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Impact of CSI Uncertainty on MCIK-OFDM: Tight,

Closed-Form Symbol Error Probability Analysis
Thien Van Luong, Student Member, IEEE, and Youngwook Ko, Member, IEEE

Abstract—This paper proposes a novel framework to analyze
the symbol error probability (SEP) for multicarrier index keying
- orthogonal frequency division multiplexing (MCIK-OFDM)
systems. Considering two different types of detections such as the
maximum likelihood (ML) and low-complexity greedy detectors
(GD), we derive tight, closed-form expressions for the average
SEPs of MCIK-OFDM in presence of channel state information
(CSI) uncertainty. We undertake an asymptotic performance
analysis with respect to three CSI conditions, which ensures to
provide a comprehensive insight into the achievable diversity and
coding gains as well as the impact of various CSI uncertainties on
the SEP performance. The SEP performance comparison between
the ML and GD, is obtained under different CSI uncertainties.
This interestingly reveals that the GD can achieve nearly optimal
error performance as the M -ary modulation size is large, or even
outperforms the ML under certain CSI conditions. Finally, the
theoretical and asymptotic analysis are verified via simulation
results, obtaining the high accuracy of the derived SEP.

Index Terms—MICK-OFDM, OFDM-IM, index modulation,
symbol error probability, imperfect CSI, greedy detection.

I. INTRODUCTION

MCIK-OFDM is an emerging key technique for the next

generation wireless networks due to its high spectral and

energy efficiency [1]. Unlike conventional OFDM, MCIK-

OFDM, also termed as OFDM-IM [2], activates only a subset

of sub-carriers to carry information bits through both the

M -ary constellation symbols and the indices of active sub-

carriers. As a result, MCIK-OFDM requires less modulators

and demodulators than the classical OFDM, which allows to

reduce the complexity of transceiver structure. In addition,

MCIK-OFDM can provide an attractive trade-off between the

error performance and spectral efficiency by adjusting the

number of active sub-carriers [2]. Hence, MCIK-OFDM is

considered not only for high speed wireless communication

systems, but also for machine type communications (MTC),

which requires high energy efficiency at a low complexity.

MCIK-OFDM with the flexible number of active sub-

carriers was first introduced in [2]. Various concepts of MCIK-

OFDM have been studied in [2]-[24]. Recently, in [3], a

tight bound on the bit error rate (BER) is derived, while the

achievable rate is investigated in [4]. A generalized version of

MCIK is proposed in [5], where the number of active sub-

carriers is no longer fixed. In [6], a low-complexity greedy

detector (GD) based on energy detection is proposed, and

then this detector is analyzed under the generalized fading

in [7]. A number of techniques that aim at improving the
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error performance and diversity gain can be found in [8]–

[11], while several solutions to enhance the spectral efficiency

are proposed in [12]–[14]. Very recently, the extension of

MCIK to multiple antenna systems is introduced with the

maximum likelihood (ML) detection in [15], and its low-

complexity detectors is proposed in [16]. The MCIK-OFDM

with hybrid low complexity greedy detection and multiple

antenna diversity reception is proposed in [17]. The detailed

survey of IM techniques can be found in [18], [19]

It is noteworthy that most of existing works focus on the

BER performance analysis for the ML detection [20]–[22],

or for the energy detectors like the GD [23], [24], while little

work on the SEP analysis for MCIK-OFDM has been done. In

fact, existing expressions for the BER are not able to provide

a comprehensive insight into the achievable diversity order

and coding gain of system. Especially, impacts of MCIK-

OFDM parameters such as the number of active sub-carriers

on the performance has not been fully addressed. Furthermore,

effects of the channel state information (CSI) uncertainty on

the error probability of MCIK-OFDM using either the ML or

GD has not been investigated in the literature. In [17], the SEP

expression is first derived, for MCIK-OFDM with only the GD

and under perfect CSI. This expression is not tight even in high

SNR regions. To the best of our knowledge, impacts of CSI

uncertainty on the SEP has not been investigated, in terms of

generalized MCIK-OFDM using both the ML and the GD.

In this work, we investigate a framework to evaluate the

SEP of MCIK-OFDM under various CSI uncertainties. Main

contributions of the paper are summarized as follows.

• We propose a new framework to analyze the average

SEP for a generalized index modulation scheme. We

theoretically prove that using the ML and the GD, the

SEP can be split into two parts: the index error probability

(IEP) and the SEP of M -ary complex symbols.

• Using this framework, we show that the difference on

the SEP between the ML and the GD is determined only

by the IEP. For this, we provide new tight, closed-form

expressions for average SEPs of the ML and the GD.

• In presence of CSI uncertainty, we further analyze the

impact of various types of CSI uncertainties on the

average SEP. For this, the closed-form expression for

the generalized SEP is derived under fixed and variable

minimum mean square error (MMSE) based channel es-

timation errors. This ensures to provide a comprehensive

insight into the impact of CSI uncertainty.

• The transmit diversity and coding gains are theoretically

analyzed in terms of the index activation and various CSI

conditions. To the best of our knowledge, the relationship

between the transmit diversity (and coding gain) of index

modulation and the CSI uncertainty has not been reported



in the MCIK-OFDM systems.

• Simulation results verify the accuracy of our theoretical

and asymptotic analysis for MCIK-OFDM using the ML

and the GD, under three CSI conditions. Interestingly, the

SEP of the GD is shown to be less sensitive to the CSI

uncertainty, compared to the ML. This reveals that for

given CSI uncertainty, the GD even at low complexity

can offer better error performance than the ML.

The rest of this paper is organized as follows. Section II

presents the MCIK-OFDM system model with both the ML

and GD detectors. The closed-form expressions for the average

SEP of the ML and GD, taking into account imperfect CSI are

derived in Section III. In Section IV, we present the asymptotic

performance analysis under various CSI conditions. Section V

presents simulation results. Section VI concludes the paper.

Notation: Lower-case bold and upper-case bold letters rep-

resent vectors and matrices, respectively. C (, ) is the binomial

coefficient and ⌊.⌋ is the floor function. Re {.} and Im {.}
denote the real and imaginary parts of a complex number, re-

spectively. CN (, ) denotes the complex Gaussian distribution.

The expectation operator and the moment generating function

(MGF) are presented by E {.} and M{.}, respectively.

II. SYSTEM MODEL

A. MCIK-OFDM System Model

Consider an MCIK-OFDM system where a transmitter node

communicates to a receiver node over Nc sub-carriers in total,

including G groups of N sub-carriers, i.e., Nc = GN . In every

MCIK-OFDM transmission, only K out of N sub-carriers per

group are activated, while N −K remaining sub-carriers are

zero padded. Employing the MCIK-OFDM operation indepen-

dently to each group, without loss of generality, we focus on

addressing only one group.

For each group, the MCIK-OFDM transmission consists of

two bit streams (p1 and p2 bits). The first p1 bits are mapped

to a possible combination of K active sub-carriers. Denote a

combination of K active indices by θ = {α1, ..., αK} , where

αk ∈ {1, ..., N} for k = 1, ...,K. This combination is referred

to as index symbol, being determined by p1 bits. The second

p2 bits are mapped to K complex M -ary symbols, which is

denoted by s = [s (α1) , ..., s (αK)] , where s (αk) ∈ S , k =
1, ...,K, and S denotes the M -ary constellation. Utilizing both

θ and s, the transmitted MCIK-OFDM codeword is generated

as x = [x (1) , ..., x (N)]
T
, where x (α) = s (α) for α ∈ θ and

x (α) = 0 for α /∈ θ, α = 1, ..., N . Notice that for given N
and K, we have p1 = ⌊log2 C (N,K)⌋ and p2 = K log2 M .

Thus, for each group of MCIK-OFDM, the total number of

data bits per transmission is p = ⌊log2 C (N,K)⌋+K log2 M.
The received signal in the frequency domain is written as

y = Hx+ n, (1)

where H = diag {h (1) , ..., h (N)} is the channel ma-

trix, h (α) denote the Rayleigh fading channel coefficient

of sub-carrier α, satisfying h (α) ∼ CN (0, 1), and n =
[n (1) , ..., n (N)]

T
is the additive white Gaussian noise with

n (α) ∼ CN (0, N0) . For each sub-carrier, the transmit power

of non-zero symbols is given as ϕEs, where Es and ϕ = N/K

are the average transmit power of the M -ary symbol and the

power allocation coefficient, respectively. Thus, γ̄ = ϕEs/N0

denotes the SNR per active sub-carrier.

B. Imperfect CSI Based Receiver

We consider a practical system that suffers from the uncer-

tain estimation of CSI at the receiver. The estimate of h(α) is

denoted by ĥ (α) , satisfying

h (α) = ĥ (α) + e (α) , (2)

where e (α) is the channel estimation error, and e (α) ∼
CN

(
0, ǫ2

)
, ĥ (α) ∼ CN

(
0, 1− ǫ2

)
, where ǫ2 denotes the

CSI estimation error variance.

For data detection, either the ML or the GD is employed to

decode transmitted signal in the presence of imperfect ĥ (α).
1) Maximum Likelihood Detection: The ML detector for

MCIK-OFDM under the imperfect CSI can compute

x̂ = argmin
x

∥
∥
∥y − Ĥx

∥
∥
∥

2

, (3)

where x̂ is the estimated signal and is used to recover

the index symbol θ̂ and K complex M -ary symbols ŝ.

2) Greedy Detection (GD): The GD scheme has two sepa-

rate steps as follows. In the first step, GD estimates K active

indices, i.e., θ̂ = {α̂1, ..., α̂K} , corresponding to K greatest

received energies |y (α)|2.

In the next step, non-zero M -ary symbols are individually

detected by using ML decision only on estimated active sub-

carriers α̂, for α̂ ∈ θ̂. For given α̂ and θ̂, we compute

x̂ (α̂) = arg min
x(α̂)∈S

∣
∣
∣y (α̂)− ĥ (α̂)x (α̂)

∣
∣
∣

2

. (4)

Notice that the GD has a much lower complexity than the

ML, at the cost of an affordable loss of reliability.

III. SEP ANALYSIS WITH UNCERTAIN CSI

We now analyze the SEP of MCIK-OFDM in the presence

of uncertain CSI, taking into account two types of detector

schemes. For this, we investigate new closed-form, accurate

expressions for the SEP of MCIK-OFDM as follows.

A. SEP Definition of MCIK-OFDM

In fact, an accurate closed-form expression for the SEP of

an index modulation scheme like MCIK-OFDM has not been

done in the literature, even not for perfect CSI. This motivates

us to introduce a novel definition of the symbol error event for

MCIK-OFDM. Relying on this, a new approach is proposed

to derive tight SEP expressions for both the ML and GD,

moreover, taking CSI uncertainty into consideration.

First, notice that one MCIK-OFDM codeword x contains

K + 1 symbols, which are K non-zero M -ary symbols x (α)
for α ∈ θ and one index symbol θ. A symbol error event

occurs if any of the K + 1 symbols are incorrectly detected.

That is, for each transmitted codeword x, there are at most

K + 1 symbols in error events. Based on this definition, the

instantaneous SEP (denoted by Ps), can be formulated as

Ps =
PI +KPD

K + 1
, (5)



where PI is the instantaneous index error probability (IEP)

that θ is incorrectly detected and PD denotes the instantaneous

error probability of M -ary symbols. The detailed definition of

these probabilities is explained in the following.

Denote by PI (α) the probability that the active sub-carrier

α is detected as an inactive one. For given N,K and active

subcarrier α, using the union bound, we obtain

PI (α) ≤
N−K∑

α̃ 6=α=1

P (α → α̃) , (6)

where P (α → α̃) is the pairwise index error probability

(PEP), that an active sub-carrier α is incorrectly decoded

as inactive sub-carrier α̃ 6= α. Thus, from (6) and the total

probability theory, we have

PI ≤
N∑

α=1

P (α)PI (α) , (7)

where P (α) = K/N is the probability that sub-carrier α is

active at the transmitter.

Based on (6) and (7), PD can be obtained with respect

to PI (α). Particularly, provided that the index α is correctly

detected, the probability of the mis-detection of x (α) equals

the M -ary symbol error probability, PM (α). Whereas, if α
is incorrectly detected as an inactive one α̃, the detector has

to estimate x (α) from the use of a random sub-channel, i.e.,

h (α̃). This leads to that the probability of the mis-detection

of x (α) is M−1
M . Therefore, we obtain

PD =
1

N

N∑

α=1

[
M − 1

M
PI (α) + (1− PI (α))PM (α)

]

≤ 1

N

N∑

α=1

[
M − 1

M
PI (α) + PM (α)

]

, (8)

where PM (α) is the SEP of classical M -ary symbol detection.

Substituting (8) and (7) into (5), finally, the instantaneous

SEP in presence of CSI uncertainty and for a generalized

detection can be obtained as

Ps ≤
PI

(
2− 1

M

)
+ K

N

∑N
α=1 PM (α)

K + 1
, (9)

and its average is provided, by taking expectation of (9), as

P s ≤
P I

(
2− 1

M

)
+KPM

K + 1
, (10)

where P I and PM are the averages of PI and PM (α).
Notice from (10) that PM is independent of the selection

of two detector types (ML and GD), while P I relies on the

detector type used. This reveals that the difference of the SEP

between the two detectors is shown only via P I . Interestingly,

this novel observation allows to derive tight bounds on the

SEPs for both the ML and GD in a wide range of SNRs.

In the next two subsections, we will derive the IEPs and

the SEPs of both the GD and ML, based on (10). For this,

we assume the M -ary PSK modulation is employed, and we

introduce the following Lemma on PM for further analysis.

Lemma 1. The average SEP of classical M -ary PSK under

CSI uncertainty having error variance ǫ2 is approximated by

PM ≈ ξ

12

[

1

1 + (1−ǫ2)γ̄ρ
1+γ̄ǫ2

+
3

1 + 4(1−ǫ2)γ̄ρ
3+3γ̄ǫ2

]

, (11)

where ρ = sin2 (π/M), ξ = 1, 2 for M = 2 and M > 2,

respectively.

Proof: See Appendix A.

B. SEP of ML Detection With CSI Uncertainty

We first analyze the IEP for the ML with CSI uncertainty.

We compute the PEP, i.e., P (α → α̃) in (6). Based on (2),

the received signals at both active and inactive sub-carriers

are given by y (α) = x (α) ĥ (α) + ñ (α) and y (α̃) = n (α̃) ,
respectively, where ñ (α) = x (α) e (α) + n (α) is the noise

caused by the CSI uncertainty and the additive noise, i.e.,

ñ (α) ∼ CN
(
0, ϕEsǫ

2 +N0

)
. Using ML criterion, the con-

ditioned PEP on ĥ (α) and ĥ (α̃) can be computed as

P (α → α̃) = P

{∣
∣
∣y (α)− x (α) ĥ (α)

∣
∣
∣

2

+ |y (α̃)|2

> |y (α)|2 +
∣
∣
∣y (α̃)− x (α) ĥ (α̃)

∣
∣
∣

2
}

= P
{

Re

{

x (α) ĥ (α̃)n (α̃)− x (α) ĥ (α) ñ (α)
}

> ϕEs

[∣
∣
∣ĥ (α)

∣
∣
∣

2

+
∣
∣
∣ĥ (α̃)

∣
∣
∣

2
]

/2

}

. (12)

Notice that Re

{

x (α) ĥ (α̃)n (α̃)− x (α) ĥ (α) ñ (α)
}

in

(12) is Gaussian distributed with zero mean and variance

ϕEs

(
N0 + ϕEsǫ

2
)
∣
∣
∣ĥ (α̃)

∣
∣
∣

2

+ ϕEsN0

∣
∣
∣ĥ (α)

∣
∣
∣

2

. Hence, after

simple manipulation from (12), we obtain

P (α → α̃) = Q






√
√
√
√

γ̄ (ν̂α + ν̂α̃)

2
(

1 + γ̄ǫ2ν̂α

ν̂α+ν̂α̃

)




 ≈ Q

[√

γ̄ (ν̂α + ν̂α̃)

2 + γ̄ǫ2

]

(13)

where ν̂α =
∣
∣
∣ĥ (α)

∣
∣
∣

2

, ν̂α̃ =
∣
∣
∣ĥ (α̃)

∣
∣
∣

2

and we take an

approximation as ν̂α/ (ν̂α + ν̂α̃) ≈ 1/2 to simplify P (α → α)
expression.

Let Θ = 2γ̄/
(
2 + γ̄ǫ2

)
. Using the approximation of Q-

function in (40), (13) can be rewritten as

P (α → α̃) ≈ 1

12
e−

Θ(ν̂α+ν̂α̃)
4 +

1

4
e−

Θ(ν̂α+ν̂α̃)
3 . (14)

Consequently, utilizing (6), (7) and (14), the instantaneous IEP

(denoted by PI1 ) with the ML can be approximated by

PI1 ≈ K

N

N∑

α=1

N−K∑

α̃ 6=α=1

[
1

12
e−

Θ(ν̂α+ν̂α̃)
4 +

1

4
e−

Θ(ν̂α+ν̂α̃)
3

]

.

(15)

Let ν̂Σ = ν̂α + ν̂α̃. The moment generating function

(MGF) of ν̂Σ can be obtained by Mν̂Σ
(s) = M2

ν̂ (s) =
[
1−

(
1− ǫ2

)
s
]−2

, where Mν̂ (s) =
[
1−

(
1− ǫ2

)
s
]−1

is



the MGF of ν̂. Applying the MGF approach, the closed-form

expression for the average IEP in (15) can be attained as

P I1 ≈ Ψ1

12







[

1 +

(
1− ǫ2

)
γ̄

4 + 2γ̄ǫ2

]−2

+ 3

[

1 +
2
(
1− ǫ2

)
γ̄

6 + 3γ̄ǫ2

]−2





,

(16)

where Ψ1 = K (N −K). Interestingly, it is worth noting from

(16) that the average IEP is less affected by the modulation

order M , while being determined mainly by N and K.

Finally, plugging (16) and (11) into (10), the average SEP

of the ML for given CSI uncertainty of ǫ2 can be

P s1 ≈ Ψ̃1

12







[

1 +

(
1− ǫ2

)
γ̄

4 + 2γ̄ǫ2

]−2

+ 3

[

1 +
2
(
1− ǫ2

)
γ̄

6 + 3γ̄ǫ2

]−2






+
Ψ2

12

[

1

1 + (1−ǫ2)γ̄ρ
1+γ̄ǫ2

+
3

1 + 4(1−ǫ2)γ̄ρ
3+3γ̄ǫ2

]

, (17)

where Ψ̃1 = (2− 1/M)Ψ1/ (K + 1) and Ψ2 =
ξK/ (K + 1) .

It can be shown in (17) that for given N and γ̄, the average

SEP relies on both K and ǫ2. For instance, as K increases to

N , P s1 will be dominated by the second term, which reduces

to the classical OFDM. Furthermore, for given N , the smaller

K, the lower P s1 can be in the presence of ǫ2.

C. SEP of GD Detection With CSI Uncertainty

As for the IEP of the GD, notice the fact that the GD detects

the active sub-carrier indices without the CSI knowledge. This

leads to that the instantaneous IEP is independent of the

imperfect CSI ĥ (α), and thus we have [17]

PI2 ≤ K

N

N∑

α=1

N−K∑

i=1

(−1)
i+1

C (N −K, i)

i+ 1
e−

iγ̄να
i+1 , (18)

where να = |h (α)|2. Because of the system model, the MGF

of να is given by Mν (s) = (1− s)
−1

. Using the MGF

method to (18), we can obtain the average IEP of the GD

detector, even with uncertain CSI, as

P I2 ≤ K

N−K∑

i=1

(−1)
i+1

C (N −K, i)

i+ 1 + iγ̄
(19)

As observed from (19), it is noteworthy that the GD detection

attains the average IEP independent of ǫ2 as well as M .

Substituting (19) and (11) into (10), the average SEP of the

GD can be expressed in the closed-form as

P s2 ≤ K
(
2− 1

M

)

K + 1

N−K∑

i=1

(−1)
i+1

C (N −K, i)

i+ 1 + iγ̄

+
Ψ2

12

[

1

1 + (1−ǫ2)γ̄ρ
1+γ̄ǫ2

+
3

1 + 4(1−ǫ2)γ̄ρ
3+3γ̄ǫ2

]

, (20)

where Ψ̃1 and Ψ2 are given in (17).

Interestingly, as shown from (20), the error variance ǫ2

appears only in PM . This observation reveals that the average

SEP of the GD can be less sensitive to the channel estimation

error than the ML. This behavior will be verified in the

asymptotic analysis as well as simulation results.

IV. IMPACT OF CSI UNCERTAINTY

To gain an insight into the impact of the channel uncer-

tainty, we asymptotically investigate the achievable coding

and diversity gains at high SNRs, for both the ML and GD

detectors. Particularly, three different CSI uncertainties will be

considered: perfect, fixed and variable CSI uncertainty.

Denote by d and c the diversity order and the coding gain,

respectively. Without loss of generality, for each CSI uncer-

tainty, we refer to the approximate average error probability

in terms of d and c, at high SNRs, as follows

P s ≈ (cγ0)
−d

, (21)

where γ0 = Es/N0 be the average SNR per sub-carrier.

A. Perfect CSI (ǫ2 = 0)

Refering to (17) and (20), at high SNRs, we can obtain the

asymptotic SEPs of both the ML and the GD when ǫ2 = 0, as

P s1 ≈ 13ξK2

48ρN (K + 1)

(
1

γ0

)

, (22)

P s2 ≈ K2

N (K + 1)

(

ω +
13ξ

48ρ

)(
1

γ0

)

, (23)

where ω =
(
2− 1

M

)∑N−K
i=1 (−1)

i+1
C (N −K, i) /i.

From (22) and (23), the achievable coding gain from the

use of either the ML or GD can be given by

c1 =
48ρN (K + 1)

13ξK2
, (24)

c2 =
N (K + 1)

K2
(

ω + 13ξ
48ρ

) . (25)

As for the classical OFDM, the coding gain can be obtained

by employing K = N , as

c0 =
48ρ

13ξ
. (26)

Based on these results, several important remarks and the-

orems can be drawn as follows:

Remark 1. Both MCIK-OFDM using either the ML or GD

and the classical OFDM have the same diversity order d =
1. The difference in the error performance among the three

schemes is decided by the coding gains, i.e., c0, c1, c2. Thus,

only evaluating the coding gains, we are able to compare the

performance gain over these schemes.

Remark 2. It can be seen from (22) that P s1 only depends

on the term related to PM at high SNRs. Thus, the error

performance of MCIK-OFDM with the ML is affected mainly

by the M -ary symbol detection error instead of the index

detection error. Unlike the ML, (23) shows that the SEP of

MCIK-OFDM with the GD relies on the accuracy of both the

index and M -ary symbols detections, even at high SNRs.

Corollary 1. For given N,K and M, MCIK-OFDM using

the ML detection can outperform the classical OFDM at high

SNRs with a coding gain of

g = 10 log

[
N (K + 1)

K2

]

(dB). (27)



Proof: The coding gain g can be obtained by g =
10 log10 (c1/c0) with c1, c0 given in (24) and (26).

Remark 3. Using Corollary 1, we can see that when K
decreases, the coding gain of MCIK-OFDM increases over

the OFDM. In other words, selecting a small K in MCIK-

OFDM offers a better error performance at a certain loss in

spectral efficiency, under the perfect CSI.

Theorem 1. Consider the MCIK-OFDM. For large M (M =
16), the average SEP of the GD are nearly the same as that

of the ML, i.e., P s2 ≈ P s1 . On the other hand, for small M
as (M = 2, 4), the SEP of the ML significantly outperforms

that of the GD, i.e., P s1 ≪ P s2 .

Proof: Based on the observation of ω and 13ξ/48ρ in

(22) and (23), as M ≥ 16, we have 13ξ/48ρ ≫ ω, thus

P s2 ≈ P s1 . Whereas, as M = 2, 4, we obtain 13ξ/48ρ ≪ ω,

leading to P s2 ≫ Ps1 . This concludes the proof.

It is worth noting from Theorem 1 that in MCIK-OFDM

with large M , the GD detector is preferred to the ML since the

GD offers the nearly optimal error performance at much lower

complexity. Notice that the complexities of the GD and the ML

are CGD = N + 2KM and CML = 2p1+1MK , respectively

[17]. As K and M increase, we obtain CML ≫ CGD.

B. Fixed CSI Uncertainty, (ǫ2 > 0)

For given ǫ2 > 0, as γ̄ increases, (17) and (20) can be

asymptotically approximated by

P s1 ≈ Ψ̃1

12

[(

1 +
1− ǫ2

2ǫ2

)−2

+ 3

(

1 +
2− 2ǫ2

3ǫ2

)−2
]

︸ ︷︷ ︸

A1

+
Ψ2

12

[

1

1 + (1−ǫ2)ρ
ǫ2

+
3

1 + 4(1−ǫ2)ρ
3ǫ2

]

︸ ︷︷ ︸

A2

, (28)

P s2 ≈ Ψ2

12

[

1

1 + (1−ǫ2)ρ
ǫ2

+
3

1 + 4(1−ǫ2)ρ
3ǫ2

]

, (29)

which no longer rely on the SNRs, i.e., γ̄ or γ0.

It is worth noting that for fixed ǫ2, the SEP at high SNRs

achieves zero diversity and coding gains for both the ML and

GD detectors. This is because there exists an error floor on

the average SEP so that increasing the SNR does not improve

the error performance. In addition, the average SEP of the GD

with fixed ǫ2 is not affected by N at high SNRs since Ψ2 does

not depend on N .

For the comparison between the ML and GD in terms of

the SEP, we obtain an interesting theorem as follows.

Theorem 2. Under fixed CSI uncertainty, in MCIK-OFDM,

the low-complexity GD detector provides a better error per-

formance than the ML detector at high SNRs, i.e., P s1 > P s2 .
Proof: It is shown from (28) and (29) that P s1 ≈

A1 + A2 > P s2 ≈ A2, where A1 and A2 are related to the

asymptotic IEP of the ML and the SEP of M -ary symbols,

respectively. This concludes the proof.

Remark 4. Under the fixed channel uncertainty, the GD

outperforms the ML in terms of both the computational

complexity and the error performance. This is totally contrary

to the behavior of the SEP in perfect CSI, where the GD is

always worse than the ML in terms of the SEP.

In the next subsection, we consider another scenario when

ǫ2 varies as a decreasing function of the SNR, where the

MMSE estimator is a good and practical example.

C. MMSE Based Variable CSI Uncertainty

Based on the MMSE principle in the channel estimation,

we have

ǫ2 =
1

1 + Es/N0
, (30)

which is proved in Appendix B. It is clearly shown in (30) that

the MMSE error variance gets smaller as the SNR gets larger.

Inserting (30) into (17) and (20), at high SNRs, we attain

P s1 ≈ 13ξK (N +K)

48ρN (K + 1)

(
1

γ0

)

, (31)

P s2 ≈ K

N (K + 1)

[

Kω +
13ξ (N +K)

48ρ

](
1

γ0

)

. (32)

The corresponding coding gains are

c′1 =
48ρN (K + 1)

13ξK (N +K)
, (33)

c′2 =
N (K + 1)

K
[

Kω + 13ξ(N+K)
48ρ

] . (34)

Particularly, as K → N , (33) can reduce to the coding gain

of the classical OFDM, as

c′0 =
24ρ

13ξ
. (35)

Like the perfect CSI case, it can be seen from (31) and

(32) that the MCIK-OFDM scheme under MMSE based ǫ2

achieve the diversity order of one. However, for high SNR, the

attainable coding gains get smaller, i.e., c′i < ci for i = 0, 1, 2.
This degradation is caused by the impact of MMSE channel

estimation error. Based on this, we provide the following

theorem.

Theorem 3. Consider MCIK-OFDM systems. Denote by ∆1

and by ∆2 coding gain losses achieved by the ML and by the

GD, respectively, under MMSE based uncertain CSI over the

perfect CSI. Then, we have

∆1 = 10 log10

(
N +K

K

)

, (36)

∆2 = 10 log10

[

Kω + 13ξ(N+K)
48ρ

Kω + 13ξK
48ρ

]

, (37)

which satisfy ∆1 > ∆2.

Proof: Let the losses of coding gain be ∆i =
10 log10 (ci/c

′
i) for i = 1, 2. Thus, utilizing (24) and (33)

yields (36), while using (25) and (34) yields (37).

Subtracting (37) from (36) leads to

∆1 −∆2 = 10 log10






1 +

NKω

K
[

Kω + 13ξ(N+K)
48ρ

]






> 0.



This concludes the proof.

Remark 5. As shown in Theorem 3, the GD detector is less

sensitive to the MMSE channel estimation error than the ML.

This is because the loss of coding gain of the ML is larger

than that of the GD.

Theorem 4. Denote by g′ the coding gain that the MCIK-

OFDM using the ML achieves over the classical OFDM, under

MMSE CSI uncertainty. We have

g′ = 10 log10

[
2N (K + 1)

K (N +K)

]

(dB), (38)

and g′ < g, where g is given in (27).

Proof: Based on the definition of g′, we have g′ =
10 log10 (c

′
1/c

′
0). Here, using c′1, c

′
0 given in (33) and (35),

respectively, we obtain (38). Next, combining (27) and (38)

leads to g − g′ = 10 log10 [(N +K) /2K] > 0 for every

K < N , thus g′ < g. This concludes the proof.

Remark 6. Theorem 4 reveals that under MMSE CSI un-

certainty, the coding gain achieved by MCIK-OFDM over the

classical OFDM is smaller than that under the perfect CSI.

Finally, similar to Theorem 1 in the perfect CSI case, in this

case, the SEP of the GD performs nearly the same as that of

the ML as M increases, which can be shown from (31) and

(32) with the steps used in Theorem 1.

V. NUMERICAL AND SIMULATION RESULTS

We now present numerical and simulation results to verify

our theoretical analysis on the SEP of the MCIK-OFDM under

various CSI conditions. For comparison, we show the average

SEP for MCIK-OFDM schemes using the ML and the GD as

well as the classical OFDM.

A. SEP of MCIK-OFDM under Perfect CSI

Fig. 1 shows the average SEP of MCIK-OFDM with N =
4, K = 2, M = 2, using both the ML and the GD. This figure

also compares this MCIK-OFDM scheme with the classical

OFDM at the same data rate of 1 bps/Hz. As seen from Fig.

1, both the theoretical and asymptotic curves are very tight to

simulation results in a wide range of SNRs. This successfully

verifies the accuracy of the derived expressions for the average

SEPs of both the ML and GD. Moreover, the SEP of MCIK-

OFDM and the classical OFDM achieve the same diversity

order of one, under perfect CSI, as shown in Remark 1.

Fig. 2 illustrates the impact of the PSK modulation order M
on the average IEP of MCIK-OFDM using the ML with N =
4, K = 2 and M = {2, 4, 8, 16}. It is clear from Fig. 2 that

the order M has a negligible impact on the IEP performance,

which validates our analysis right after (16). We also see the

tightness of the derived IEP, even at low SNRs.

Fig. 3 depicts the behaviour of the SEP of MCIK-OFDM

using the ML and the GD at various K. It can be seen that

MCIK-OFDM with the ML and N = 4,M = 2 provides the

difference of 6.5 dB SNR gain when increasing K from 1 to

3. However, greater K offers a higher data rate. In addition,

Fig. 3 shows that compared to OFDM, the SNR gain of the

K = 1 MCIK-OFDM with the ML achieves about 8 dB SNR

gain for the SEP of 10−3. This validates Remark 3.
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Fig. 1. Average SEPs of MCIK-OFDM with the ML and the GD, and
comparison with OFDM when N = 4, K = 2 and M = 2, at 1 bps/Hz.
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Fig. 2. The effect of M on the average IEP of MCIK-OFDM using the ML
with N = 4, K = 2 and M = {2, 4, 8, 16}.

In Fig. 4, we compare the average SEPs of two detectors

in MCIK-OFDM with various M . This figure shows that for

M = 2, the ML significantly outperforms the GD, with an

SNR gain of approximately 8 dB at high SNRs. Whereas, as

M increases to 8 or 16, the SEP of the GD approaches to

that of the ML. Especially when M = 16, the performance

gap between the two detectors is negligible. This validates

Theorem 1. In addition, this figure confirms the accuracy of

the asymptotic SEPs, especially at high SNRs.
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Fig. 3. Impact of K on the average SEP of MCIK-OFDM using both the
ML and GD when N = 4, K = {1, 3} and M = 2.



Fig. 4. Comparison between the average SEPs of the ML and the GD, with
the MCIK-OFDM of N = 2, K = 1 and M = {2, 8, 16} .

Fig. 5. Impact of fixed ǫ2 on the average SEPs of different MCIK-OFDM
schemes using both the ML and GD when N = {2, 4} , K = {1, 2}, M =

{2, 4}, and ǫ2 = {0.1, 0.01, 0.001}.

B. SEP of MCIK-OFDM under Fixed CSI Uncertainty

Fig. 5 illustrates the average SEPs of a number of MCIK-

OFDM schemes using both the ML and GD detectors, under

different values of ǫ2. It is shown from Fig. 5 that the average

SEPs suffer from error foors as the SNR increases. These

error floors get higher when increasing ǫ2. More interestingly,

as ǫ2 = 0.1, the GD outperforms the ML in terms of the

SEP, especially at high SNRs. This observation validates the

accuracy of Theorem 2 and Remark 4. As ǫ2 decreases, the

SEP gap between the two detectors becomes smaller.

C. SEP of MCIK-OFDM under MMSE CSI Uncertainty

Fig. 6 shows the effect of the MMSE imperfection on

the SEP of MCIK-OFDM with the ML and GD, when

N = 4, K = 2 and M = 2. As seen from Fig. 6, under

MMSE CSI uncertainty, MCIK-OFDM using the ML suffers

from a considerable loss of nearly 5 dB SNR gain compared

to the perfect CSI case. The loss raised by the GD is much

smaller, being around 0.5 dB. Thus, the GD is less sensitive

to MMSE CSI uncertainty than the ML.

In Fig. 7, we depict the average SEP of MCIK-OFDM using

the ML with N = 4,K = 3,M = 4 under MMSE imperfec-

tion. For comparison, the classical OFDM with N = 4,M = 4
is also depicted. As seen from Fig. 7, under perfect CSI,

MCIK-OFDM can remarkably outperform OFDM in terms of

the SEP. However, this is no longer true under MMSE CSI
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Fig. 6. Impact of MMSE based CSI uncertainty on the average SEPs of
MCIK-OFDM using both the ML and GD when N = 4, K = 2 and M = 2.
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Fig. 7. SEP comparison between MCIK-OFDM using the ML and OFDM
when N = 4, K = 3 and M = 4 under MMSE varible and perfect CSI.

uncertainty, where the SEP of MCIK-OFDM is slightly better

than that of the OFDM.

VI. CONCLUSIONS

We have proposed a novel framework to analyze the average

SEPs of the generalized MCIK-OFDM with any types of

detector, taking into account CSI imperfection. The accurate,

closed-form expressions for the SEPs of MCIK-OFDM using

the ML and the GD are derived, in the presence of CSI

uncertainty. We investigated asymptotic SEPs with respect to

the three CSI conditions including perfect, fixed and variable

MMSE based CSI uncertainties. This ensured to provide a

comprehensive insight into the diversity and coding gains

achieved by MCIK-OFDM with the ML and GD, even un-

der various CSI conditions. Interestingly, our results clearly

showed that the GD is not only less sensitive to channel

estimation errors such as the MMSE CSI imperfection, but

also can outperform the ML in terms of the SEP under the

fixed CSI conditions. We have clearly shown that the GD

can be promising to offer the best or near optimal SEP under

uncertain CSI. The derived closed-form SEP expressions can

be useful for the design of various MCIK-OFDM systems.

APPENDIX A

PROOF OF LEMMA 1

The received signal at the active sub-carrier index α is

given by y (α) = x (α) ĥ (α) + ñ (α) , where ñ (α) =



x (α) e (α)+n (α) is the noise caused by the CSI uncertainty

and the additive noise, being CN
(
0, ϕEsǫ

2 +N0

)
. Therefore,

the ML detection per sub-carrier will detect x (α) with an

instantaneous SNR of γ̂α = ϕEs

∣
∣
∣ĥ (α)

∣
∣
∣

2

/
(
ϕEsǫ

2 +N0

)
=

γ̄ν̂α/
(
1 + γ̄ǫ2

)
, where ν̂α =

∣
∣
∣ĥ (α)

∣
∣
∣

2

. According to [25], a

well-known approximation of PM (α) is given as

PM (α) ≈ ξQ

[√

2γ̄ν̂α
1 + γ̄ǫ2

sin
( π

M

)
]

, (39)

where ξ = 1 for M = 2 and ξ = 2 for M > 2 . Using the

approximation of Q-function of Q (x) ≈ 1
12e

−x2/2+ 1
4e

−2x2/3,

PM (α) can be represented by

PM (α) ≈ ξ

12

(

e
−

γ̄ν̂αρ

1+γ̄ǫ2 + 3e
−

4γ̄ν̂αρ

3+3γ̄ǫ2

)

, (40)

where ρ = sin2 (π/M).
Note that the MGF of ν̂α is given by Mν̂ (z) =

[
1−

(
1− ǫ2

)
z
]−1

. Based on the definition of MGF function,

i.e., Eν̂

{
ezν̂

}
= Mν̂ (z), the average SEP of the M -ary

symbol detection is obtained as (11). This concludes the proof.

APPENDIX B

DERIVATION OF (30)

For all sub-carriers, assume that the MMSE estimator uses

the unit pilot signal, i.e., xp (α) = 1, which is transmitted with

the power Es. The received pilot signal at each sub-carrier is

y (α) =
√
Esh (α) + n (α) , which is used to estimate the

channel coefficient as

ĥ (α) =
yE {y (α)h∗ (α)}
E

{

|y (α)|2
} =

√
Es

Es +N0

[√

Esh (α) + n (α)
]

.

As a result, the channel estimation error per sub-carrier is

e (α) = h (α)− ĥ (α) =
N0

Es +N0
h (α)−

√
Es

Es +N0
n (α) ,

(41)

From (41), we easily obtain (30). This concludes the proof.
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