unlikely to
take part in cooperation [11].

Suppose that the transmission channels are subject to path
loss and small scale fading. Then, the instantaneous SNR of
the S–D link is given by [11]

ΓSD =
K0 PS

N0`αSD
ΩSD (1a)

where PS is the source power, α ∈ [2, 7] is the path loss
exponent and K0 is a constant that is determined by the
system parameters (e.g., antenna gain), N0 is the noise power
at destination, and ΩSD is the fading power in the S–D channel

with E{ΩSD} = 1. Denoting by Rj the jth relay in the system,
the instantaneous SNRs of the S–Rj and Rj–D links are

ΓS,j = γS,j ΩS,j (2a)
Γj,D = γj,D Ωj,D (2b)

where ΩS,j and Ωj,D are the fading powers of S–Rj and Rj–D
links, respectively. We assume ΩS,j and Ωj,D are independent
unit-mean random variables with the same cumulative distri-
bution function (CDF) FΩ(·). Also in (2a) and (2b)

γS,j =
KR PS

NR `αS,j
(3a)

γj,D =
KD PR

ND `αj,D
(3b)

where PR is the transmitted power of Rj when it is chosen
for cooperation, `S,j and `j,D are S–Rj and Rj–D distances,
respectively. In addition, KR and KD are constants that depend
on the system parameters, and NR and ND are the noise powers
at relays and destination, respectively.

In this paper, we consider a dual-hop DF relaying system
in which a relay Rj is qualified for cooperation provided that

1) Rj can correctly decode the received signal from the
source, i.e., ΓS,j ≥ γth

R
2) destination node can correctly decode the signal that is

forwarded by Rj , i.e., Γj,D ≥ γth
D

where γth
R and γth

D are given thresholds that are properly set so
as to meet the system requirements. As a result, the set of all
such relays is defined as

A ,
{

Rj
∣∣ΓS,j ≥ γth

R , Γj,D ≥ γth
D

}
. (4)

If A is an empty set, no cooperation takes place, i.e., an outage
occurs in the network. When A is not empty, each relay in
this set is assigned a timer and the relay whose timer expires
first is selected for cooperation. All other relays in A are
then requested to back-off [7]. The timer assignment strategy
depends on the relaying scheme that is used. For example,
in opportunistic relaying the relay which provides the largest
SNR at destination is chosen for cooperation. Therefore, in
opportunistic relaying, the jth relay’s timer should be inversely
proportional to Γj,D. Clearly, in opportunistic relaying, relays
with good channel conditions in both S–R and R–D links are
more likely to be selected for cooperation. This can put the
burden of cooperation on some specific relays and result in
poor fairness among relays.

III. FAIR RELAY SELECTION

In this section, we assume that fairness is achieved when
the average powers consumed by the relays are approximately
the same. Then, we propose a relay selection scheme that aims
to make the average consumed powers as close as possible.

Suppose that Cj denotes the event that Rj is chosen for
cooperation. Then, we define Pj as

Pj ,
{
PR, Cj occurs
0, otherwise. (5)
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Using the total probability theorem we obtain the average of
Pj as

Pj , E{Pj} = E{Pj |Cj}Pr{Cj}+ E{Pj |C c
j }Pr{C c

j }
= Pr{Cj}PR (6)

where C c
j is the complement of Cj . Now, we use the fact that

Pr{Cj |Rj /∈ A} = 0 along with the total probability theorem
to obtain

Pr{Cj} = Pr{Cj |Rj ∈ A}Pr{Rj ∈ A}
+ Pr{Cj |Rj /∈ A}Pr{Rj /∈ A}

= Pr{Cj |Rj ∈ A}Pr{Rj ∈ A}. (7)

Substituting for Pr{Cj} from (7) into (6) and denoting
Pr{Rj ∈ A} by Qj , one arrives at

Pj = Pr{Cj |Rj ∈ A}Qj PR. (8)

Note that Qj can be evaluated using (4) along with the fact
that ΩS,j is independent of Ωj,D as

Qj = Pr{Rj ∈ A} = Pr
{

ΓS,j ≥ γth
R , Γj,D ≥ γth

D

}

= Pr

{
ΩS,j ≥

γth
R

γS,j

}
Pr

{
Ωj,D ≥

γth
D

γj,D

}

= Y
(
γth

R

γSR

(`S,j

`SD

)α
,
γth

D

γRD

(`j,D
`SD

)α)
(9a)

where

Y(u, v) , (1− FΩ(u))(1− FΩ(v)) (9b)

γSR , KR PS

NR`αSD
(9c)

γRD , KD PR

ND`αSD
(9d)

and, recall, FΩ(·) is the CDF of ΩS,j and Ωj,D.
In the next subsection we consider a simple relay network

with only two relays and propose a timer assignment scheme
for this network. Then, we consider a random network in
which the number and the locations of the relays are random
and extend our proposed timer assignment strategy to this case.

A. Two-Relay Network

Consider a simple relay network with only two relays,
namely, R1 and R2. These relays are assumed to be randomly
placed in the S–D plane. As seen in (9a), Qj is a deterministic
function of `S,j and `j,D. Thus, without loss of generality, we
can assume that, on average, R1 has better channel conditions
than R2 which, in turn, implies that Q1 > Q2, i.e., R1 is
more likely to be in A than R2. Hence, when both R1 and R2

are in A, a fair relay selection strategy should select R2 more
frequently than R1. In consequence, the timer assigned to R1

should have a larger initial value. A simple solution is to set
the initial time of Rj’s timer, i.e., Tj , directly proportional to
Qj , i.e.,

Tj = C Qj , j = 1, 2 (10)

where C is a constant used to adjust the timer duration within
a given range. Observe that for the case where Q1 is only
slightly greater than Q2, eq. (10) implies that T1 > T2 and,

thus, when both relays are in A, R2 is always selected for
cooperation. This causes a poor fairness between R1 and R2.
In order to achieve fairness between R1 and R2 in this case,
a random term has to be considered in Tj’s so as to prevent
the all-time selection of R2. Hence, eq. (10) is written as

Tj = Dj Qj , j = 1, 2 (11)

where {Dj}’s are independent random variables uniformly
distributed between 0 and C, i.e., Dj ∼ U(0, C). It is clear
from (11) that {Tj}’s are independent random variables and
that Tj ∼ U(0, CQj). In order to find P 1 we first note that

Pr{C1|R1 ∈ A}
= Pr{C1|R1 ∈ A and R2 ∈ A}Pr{R2 ∈ A|R1 ∈ A}

+ Pr{C1|R1 ∈ A and R2 /∈ A}Pr{R2 /∈ A|R1 ∈ A}
= Pr{T1 < T2} Pr{R2 ∈ A}+ 1× Pr{R2 /∈ A} (12)

where (12) follows from the fact that the events {R1 ∈ A}
and {R2 ∈ A} are independent. Substituting from (12) into
(8) for j = 1, one arrives at

P 1 = (1−Q2 Pr{T1 ≥ T2})Q1 PR (13)

and similarly

P 2 = (1−Q1 Pr{T2 ≥ T1})Q2 PR. (14)

Recalling that T1 and T2 are independent and uniformly
distributed over [0, CQ1] and [0, CQ2], respectively, one can
readily show that

Pr{T1 ≥ T2} = 1− Pr{T2 ≥ T1} = 1− Q2

2Q1
. (15)

Therefore, (13) and (14) can be written as

P 1 = PR

(
Q1 −Q2

(
Q1 −

Q2

2

))
(16)

P 2 = PRQ2

(
1− Q2

2

)
(17)

respectively. Observe from (16) and (17) that forQ1 ≈ Q2, the
average powers of R1 and R2 are almost the same. However,
when Q1 and Q2 are not close to each other, P 1 and P 2 can
be quite different. In order to address this issue, we add a new
parameter, i.e., β > 0, to the definition of Tj as

Tj = Dj Qβj , j = 1, 2. (18)

Choosing the timers according to (18), one obtains

P 1 = PRQ1

(
1−Q2 +

Q2

2

(Q2

Q1

)β)
(19)

P 2 = PRQ2

(
1− Q1

2

(Q2

Q1

)β)
. (20)

Clearly, for the case where Q1 > Q2, increasing β increases
P 1 but decreases P 2 and vice versa. As a result, we can adjust
β so as to make P 1 and P 2 close to each other. It is important
to note that, in general, P 1 and P 2 cannot become arbitrarily
close, i.e., we can not find β so that

∣∣P 1−P 2

∣∣ = 0. To clarify
this point, we observe from (19) and (20) that for Q1 > Q2

and β → ∞, P 1 → PRQ1(1 − Q2) and P 2 → PRQ2. Now,
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if Q1 and Q2 are such that Q1 > Q1(1 − Q2) > Q2,1 then
P 1 6= P 2 even for β → ∞. In other words, in this case we
always have

∣∣P 1 − P 2

∣∣ ≥
(
Q1 −Q2 −Q1Q2

)
PR.

B. Poisson Relay Network

We now turn our attention to the case where the potential
relays distributed as a 2D homogeneous PPP with density λ.
Again, our objective is to make the {Pj}’s as close as possible.
Recall from (8) that this objective is met when Pr{Cj |Rj ∈
A}Qj is approximately the same for all relays. As a result,
to have a fair relay selection, relays with larger Qj should be
selected less frequently. This means that the timer duration, Tj ,
should be proportional to Qj . On the other hand, as discussed
in Subsection III-A, when {Qj}’s are not close to each other,
a parameter β should be considered in Tj (as given by (18))
to provide a higher level of fairness among relays. Thus, with
{Tj}’s defined as in eq. (18), the problem is to find β so as
to achieve a reasonable level of fairness among relays.2

An effective means to determine β is to minimize the
maximum unfairness in the network. This will reduce the
burden of cooperation from the relays with good channel
conditions and distribute it fairly among other relays. Suppose
that X is an arbitrary point in the S–D plane whose distances
from the source and destination nodes are given by `SX and
`XD, respectively. From eqs. (8) and (9a) it is clear that the
average power consumed by a relay located at X , referred to as
PX in the following, depends on the location of X . Therefore,
we define the maximum unfairness as

max
`SX ,`XD

{PX } − min
`SX ,`XD

{PX } (21)

where the maximum and minimum in (21) are obtained over
all locations that X can be placed in S–D plane. Observe
that in a random network, relays that are very far from
source and destination nodes have very little chance to be
selected for cooperation meaning that their average consumed
power is approximately equal to zero. Hence, min

`SX , `XD

{PX } is

approximately equal to zero and we can rewrite the maximum
unfairness of the network as max

`SX , `XD

{PX }. As a result, our

problem reduces to find an optimum value for β as

βopt = arg min
β

{
max

`SX , `XD

{PX }
}
. (22)

Therefore, in order to obtain βopt, we need to evaluate PX as
a function of β, `SX and `XD.

IV. EVALUATION OF PX
In this section we derive an analytical expression for the

average power consumed by RX , i.e., a relay located at X . In
Subsections IV-A and IV-B, we derive PX for our proposed
relay selection scheme and opportunistic relaying, respectively.

1This occurs when R2 is always chosen for cooperation whenever it is in
A. In consequence, R1 takes part in cooperation only when R2 /∈ A.

2Note that a special case, referred to as random relay selection, emerges
when β is set to zero, i.e., all relays in A are equally likely to be selected
for cooperation. Expectedly, random relay selection is not a fair selection
scheme as the cooperation probability for each relay in this scheme will be
proportional to the probability that the relay is within A. Thus, relays that
are more likely to be in A have, on average, a larger cooperation probability.

A. Proposed Relay Selection Scheme

We assume, without loss of generality, that C in (10)
equals unity. We also assume that the timer allocated to RX
has a duration of TX , which, recall from (18), is uniformly
distributed over

[
0, QβX

]
and QX is defined in (9a) with `S,j

and `j,D replaced by `SX and `XD, respectively. Denoting by
CX the event that RX is chosen for cooperation, and using eq.
(8) along with the total probability theorem, one can write

PX = PRQX
ˆ QβX

0

fTX (x |RX ∈ A)

× Pr{CX |RX ∈ A, TX = x} dx

=
PRQX
QβX

ˆ QβX

0

Pr{CX |RX ∈ A, TX = x} dx. (23)

Therefore, we need to obtain Pr{CX |RX ∈ A, TX = x}. From
the properties of the PPPs, it is known that all other relays in
the network except for RX are again distributed according to
a two-dimensional PPP with density λ. Assume now that AX̊
is defined as

AX̊ ,
{

Rj 6= RX
∣∣ΓS,j ≥ γth

R , Γj,D ≥ γth
D

}
. (24)

Then, we can make use of marking theorem [15, p. 55] along
with (9a) to show that the relays in the set AX̊ are distributed
as a 2D nonhomogeneous PPP with mean measure

µ(ds) = Pr{R ∈ AX̊ }λ ds = QR λ ds (25)

where ds is the surface element, R is an arbitrary relay in the
S–D plane whose distances from the source and destination
nodes are given by `SR and `RD, respectively, and QR equals

QR = Y
(
γth

R

γSR

( `SR

`SD

)α
,
γth

D

γRD

(`RD

`SD

)α)
. (26)

Suppose now that RX is in A and TX is equal to x. Then RX
is selected for cooperation if either AX̊ is an empty set or the
timers of all relays in AX̊ are greater than x. As a result, we
can write

Pr{CX |RX ∈A, TX = x} = E
{ ∏

Rj∈AX̊

Pr
{
Tj > x|AX̊

}}

(27)
where the expectation in (27) is over all realizations of AX̊ .
Hence, if we choose {Tj}’s according to eq. (18) along with
(9a), we obtain

Pr{Tj ≥ x|A} =

{
1− x

Qβj
, x < Qβj

0, x ≥ Qβj
=
[
1− xQ−βj

]+

(28)
where [x]+ , max{0, x}. Substituting for Pr{Tj ≥ x|A}
from (28) into (27) and using [15, eq. (3.35)], one arrives at

Pr{CX |RX ∈ A, TX = x}

= exp

[
−
ˆ

F

(
1−

[
1− xQ−βR

]+)
µ(ds)

]

= exp

[
−
ˆ

F

[
xQ−βR

]≤1

µ(ds)

]

= exp

[
− λ
ˆ

F

[
xQ−βR

]≤1

QR ds

]
(29)
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ds

S

dθ1
ℓSR

R

ℓRD

D

dθ2

ℓSD

θ1
θ2

Fig. 2. Illustration of the biangular coordinate system.

where [x]≤1 ! min{1, x} and, recall from (26), QR is a
function of ℓSR and ℓRD. In order to evaluate the integral in
(29) we use a biangular coordinate system [16]. As shown in
Fig. 2, in this coordinate system, given two poles S and D
with distance ℓSD, any point R (except for those located on
the axis of abscissas) can be uniquely represented by a pair
of angles (θ1, θ2) where −π ≤ {θ1, θ2} ≤ π, θ1 · θ2 ≥ 0 and

|θ1 + θ2| ≤ π. Now, using the law of sines in
△

SRD, we obtain
[11]

ℓSR = ℓSD
sin(θ2)

sin(θ1 + θ2)
(30)

ℓRD = ℓSD
sin(θ1)

sin(θ1 + θ2)
(31)

ds = ℓ2
SD

∣∣∣ sin(θ1) sin(θ2)

sin3(θ1 + θ2)

∣∣∣dθ1dθ2 (32)

where ℓSR and ℓRD are S–R and R–D distances, respectively.
Considering the symmetry of our model about the S–D cross-
ing line, the integral in (29) can be evaluated only for the
upper half of F , which is characterized as 0 ≤ θ1 ≤ π and
0 ≤ θ2 ≤ π − θ1. Using (26) along with (30) through (32) in
(29) one arrives at

Pr{CX |RX ∈ A, TX = x} = exp

[
− λ ℓ2

SDG
(γSR

γ th
R

,
γRD

γ th
D

, x
)]

(33a)
where G(·, ·, ·) is given by

G(u, v, x) !

2

ˆ π

0

ˆ π−θ1

0

[
x Y

( 1

u

sinα(θ2)

sinα(θ1+θ2)
,
1

v

sinα(θ2)

sinα(θ1+θ2)

)−β
]≤1

×

Y
(1

u

sinα(θ2)

sinα(θ1+θ2)
,
1

v

sinα(θ2)

sinα(θ1+θ2)

) sin(θ1) sin(θ2)

sin3(θ1+θ2)
dθ2dθ1.

(33b)

Finally, substituting from (33a) into (23) gives

PX =
PR

Qβ−1
X

ˆ Qβ
X

0

exp

[
− n̄ G

(γSR

γ th
R

,
γRD

γ th
D

, x
)]

dx (34)

where we define n̄ ! λ ℓ2
SD as the normalized relay density.

Note, importantly, that (34) implies that PX depends on ℓSX
and ℓX D only through QX . Therefore, eq. (22) can be further
simplified to

βopt = arg min
β

{
max

0<QX ≤1
{PX }

}
. (35)

The optimum value of β is then obtained by substituting
for PX from (34) into (35). Note, importantly, that PX does
not depend on the locations of the relays as it is a function
of n̄, γSR and γRD. Hence, the mobility of nodes has no
effect on βopt, and this parameter can be evaluated in an
offline manner and used by a simple table lookup. The main
difficulty with solving eq. (35) is that β can vary from 0
to ∞. However, a thorough numerical inspection of (35)
reveals that in a practical scenario when β becomes greater
than 10, the relay with the smallest Qj is almost always
selected for cooperation. Therefore, the search interval for β
can be reduced to [0, 10], which can significantly reduce the
complexity of solving equation (35).

B. Opportunistic Relaying

In an opportunistic relaying scheme, the relay in A with
maximum SNR at destination is selected for cooperation.
Recalling that CX denotes the event that RX is chosen for
cooperation, and that RX ’s transmission power equals PR, one
can write

PX = PR Pr{CX }
= PR Pr

{
RX ∈ A, ΓX D > Γmax

AX̊

}
(36)

= PR Pr
{

ΓSX > γ th
R , ΓX D > γ th

R , ΓX D > Γmax
AX̊

}
(37)

where Γmax
AX̊

! max{Γj,D|Rj ∈ AX̊ } and AX̊ was defined in
(24). Also, ΓSX and ΓX D are defined in (2a) and (2b), respec-
tively, with j replaced by X . Using the fact that the fading
powers of all channels are independent random variables, we
obtain

PX = PR Pr

{
ΩSX >

γ th
R

γSX
, ΩX D >

γ th
R

γX D
, ΩX D >

Γmax
AX̊

γX D

}

= PR Pr

{
ΩSX >

γ th
R

γSX

}
Pr

{
ΩX D >max

[
γ th

R

γX D
,
Γmax

AX̊

γX D

]}

= PR

[
1 − FΩ

( γ th
R

γSX

)]
Pr

{
ΩX D >max

[
γ th

R

γX D
,
Γmax

AX̊

γX D

]}
.

(38)

Now one can use the total probability theorem to write

Pr

{
ΩX D >max

[
γ th

R

γX D
,
Γmax

AX̊

γX D

]}

=

ˆ ∞

0

Pr

{
x >

γ th
R

γX D
, x >

Γmax
AX̊

γX D

}
fΩ(x) dx

=

ˆ ∞

γth
R

γXD

Pr

{
x >

Γmax
AX̊

γX D

}
fΩ(x)dx

=

ˆ ∞

γth
R

γXD

E

{ ∏

Rj∈AX̊

Pr

{
x >

Γj,D

γX D

}}
fΩ(x)dx (39)

=

ˆ ∞

γth
R

γXD

E

{ ∏

Rj∈AX̊

Pr

{
x > Ωj,D

(ℓSX
ℓj,D

)α
}}

fΩ(x)dx

(40)

where expectations in (39) and (40) are over all realizations
of AX̊ . Recalling from (25) that the relays in AX̊ constitute

Fig. 2. Illustration of the biangular coordinate system.

where [x]≤1 , min{1, x} and, recall from (26), QR is a
function of `SR and `RD. In order to evaluate the integral in
(29) we use a biangular coordinate system [16]. As shown in
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of angles (θ1, θ2) where −π ≤ {θ1, θ2} ≤ π, θ1 · θ2 ≥ 0 and

|θ1 + θ2| ≤ π. Now, using the law of sines in
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SRD, we obtain
[11]
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(30)
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(31)

ds = `2SD
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where `SR and `RD are S–R and R–D distances, respectively.
Considering the symmetry of our model about the S–D cross-
ing line, the integral in (29) can be evaluated only for the
upper half of F , which is characterized as 0 ≤ θ1 ≤ π and
0 ≤ θ2 ≤ π − θ1. Using (26) along with (30) through (32) in
(29) one arrives at

Pr{CX |RX ∈ A, TX = x} = exp
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− λ `2SDG

(γSR
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R
,
γRD

γth
D
, x
)]

(33a)
where G(·, ·, ·) is given by
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ˆ π−θ1
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xY
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sinα(θ2)

sinα(θ1+θ2)
,

1
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sinα(θ1+θ2)

)−β]≤1

×
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u

sinα(θ2)
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sinα(θ2)

sinα(θ1+θ2)
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Finally, substituting from (33a) into (23) gives

PX =
PR

Qβ−1
X

ˆ QβX

0

exp

[
− n̄G

(γSR

γth
R
,
γRD

γth
D
, x
)]

dx (34)

where we define n̄ , λ `2SD as the normalized relay density.
Note, importantly, that (34) implies that PX depends on `SX
and `XD only through QX . Therefore, eq. (22) can be further
simplified to

βopt = arg min
β

{
max

0<QX≤1
{PX }

}
. (35)

The optimum value of β is then obtained by substituting
for PX from (34) into (35). Note, importantly, that PX does
not depend on the locations of the relays as it is a function
of n̄, γSR and γRD. Hence, the mobility of nodes has no
effect on βopt, and this parameter can be evaluated in an
offline manner and used by a simple table lookup. The main
difficulty with solving eq. (35) is that β can vary from 0
to ∞. However, a thorough numerical inspection of (35)
reveals that in a practical scenario when β becomes greater
than 10, the relay with the smallest Qj is almost always
selected for cooperation. Therefore, the search interval for β
can be reduced to [0, 10], which can significantly reduce the
complexity of solving equation (35).

B. Opportunistic Relaying

In an opportunistic relaying scheme, the relay in A with
maximum SNR at destination is selected for cooperation.
Recalling that CX denotes the event that RX is chosen for
cooperation, and that RX ’s transmission power equals PR, one
can write

PX = PR Pr{CX }
= PR Pr

{
RX ∈ A,ΓXD > Γmax

AX̊

}
(36)

= PR Pr
{

ΓSX > γth
R ,ΓXD > γth

R ,ΓXD > Γmax
AX̊

}
(37)

where Γmax
AX̊

, max{Γj,D|Rj ∈ AX̊ } and AX̊ was defined in
(24). Also, ΓSX and ΓXD are defined in (2a) and (2b), respec-
tively, with j replaced by X . Using the fact that the fading
powers of all channels are independent random variables, we
obtain

PX = PR Pr

{
ΩSX >

γth
R

γSX
,ΩXD >

γth
R

γXD
,ΩXD >

Γmax
AX̊

γXD

}

= PR Pr

{
ΩSX >

γth
R

γSX

}
Pr

{
ΩXD>max

[
γth

R

γXD
,

Γmax
AX̊

γXD

]}

= PR

[
1− FΩ

( γth
R

γSX

)]
Pr

{
ΩXD>max

[
γth

R

γXD
,

Γmax
AX̊

γXD

]}
.

(38)

Now one can use the total probability theorem to write

Pr

{
ΩXD>max

[
γth

R

γXD
,

Γmax
AX̊

γXD

]}

=

ˆ ∞

0

Pr

{
x >

γth
R

γXD
, x >

Γmax
AX̊

γXD

}
fΩ(x) dx

=

ˆ ∞

γth
R

γXD

Pr

{
x >

Γmax
AX̊

γXD

}
fΩ(x)dx

=

ˆ ∞

γth
R

γXD

E

{ ∏

Rj∈AX̊

Pr

{
x >

Γj,D
γXD

}}
fΩ(x)dx (39)

=

ˆ ∞

γth
R

γXD

E

{ ∏

Rj∈AX̊

Pr

{
x > Ωj,D

(`SX
`j,D

)α}
}
fΩ(x)dx

(40)

where expectations in (39) and (40) are over all realizations
of AX̊ . Recalling from (25) that the relays in AX̊ constitute
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a nonhomogeneous PPP with mean measure µ(ds) = QRλds
and using [15, eq. (3.35)], one arrives at

E

{ ∏

Rj∈AX̊

Pr

{
x > Ωj,D

(`SX
`j,D

)α}
}

= exp

[
− λ
ˆ

F

[
1− FΩ

(
x
( `RD

`XD

)α)]
QRds

]
. (41)

In order to evaluate the integral in (41) we use the biangular
coordinate system again along with eqs. (26) and (30)–(32) to
obtain

E

{ ∏

Rj∈AX̊

Pr

{
x > Ωj,D

(`SX
`j,D

)α
}}

= exp

[
− nH

(
γSR

γth
R
,
γRD

γth
D
, x
( `SD

`XD

)α)
]

(42a)

where H(·, ·, ·) is given by

H(u, v, x) , 2

ˆ π

0

ˆ π−θ1

0

[
1− F

(
x
( sin(θ1)

sin(θ1 + θ2)

)α)]
×

Y
(

1

u

sinα(θ2)

sinα(θ1+θ2)
,

1

v

sinα(θ2)

sinα(θ1+θ2)

)
sin(θ1) sin(θ2)

sin3(θ1+θ2)
dθ2dθ1.

(42b)

Now, using (42a), (40) and (38) we get

PX = PR

[
1− FΩ

( γth
R

γSX

)]

×
ˆ ∞

γth
R

γXD

exp

[
− nH

(
γSR

γth
R
,
γRD

γth
D
, x
( `SD

`XD

)α)]
fΩ(x)dx. (43)

V. NUMERICAL RESULTS

In this section, we use computer simulation to confirm the
validity of our analytical results and to demonstrate the effec-
tiveness of our relay selection scheme. Simulation results are
obtained using Mont-Carlo method for ten million independent
realizations of the network. The path loss exponent, α, is
assumed to be 4 and a Rayleigh fading model considered for
all transmission channels, i.e.,

FΩ(x) = 1− e−x, x ≥ 0. (44)

Fig. 3 shows PX /PR as a function of QX for our proposed
relay selection scheme with β = 0.4, 0.8, 1.2 and 1.6,
γSR = γRD = 20 dB, n̄ = 2 and γth

R = γth
D = 5 dB. Recall

that all relays consume the same amount of power, i.e., PR,
when they are selected for cooperation. Hence, PX /PR is,
indeed, the average probability that a relay is selected for
cooperation. As seen in Fig. 3, our analytical results are in
complete agreement with the simulation results for all the
examined values of β. Note that a high degree of fairness
is achieved when PX /PR remains approximately unchanged
for all values of QX . Fig. 3 also indicates that different levels
of fairness can be achieved by changing the value of β. For
example, for β = 1.2 our relay selection scheme provides a
high degree of fairness whereas for β = 0.4 it is quite unfair.
Fig. 3 also highlights the important fact that perfect fairness
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{ ∏

Rj∈AX̊
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ℓj,D
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{ ∏
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( ℓSD

ℓX D
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Now, using (42a), (40) and (38) we get
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assumed to be 4 and a Rayleigh fading model considered for
all transmission channels, i.e.,
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indeed, the average probability that a relay is selected for
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is achieved when PX /PR remains approximately unchanged
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Fig. 4. The cooperation probability of RX as a function of QX , γSR =
γRD = 10 dB, γth

R = γth
D = 5 dB and selected values of n̄.

cannot be achieved among relays. This is because relays that
are far from the source and destination are very unlikely to be
in A and, thus, their corresponding PX /PR will be very close
to 0.

Fig. 4 illustrates the cooperation probability of RX , i.e.,
PX /PR, as a function of QX for our proposed relay selection
scheme with n̄ = 1, 2, 3 and 4, γSR = γRD = 10 dB and
γ th

R = γ th
D = 5 dB. For each n̄, the corresponding optimum

value of β has been used. Again, our analytical results match
the simulation results quite well for the examined values of
n̄. As seen in this figure, a n̄ increases from 1 to 4, the range
of QX values for which a reasonable fairness among relays
can be achieved also increases. Note also that for a given QX
value, increasing n̄ reduces the cooperation probability of each
relay. This is due to the fact that as n̄ increases the number of
potential relays in A also increases. As a result, the probability
that a relay in A is chosen for cooperation decreases.

Fig. 3. PX /PR as a function of QX for γSR = γRD = 20 dB, n̄ = 2 and
γth

R = γth
D = 5 dB.
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{ ∏
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x > Ωj,D

(ℓSX
ℓj,D

)α
}}

= exp

[
− λ

ˆ

F

[
1 − FΩ

(
x

( ℓRD

ℓX D

)α
)]

QRds

]
. (41)

In order to evaluate the integral in (41) we use the biangular
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tiveness of our relay selection scheme. Simulation results are
obtained using Mont-Carlo method for ten million independent
realizations of the network. The path loss exponent, α, is
assumed to be 4 and a Rayleigh fading model considered for
all transmission channels, i.e.,
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that all relays consume the same amount of power, i.e., PR,
when they are selected for cooperation. Hence, PX /PR is,
indeed, the average probability that a relay is selected for
cooperation. As seen in Fig. 3, our analytical results are in
complete agreement with the simulation results for all the
examined values of β. Note that a high degree of fairness
is achieved when PX /PR remains approximately unchanged
for all values of QX . Fig. 3 also indicates that different levels
of fairness can be achieved by changing the value of β. For
example, for β = 1.2 our relay selection scheme provides a
high degree of fairness whereas for β = 0.4 it is quite unfair.
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cannot be achieved among relays. This is because relays that
are far from the source and destination are very unlikely to be
in A and, thus, their corresponding PX /PR will be very close
to 0.

Fig. 4 illustrates the cooperation probability of RX , i.e.,
PX /PR, as a function of QX for our proposed relay selection
scheme with n̄ = 1, 2, 3 and 4, γSR = γRD = 10 dB and
γ th

R = γ th
D = 5 dB. For each n̄, the corresponding optimum

value of β has been used. Again, our analytical results match
the simulation results quite well for the examined values of
n̄. As seen in this figure, a n̄ increases from 1 to 4, the range
of QX values for which a reasonable fairness among relays
can be achieved also increases. Note also that for a given QX
value, increasing n̄ reduces the cooperation probability of each
relay. This is due to the fact that as n̄ increases the number of
potential relays in A also increases. As a result, the probability
that a relay in A is chosen for cooperation decreases.

Fig. 4. The cooperation probability of RX as a function of QX , γSR =
γRD = 10 dB, γth

R = γth
D = 5 dB and selected values of n̄.

cannot be achieved among relays. This is because relays that
are far from the source and destination are very unlikely to be
in A and, thus, their corresponding PX /PR will be very close
to 0.

Fig. 4 illustrates the cooperation probability of RX , i.e.,
PX /PR, as a function of QX for our proposed relay selection
scheme with n̄ = 1, 2, 3 and 4, γSR = γRD = 10 dB and
γth

R = γth
D = 5 dB. For each n̄, the corresponding optimum

value of β has been used. Again, our analytical results match
the simulation results quite well for the examined values of
n̄. As seen in this figure, a n̄ increases from 1 to 4, the range
of QX values for which a reasonable fairness among relays
can be achieved also increases. Note also that for a given QX
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potential relays in A also increases. As a result, the probability
that a relay in A is chosen for cooperation decreases.



77

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
P

X
/
P

R

ℓSX /ℓSD

Simulation, ℓX D = 0.5ℓSD

Simulation, ℓX D = 0.75ℓSD

Simulation, ℓX D = ℓSD

Simulation, ℓX D = 1.25ℓSD

Simulation, ℓX D = 1.5ℓSD

Analytical

Fig. 5. PX /PR as a function of ℓSX /ℓSD for γSR = γRD = 15 dB, n̄ = 2
and γth

R = γth
D = 5 dB in an opportunistic cooperative network.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
-10

10
-5

Opportunistic Relaying, γSR = γRD = 2 dB

Opportunistic Relaying, γSR = γRD = 7 dB

Opportunistic Relaying, γSR = γRD = 15 dB

Fair Relay Selection,γSR = γRD = 2 dB

Fair Relay Selection,γSR = γRD = 7 dB

Fair Relay Selection, γSR = γRD = 15 dB

n̄

O
ut

ag
e

Pr
ob

ab
ili

ty

Fig. 6. Outage probability of the opportunistic relaying and the proposed
scheme as a function of n̄ for γSR = γRD = 2, 7 and 15 dB and γth

R =
γth

D = 3 dB.

Fig. 5 shows PX /PR as a function of ℓSX /ℓSD for
ℓX D/ℓSD = 0.5, 0.75, 1, 1.25 and 1.5 in a system with
opportunistic relaying, γSR = γRD = 15 dB, n̄ = 2 and
γ th

R = γ th
D = 5 dB. As can be seen in Fig. 5, our analytical

results are in complete agreement with the simulation results
for all the examined scenarios. Expectedly, when ℓX D is fixed,
relays that are located near source are more likely to be
selected for cooperation. Similarly, when ℓSX is fixed, relays
that are close to destination are more likely to be selected
for cooperation. This is due to the fact that the closer is RX
to source (destination), the smaller is the path loss in S–RX
(RX –D) channel.

The outage probability of the proposed relay selection
scheme and the opportunistic relaying as a function of n̄ are
illustrated in Fig. 6. The results are shown for γ th

R = γ th
D = 3

dB and γSR = γRD = 2, 7 and 15 dB. Clearly, the outage
probability of both schemes are the same for all three scenar-

ios. To explain this, we note that in both schemes an outage
occurs when the set A is empty, i.e., there is no relay that can
correctly decode the source signal, or if there is such relay, the
SNR of the corresponding relay-destination link is less than
γ th

D . Also, it can be seen that in both schemes, increasing n̄
reduces the outage probability.

Figs. 7(a) through 7(c) illustrates the cooperation probability
as a contour plot in the x–y plane for opportunistic relay-
ing, random relay selection and the proposed relay selection
schemes. It is assumed that γSR = γRD = 15 dB, γ th

R = γ th
D =

3 dB and n̄ = 3. As seen in Fig. 7(a), opportunistic relaying
provides the worst fairness level among the relays. Indeed,
in opportunistic relaying scheme the cooperation probability
for a limited group of relays located around destination is
greater than 0.8, while other relays are rarely selected for
cooperation, i.e., their corresponding cooperation probabilities
are approximately equal to zero. As shown in Figs. 7(a)
and 7(b), random relay selection achieves a higher level of
fairness compared to opportunistic relaying. To explain this,
we observe that in random relay selection scheme, relays that
are located between source and destination are more likely to
be in A and, thus, selected for cooperation with approximately
the same probability. Finally, Fig. 7(c) highlights the fact that
our proposed scheme can provide the highest level of fairness
among relays in comparison with opportunistic relaying and
random relay selection schemes.

VI. CONCLUSION

In this paper, a new fair relay selection scheme was pro-
posed for a dual-hop DF relaying network with randomly-
distributed relays in a general fading environment. In our
proposed scheme, we first created a list of relays that could
successfully forward the source signal to destination. Then,
we assigned a timer to each relay in the list and evaluated
the initial values of the timers in a way that the average
powers consumed by the relays become approximately the
same. An exact analytical formula for the average power
consumed by each relay was derived for opportunistic relaying
and our proposed relay selection scheme. It was shown that
this formula can be used to tune a parameter in our scheme
that controls the level of fairness. Simulation results showed
that our proposed scheme can improve the level of fairness
among relays without deteriorating the outage probability
performance. It was also observed that as the density of relays
increases, our proposed scheme can provide fairness among a
wider range of relays compared to opportunistic relaying and
random relay selection schemes.
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