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Abstract—Very recent studies showed that in a fully loaded
dense small cell network (SCN), the coverage probability perfor-
mance will continuously decrease with the network densification.
Such new results were captured in IEEE ComSoc Technology
News with an alarming title of “Will Densification Be the Death
of 5G?”. In this paper, we revisit this issue from more practical
views of realistic network deployment, such as a finite number
of active base stations (BSs) and user equipments (UEs), a
decreasing BS transmission power with the network densification,
and so on. Particularly, in dense SCNs, due to an oversupply of
BSs with respect to UEs, a large number of BSs can be put into
idle modes without signal transmission, if there is no active UE
within their coverage areas. Setting those BSs into idle modes
mitigates unnecessary inter-cell interference and reduces energy
consumption. In this paper, we investigate the performance
impact of such BS idle mode capability (IMC) on dense SCNs.
Different from existing work, we consider a realistic path loss
model incorporating both line-of-sight (LoS) and non-line-of-sight
(NLoS) transmissions. Moreover, we obtain analytical results for
the coverage probability, the area spectral efficiency (ASE) and
the energy efficiency (EE) performance for SCNs with the BS
IMC and show that the performance impact of the IMC on
dense SCNs is significant. As the BS density surpasses the UE
density in dense SCNs, the coverage probability will continuously
increase toward one, addressing previous concerns on “the death
of 5G”. Finally, the performance improvement in terms of the EE
performance is also investigated for dense SCNs using practical
energy models developed in the Green-Touch project.1

Index Terms—Stochastic geometry, line-of-sight (LoS), non-
line-of-sight (NLoS), dense small cell networks (SCNs), coverage
probability, area spectral efficiency, energy efficiency.

I. INTRODUCTION

Dense small cell networks (SCNs), comprised of remote

radio heads, metrocells, picocells, femtocells, relay nodes,

etc., have attracted significant attention as one of the most

promising approaches to rapidly increase network capacity

and meet the ever-increasing data traffic demands [1]. Indeed,

the orthogonal deployment of dense SCNs within the existing

macrocell networks [2], i.e., small cells and macrocells oper-

ating on different frequency spectrum (Small Cell Scenario

#2a [2]), has been selected as the workhorse for capacity

enhancement in the 4th-generation (4G) and the 5th-generation

(5G) networks, developed by the 3rd Generation Partnership

Project (3GPP) [3]. In this paper, we focus on the analysis

1To appear in IEEE TVT. 1536-1276 l’ 2015 IEEE. Personal
use is permitted, but republication/redistribution requires IEEE
permission. Please find the final version in IEEE from the link:
http://ieeexplore.ieee.org/document/xxxxxxx/. Digital Object Identifier:
10.1109/TVT.2017.xxxxxxx

Fig. 1. Theoretical performance comparison of the coverage probability when
the SINR threshold γ = 0 dB. Note that all the results are obtained using
practical 3GPP channel models [6, 7], which will be introduced in details
later. Moreover, the BS density regions for the 4G and 5G networks have
been illustrated in the figure, considering that the typical BS density of the
4G SCNs is in the order of tens of BSs/km2 [2, 3].

of these dense SCNs with an orthogonal deployment in the

existing macrocell networks.

In the seminal work of Andrews, Baccelli, and Ganti [4],

a conclusion was reached: the density of base stations

(BSs) would not affect the coverage probability performance

in interference-limited2 and fully-loaded3 wireless networks,

where the coverage probability is defined as the probability

that the signal-to-interference-plus-noise ratio (SINR) of a

typical user equipment (UE) is above a SINR threshold γ.

Consequently, the area spectral efficiency (ASE) performance

in bps/Hz/km2 would scale linearly with the network densi-

fication [4], which forecasts a bright future for dense SCNs

in 4G and 5G. The intuition of such conclusion is that the

increase in the interference power caused by a denser network

would be exactly compensated by the increase in the signal

power due to the reduced distance between transmitters and

receivers. This coverage probability behavior predicted in [4]

is shown in Fig. 1. However, it is important to note that such

conclusion was obtained with considerable simplifications

on the network condition and propagation environment. For

example, all BSs were assumed to be active and a single-

2In a interference-limited network, the power of each BS is set to a value
much larger than the noise power.

3In a fully-loaded network, all BSs are active. Such assumption implies
that the user density is infinity or much larger than the BS density. According
to the results in [5], the user density should be at least 10 times higher than
the BS density to make sure that almost all BSs are active.

http://arxiv.org/abs/1609.07710v5
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slop path loss model was used. It would be interesting to

investigate whether the conclusion still holds in real-world

environment featuring more complicated BS behaviors and

radio propagation environment.

To this end, a few noteworthy studies have been carried out

recently to revisit the network performance analysis of dense

SCNs using more practical propagation models. In [8], the

authors considered a multi-slope piece-wise path loss function,

while in [9], the authors modeled line-of-sight (LoS) and

non-line-of-sight (NLoS) transmissions as probabilistic events

for a millimeter wave communication scenario. In our recent

work [10], we further considered both piece-wise path loss

functions and probabilistic LoS and NLoS transmissions. The

above new studies demonstrated that when the BS density

is larger than a threshold λ∗, the coverage probability will

continuously decrease as the SCN becomes denser. The intu-

ition behind such result is that the interference power increases

faster than the signal power in dense SCNs due to the transition

of a large number of interference paths from NLoS (usually

with a large path loss exponent) to LoS (usually with a small

path loss exponent). Such new results were later captured

in IEEE ComSoc Technology News with an alarming title

of “Will Densification Be the Death of 5G?” [11]. Fig. 1

shows the coverage probability result in [8–10], where λ∗ is

around 20 BSs/km2. The key message is that, when deploying

dense SCNs, an increased BS density may lead to worse

network performance, and hence the future of 5G is shrouded

in darkness.

In this paper, we will take another look at “the death of 5G”

from more practical views of realistic network deployment,

such as a finite number of active BSs and UEs, a decreasing

BS transmission power with the network densification, and so

on. Particularly, since the UE density is finite in practical net-

works, a large number of BSs in dense SCNs could switch off

their transmission modules and thus enter idle modes, if there

is no active UE within their coverage areas. Setting those BSs

to idle modes can mitigate unnecessary inter-cell interference

and reduce energy consumption [5, 12–14]. In other words,

by dynamically muting idle BSs, the interference suffered by

UEs from always-on control channels, e.g., synchronization

and broadcast channels, and data channels can be reduced,

thus improving UEs’ coverage probability. This idle mode

feature at BSs is referred to as the idle mode capability (IMC)

hereafter. Furthermore, the energy efficiency (EE) of SCNs

with the IMC can be significantly enhanced because (i) BSs

without any active UE can be temporarily put into idle modes

with low energy consumption, and (ii) every active BS usually

benefits from high-SINR and thus energy-efficient links with

its associated UEs due to the BS diversity gain [5], i.e., each

UE selects the serving BS with the highest SINR from a

surplus of BSs in dense SCNs. It is very important to note

that a BS in idle mode may still consume a non-negligible

amount of energy, thus impacting the EE of SCNs. In this

paper, we use a practical power model developed in the Green-

Touch project [15] to evaluate the EE performance in realistic

scenarios. Such power model will be formally introduced later.

In this paper, we investigate for the first time the perfor-

mance impact of the IMC on dense SCNs considering LoS

and NLoS transmissions. As an example to demonstrate such

impact, our results with a UE density of 300UEs/km2 (a

typical UE density in 5G [3]) are compared with the existing

results in Fig. 1. The performance impact of the IMC on the

coverage probability is shown to be significant. As the BS

density surpasses the UE density in future dense and ultra-

dense SCNs [3], thus creating a surplus of BSs, the coverage

probability will continuously increase toward one, addressing

the critical issue of coverage probability decrease that may

cause “the death of 5G” shown in Fig. 1. Such performance

behavior of the coverage probability increasing toward one in

dense SCNs, is referred to as the Coverage Probability Take-

off hereafter. The intuition behind the Coverage Probability

Takeoff is that beyond a certain BS density threshold, the

interference power will be less than that of the case with all

BSs being active thanks to the BS IMC, plus the signal power

will continuously rise due to the BS diversity gain, thus leading

to a better SINR performance as the network evolves into a

dense one.

Compared with existing work, the main contributions of this

paper are4:

• Analytical results are obtained for the coverage probabil-

ity and the ASE performance of SCNs with the BS IMC

using a general path loss model incorporating both LoS

and NLoS transmissions. Note that existing work on the

IMC only treated a single-slope path loss model, where a

UE is always associated with its nearest BS [5, 13], while

our work considers more practical path loss models with

probabilistic LoS and NLoS transmissions, where UEs

may connect to a farther BS with a LoS path.

• A lower bound, an upper bound and an approximate

expression of the active BS density are derived for SCNs

with the IMC, considering practical path loss models with

probabilistic LoS and NLoS transmissions.

• The performance improvement in terms of the EE is

also investigated for dense SCNs using practical energy

models developed in the Green-Touch project [15] and

practical 3GPP propagation models with Rician fading,

correlated shadow fading, etc.

The rest of this paper is structured as follows. Section II

provides a brief review of related work. Section III describes

the system model featuring the BS IMC. Section IV presents

our theoretical results on the coverage probability, the ASE,

the EE and the active BS density, with their applications in

two 3GPP special cases. The numerical results are discussed

in Section V, with remarks shedding new light on the issue of

“the death of 5G”. The conclusions are drawn in Section VI.

II. RELATED WORK

In stochastic geometry, BS positions are typically modeled

as a Homogeneous Poisson Point Process (HPPP) on the plane,

and closed-form expressions of coverage probability can be

found for some scenarios in single-tier cellular networks [4]

and multi-tier cellular networks [17]. The major conclusion

in [4, 17] is that neither the number of cells nor the number

4Note that preliminary results of this work has been presented in a
conference paper [16].
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of cell tiers changes the coverage probability in interference-

limited fully-loaded wireless networks.

Recently, a few noteworthy studies have been carried out

to further investigate the network performance analysis for

dense and ultra-dense SCNs under more practical propagation

models. As discussed in Section I, the authors of [8–10]

found that the coverage probability performance will start

to decrease when the BS density is sufficiently large. The

intuition behind this result is that as the BS density becomes

larger than a threshold, the interference power increases faster

than the signal power due to the transition of a large number

of interference paths from NLoS to LoS.

However, all of the above work did not consider an impor-

tant factor: as the BS density increases, a large number of BSs

can be put into idle mode without signal transmission, if there

is no active UE within their coverage areas. This is a new

network behavior arising from the surplus of BSs with respect

to UEs, i.e., it may happen that a significant number of BSs

may not have any active UE in their coverage areas during

certain time periods. Therefore, such BSs could mute their

transmission to mitigate unnecessary inter-cell interference and

reduce energy consumption [5, 12–14, 18].

Up to now, the limited existing work that did consider the

IMC, only treated a simplistic single-slope path loss model

for homogeneous SCNs [5, 12, 13, 18] or for the co-channel

deployment of heterogeneous networks [14]. Such path loss

assumption is not practical for realistic SCNs and may yield

misleading conclusions reading the network performance, as

addressed in [8–10].

Motivated by the above observations, in this paper, we

investigate for the first time the performance impact of the

IMC on dense SCNs considering probabilistic LoS and NLoS

transmissions. Note that compared with our previous work

that also considered probabilistic LoS and NLoS transmis-

sions [10], this paper present new contributions as follows,

• Our previous work [10] corroborates “the death of

5G” [11] by considering probabilistic LoS and NLoS

transmissions and an infinite number of UEs in the net-

work. However, in this work, we present new theoretical

results that can mitigate “the death of 5G” by considering

a finite number of UEs exploited by the BS IMC.

• The new theoretical work in this paper compared

with [10] is that a lower bound, an upper bound and

an approximate expression of the active BS density are

derived for SCNs with the IMC, considering practical

path loss models with probabilistic LoS and NLoS trans-

missions.

• Moreover, compared with [10], the performance improve-

ment in terms of the EE is also investigated in this paper.

III. SYSTEM MODEL

We consider a downlink (DL) cellular network with BSs

deployed on a plane according to a homogeneous Poisson

point process (HPPP) Φ with a density of λ BSs/km2. Active

UEs are Poisson distributed in the considered DL network with

a density of ρ UEs/km2. Here, we only consider active UEs

in the network because non-active UEs do not trigger data

transmission, and thus they are ignored in our analysis. Note

that the total UE number in cellular networks should be much

higher than the number of the active UEs, but at a certain time

slot and on a certain frequency band, the active UEs with data

traffic demands are not too many. As discussed in Section I,

a typical density of the active UEs in 5G should be around

300UEs/km2 [3].

In our previous work [10, 19] and other related work [8, 9],

ρ was assumed to be infinite or considerably larger than λ so

that each BS has at least one associated UE in its coverage.

In this work, we impose no such constraint on ρ, and hence

a BS with the IMC will enter an idle mode if there is no UE

connected to it, which reduces interference to neighboring UEs

as well as energy consumption of the network. Since UEs are

randomly and uniformly distributed in the network, we assume

that the active BSs also follow an HPPP distribution Φ̃ [5, 12,

13, 18], the density of which is denoted by λ̃ BSs/km2. Note

that λ̃ ≤ λ, and λ̃ ≤ ρ since one UE is served by at most

one BS. Obviously, a larger ρ requires more active BSs with

a larger λ̃ to serve the active UEs.

It is very important to note that, up to now, there is no

theoretical proof showing that the active BSs should follow an

HPPP since the activation of each BS depends on the UE dis-

tribution in its vicinity. Having said that, the HPPP assumption

has been widely used in the literature, such as [5, 12, 13, 18].

Indeed, later we will present simulation results backing up our

theoretical findings based on the HPPP assumption, where the

computational engines for the computer simulations and theo-

retical analyses follow different principles. More specifically,

in our simulations, no assumption was made on the distribution

of the active BSs. They are generated according to the UEs’

selection. In contrast, the HPPP assumption was only used

to obtain the analytical results. This methodology has also

been used in [5, 12, 13, 18]. The intuition of this conclusion is

that since no clustering behavior of UEs and no correlation

among UEs’ channels have been considered in the analysis,

the activation and deactivation of each BS is uniformly and

randomly distributed across the entire network, which leads to

the HPPP assumption.

Following [10, 19], we adopt a very general path loss model,

in which the path loss ζ (r) as a function of r is segmented

into N pieces written as

ζ (r) =























ζ1 (r) , when 0 ≤ r ≤ d1

ζ2 (r) , when d1 < r ≤ d2
...

...

ζN (r) , when r > dN−1

, (1)

where each piece ζn (r) , n ∈ {1, 2, . . . , N} is modeled as

ζn (r)=

{

ζL
n (r) = AL

nr
−αL

n ,

ζNL
n (r) = ANL

n r−αNL
n ,

LoS Prob.: PrL
n (r)

NLoS Prob.: 1− PrL
n (r)

,

(2)

where

• ζL
n (r) and ζNL

n (r) , n ∈ {1, 2, . . . , N} are the n-th piece

path loss functions for the LoS transmission and the

NLoS transmission, respectively,
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• AL
n and ANL

n are the path losses at a reference distance

r = 1 for the LoS and the NLoS cases, respectively,

• αL
n and αNL

n are the path loss exponents for the LoS and

the NLoS cases, respectively.

In practice, AL
n, ANL

n , αL
n and αNL

n are constants obtainable

from field tests [6, 7].

Moreover, PrL
n (r) is the n-th piece LoS probability function

that a transmitter and a receiver separated by a distance r
has a LoS path, which is assumed to be a monotonically

decreasing function with regard to r. Such assumption has

been confirmed by existing measurement studies [6, 7]. For

convenience,
{

ζL
n (r)

}

and
{

ζNL
n (r)

}

are further stacked into

piece-wise functions written as

ζPath (r) =























ζPath
1 (r) , when 0 ≤ r ≤ d1

ζPath
2 (r) , when d1 < r ≤ d2

...
...

ζPath
N (r) , when r > dN−1

, (3)

where the string variable Path takes the value of “L” and

“NL” for the LoS and the NLoS cases, respectively.

Besides,
{

PrL
n (r)

}

is stacked into a piece-wise function as

PrL (r) =























PrL
1 (r) , when 0 ≤ r ≤ d1

PrL
2 (r) , when d1 < r ≤ d2

...
...

PrL
N (r) , when r > dN−1

. (4)

Note that the generality and the practicality of the adopted

path loss model (1) have been well established in [10]. In more

detail, this model is consistent with the ones adopted in the

3GPP [6], [7], and includes those models considered in [8]

and [9] as its special cases.

In this paper, we assume a practical user association strategy

(UAS), in which each UE is connected to the BS with the

smallest path loss (i.e., with the largest ζ (r)) to the UE [9,

10]. Note that in our previous work [19] and some other

existing work, e.g., [4, 8], it was assumed that each UE should

be associated with its closest BS. Such assumption is not

appropriate for the considered path loss model in (1), because

in practice a UE should connect to a BS offering the largest

received signal strength. Such BS does not necessarily have

to be the nearest one to the UE, and it could be a farther one

with a strong LoS path.

Moreover, we assume that each BS/UE is equipped with an

isotropic antenna, and that the multi-path fading between a BS

and a UE is modeled as independently identical distributed

(i.i.d.) Rayleigh fading [8–10]. Note that a practical 3GPP

model with distance-dependent Rician fading [7] and corre-

lated shadow fading [6] will also be considered and simulated

in Section V to show their minor impact on our conclusions.

More specifically,

• We adopt a practical Rician fading defined in the

3GPP [7], where the K factor in dB scale (the ratio

between the power in the direct path and the power in the

other scattered paths) is modeled as K[dB] = 13−0.03r,

where r is the distance in meter.

• We consider a practical correlated shadow fading defined

in 3GPP [6], where the shadow fading in dB is modeled

as zero-mean Gaussian random variables, e.g., with a

standard deviation of 10 dB. The correlation coefficient

between the shadow fading values associated with two

different BSs is denoted by τ , e.g., τ = 0.5 in [6].

IV. MAIN RESULTS

In this section, we study the performance of SCNs in terms

of the coverage probability, the ASE and the EE by considering

the performance of a typical UE located at the origin o.

A. The Coverage Probability

First, we investigate the coverage probability that the typical

UE’s SINR is above a designated threshold γ:

pcov (λ, γ) = Pr [SINR > γ] , (5)

where the SINR is computed by

SINR =
Pζ (r)h

Iagg + PN
. (6)

Here, h is the channel gain, which is modeled as an expo-

nentially distributed random variable (RV) with a mean of

one (due to our consideration of Rayleigh fading mentioned

above), P and PN are the BS transmission power and the

additive white Gaussian noise (AWGN) power at each UE,

respectively, and Iagg is the cumulative interference given by

Iagg =
∑

i: bi∈Φ̃\bo

Pβigi, (7)

where bo is the BS serving the typical UE, and bi, βi and gi
are the i-th interfering BS, the path loss from bi to the typical

UE and the multi-path fading channel gain associated with

bi, respectively. Note that when all BSs are assumed to be

active, the set of all BSs Φ should be used in the expression

of Iagg [8–10]. Here, in (7), only the active BSs in Φ̃\bo inject

effective interference into the network, where Φ̃ denotes the

set of the active BSs. In other words, the BSs in idle modes

are not taken into account in the analysis of Iagg.
Based on the path loss model in (1) and the adopted UAS,

we present our result of pcov (λ, γ) in Theorem 1.

From Theorem 1 and comparing it with the main result

in [10], which was derived for the case with all BSs being

active, it is important to note that:

• The impact of the serving BS selection on the coverage

probability is measured by (9) and (10), the expressions

of which are based on λ, not on λ̃. This is the same as

Theorem 1 of [10].

• The impact of Iagg on the coverage probability is mea-

sured by (14) and (16). Since only the active BSs emit

effective interference into the considered SCN, the ex-

pressions of (14) and (16) are thus based on λ̃, not on λ.

This is different from Theorem 1 of [10].

• The derivation of λ̃ is non-trivial, and it will be treated

later in the following subsections.

Besides, from Theorem 1, we can draw an important intu-

ition summarized in Lemma 2.
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Theorem 1. Considering the path loss model in (1) and the presented UAS, the probability of coverage pcov (λ, γ) can be

derived as

pcov (λ, γ) =

N
∑

n=1

(

T L
n + TNL

n

)

, (8)

where T L
n =

∫ dn

dn−1
Pr
[

PζL
n(r)h

Iagg+PN
> γ

]

fL
R,n (r) dr, TNL

n =
∫ dn

dn−1
Pr
[

PζNL
n (r)h

Iagg+PN
> γ

]

fNL
R,n (r) dr, and d0 and dN are defined as

0 and +∞, respectively. Moreover, fL
R,n (r) and fNL

R,n (r) (dn−1 < r ≤ dn), are represented by

fL
R,n (r) = exp

(

−

∫ r1

0

(

1− PrL (u)
)

2πuλdu

)

exp

(

−

∫ r

0

PrL (u) 2πuλdu

)

PrLn (r) 2πrλ, (9)

and

fNL
R,n (r) = exp

(

−

∫ r2

0

PrL (u) 2πuλdu

)

exp

(

−

∫ r

0

(

1− PrL (u)
)

2πuλdu

)

(

1− PrLn (r)
)

2πrλ, (10)

where r1 and r2 are given implicitly by the following equations as

r1 = arg
r1

{

ζNL (r1) = ζLn (r)
}

, (11)

and

r2 = arg
r2

{

ζL (r2) = ζNL
n (r)

}

. (12)

In addition, Pr
[

PζL
n(r)h

Iagg+PN
> γ

]

and Pr
[

PζNL
n (r)h

Iagg+PN
> γ

]

are respectively computed by

Pr

[

PζLn (r) h

Iagg + PN
> γ

]

= exp

(

−
γPN

PζLn (r)

)

L
L
Iagg

(

γ

PζLn (r)

)

, (13)

where L L
Iagg

(s) is the Laplace transform of Iagg for LoS signal transmission evaluated at s, which can be further written as

L
L
Iagg

(s) = exp

(

−2πλ̃

∫ +∞

r

PrL (u)u

1 + (sPζL (u))
−1 du

)

exp

(

−2πλ̃

∫ +∞

r1

[

1− PrL (u)
]

u

1 + (sPζNL (u))
−1 du

)

, (14)

and

Pr

[

PζNL
n (r)h

Iagg + PN
> γ

]

= exp

(

−
γPN

PζNL
n (r)

)

L
NL
Iagg

(

γ

PζNL
n (r)

)

, (15)

where L
NL
Iagg

(s) is the Laplace transform of Iagg for NLoS signal transmission evaluated at s, which can be further written as

L
NL
Iagg

(s) = exp

(

−2πλ̃

∫ +∞

r2

PrL (u)u

1 + (sPζL (u))
−1 du

)

exp

(

−2πλ̃

∫ +∞

r

[

1− PrL (u)
]

u

1 + (sPζNL (u))
−1 du

)

. (16)

Proof: The proof is very similar to that for Theorem 1 in [10]. Hence, we omit the proof here for brevity. The comparison

between Theorem 1 in [10] and the proposed theorem will be explained in the sequel.
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Lemma 2. pcov (λ, γ) with the BS IMC is larger than that with

all BSs being active.

Proof: See Appendix A.

B. The Area Spectral Efficiency

Similar to [10, 19], we also investigate the area spectral

efficiency (ASE) performance in bps/Hz/km2, which is defined

as

AASE (λ, γ0) = λ̃

∫ +∞

γ0

log2 (1 + γ) fΓ (λ, γ) dγ, (17)

where γ0 is the minimum working SINR for the considered

SCN, and fΓ (λ, γ) is the probability density function (PDF)

of the SINR observed at the typical UE at a particular value

of λ. Based on the definition of pcov (λ, γ) in (5), which is

the complementary cumulative distribution function (CCDF)

of SINR, fΓ (λ, γ) can be computed by

fΓ (λ, γ) =
∂ (1− pcov (λ, γ))

∂γ
. (18)

Regarding AASE (λ, γ0), it is important to note that:

• Unlike [10, 19], in this work, λ̃ is used in the expression

of AASE (λ, γ0) because only the active BSs make an

effective contribution to the ASE.

• The ASE defined in this paper is different from that in [8],

where a constant rate based on γ0 is assumed for the

typical UE, no matter what the actual SINR value is.

The definition of the ASE in (17) can better capture the

dependence of the transmission rate on SINR, but it is

less tractable to analyze, as it requires one more fold of

numerical integral compared with [8].

• Previously in Subsection IV-A, we have obtained a con-

clusion from Theorem 1: pcov (λ, γ) with the BS IMC

should be better than that with all BSs being active in

dense SCNs due to λ̃ ≤ λ. Here from (17), we may

arrive at an opposite conclusion for AASE (λ, γ0). The

reasons are addressed as follows,

– In practice, there is a finite number of active UEs in

the network, and thus some BSs can be put to sleep in

ultra-dense SCNs. As a result, the spatial reuse factor

of spectrum in an ultra-dense SCN is fundamentally

limited by the UE density ρ, and not by the BS

density λ. The extreme case happens where there

is one UE per cell, thus there cannot be more active

BS than UEs.

– However, if we assume that an infinite number of

active UEs in the network to activate all existing

BSs, then the spatial reuse factor of spectrum is then

limited by the BS density λ.

– In the former case, the inter-cell interference is

severely bounded/mitigated thanks to the less ag-

gressive reuse factor of spectrum (i.e., in ultra-dense

SCNs, the UE density ρ is relatively small compared

with the BS density λ, and thus many BS are put to

sleep), which leads to an enhanced performance per

UE. However, the ASE is smaller than that of the

latter case. This is because less cells are active to

reuse the spectrum. Note that the ASE scales linearly

with the spatial reuse factor of spectrum. Thus, a

head-to-head comparison of the ASE with an infinite

number of UEs and that with a finite number of UEs

is not fair.

– To sum up, the takeaway message should not be that

the IMC generates an inferior ASE in dense SCNs.

The key advantage of the BS IMC is that the per-

UE performance should increase with the network

densification, which is a good performance metric

when considering a realistic finite number of UEs.

C. The Energy Efficiency

Deploying dense SCNs poses some concerns in terms of

energy consumption. Hence, the energy efficiency (EE) of

dense SCNs should be carefully considered to allow for

their sustainable deployments. When evaluating the BS energy

consumption, it is very important to note that a BS in idle

mode may still consume a non-negligible amount of energy,

thus impacting the EE of SCNs. In order to study realistic

5G networks, here we use a practical power model developed

in the Green-Touch project [15]. This power model estimates

the power consumption of a cellular BS, and is based on

tailored modeling principles and scaling rules for each BS

component i.e., power amplifier, analogue front-end, digital

base band, digital control and backhaul interface and power

supply. Moreover, it includes different optimized idle modes

and provides a large flexibility, i.e., multiple BS types are

available, which can be configured with multiple parameters,

such as bandwidth, transmit power, number of antenna chains,

system load, duplex mode, etc. Among the provided idle

modes in the Green-Touch project, we consider the Green-

Touch slow idle mode and the Green-Touch shut-down mode,

where most components of an idle BS are deactivated. Note

that these two modes are the most energy-efficient ones defined

by the Green-Touch project [15].

Here, the total power of each idle SCN BS and that of each

active SCN BS are respectively denoted by PTOT
IMC (λ) and

PTOT
ACT (λ), then we can define the EE in the unit of bits/J for

the considered SCN as

EE (λ, γ0) =
AASE (λ, γ0)×BW

λ̃PTOT
ACT (λ) +

(

λ− λ̃
)

PTOT
IMC (λ)

, (19)

where the area spectral efficiency AASE (λ, γ0) is obtained

from (17) and BW denotes the system bandwidth in Hz.

It is important to note that EE (λ, γ0) should depend on

λ̃. More specifically, in the numerator of EE (λ, γ0), we have

AASE (λ, γ0), which scales linearly with respect to λ̃, as shown

in (17). Having said that, we would like to clarify that λ̃ is

a function of λ, as will be addressed in the following Sub-

sections. Therefore, we believe that λ is a more fundamental

variable than λ̃, and thus we use λ instead of λ̃ in EE (λ, γ0).
It is also important to note that in practice PTOT

IMC (λ) and

PTOT
ACT (λ) should depend on the BS density λ because the

BS transmission power decreases with the network densifi-

cation [3]. Nevertheless, in previous subsections, we assume

that the BS transmission power P is independent of λ in
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(6) because (i) it brings convenient expressions for our main

results; and (ii) it has a minor impact on the ASE performance

for dense SCNs, since the 4G/5G network is interference

limited and thus the BS transmission power P can be removed

from both the numerator and the denominator in the SINR

expression (6).

From the results of pcov (λ, γ), AASE (λ, γ0) and

EE (λ, γ0), respectively presented in (5), (17) and (19),

we can now analyze these performance measures for the

considered SCN. The key step to do so is to accurately derive

λ̃, i.e., the active BS density, which will be addressed in the

following subsections.

D. A Lower Bound of λ̃

In [5], the authors derived an approximate expression of λ̃
based on the distribution of the Voronoi cell size assuming

that each UE should be associated with the nearest BS. The

main result in [5] is as follows,

λ̃minDis ≈ λ



1−
1

(

1 + ρ
qλ

)q





△
= λ0 (q) , (20)

where λ̃minDis is the active BS density under the assumption

that each UE should connect to its nearest BS. An empirical

value of 3.5 was suggested for q in [5]. The approximation

was shown to be very accurate in existing work [5, 13, 14]

assuming a nearest-distance UAS. In this work, a more realistic

signal strength based UAS is adopted, and thus the corre-

sponding result in [5] cannot be directly applied to Theorem 1.

Instead, we need to derive λ̃ for the adopted UAS considering

probabilistic LoS and NLoS transmissions, which will be

addressed step by step in the following subsections.

First, in Theorem 3, we propose that λ̃minDis in (20) is a

lower bound of λ̃.

Theorem 3. Based on the path loss model in (1) and the

presented UAS, λ̃ can be lower bounded by

λ̃ ≥ λ̃minDis △
= λ̃LB. (21)

Proof: See Appendix B.

Intuitively speaking, the proof of Theorem 3 states that from

a typical UE’s point of view, the equivalent BS density of

the considered UAS based on probabilistic LoS and NLoS

transmissions should be larger than that of the nearest-distance

UAS based on single-slope path loss transmissions. In other

words, the existence of LoS BSs provides more candidate BSs

for a typical UE to connect with, and thus the equivalent BS

density increases for each UE. Since a larger λ always leads to

a larger λ̃ due to a higher BS diversity, we have λ̃ ≥ λ̃minDis.

As discussed before, the exact expression of λ̃minDis is still

unknown up to now, but it can be well approximated by λ0 (q)
shown in (20). The tightness of λ̃LB will be verified using

numerical results in Section V.

E. An Upper Bound of λ̃

Next, we propose an upper bound of λ̃ in Theorem 4.

Theorem 4. Based on the path loss model in (1) and the

presented UAS, λ̃ can be upper bounded by

λ̃ ≤ λ
(

1−Qoff
) △
= λ̃UB, (22)

where

Qoff = lim
rmax→+∞

+∞
∑

k=0

{Pr [w ≁ b]}
k λk

Ωe
−λΩ

k!
, (23)

where λΩ = ρπr2max, and Pr [w ≁ b] represents the probability

that a UE w is not associated with BS b and it can be computed

by

Pr [w ≁ b] =

∫ rmax

0

Pr [w ≁ b| r]
2r

r2max

dr, (24)

and

Pr [w ≁ b| r] =
[

FL
R (r) + FNL

R (r1)
]

PrL (r)

+
[

FL
R (r2) + FNL

R (r)
] [

1− PrL (r)
]

, (25)

where FL
R (r) =

∫ r

0
fL
R (u) du, FNL

R (r) =
∫ r

0
fNL
R (u)du, and

r1 and r2 are defined in (11) and (12), respectively.

Proof: See Appendix C.

Intuitively speaking, the proof of Theorem 4 checks a disk

area Ω centered on a typical BS (with a radius of rmax and

rmax → +∞ in (23)), and calculate the probability that

there is no UE inside Ω connecting to this typical BS, i.e.,

the probability Qoff that the typical BS should enter an idle

mode. In the computation of Qoff , we ignore the serving BS

correlation between nearby UEs inside Ω, i.e., the correlation

that a UE k not associated with BS b may imply a nearby UE

k′ also not associated with BS b with a large probability. This

might be caused by another BS b′ located in the vicinity of

BS b. Therefore, here we under-estimate Qoff , which leads to

an over-estimation of λ̃ as λ
(

1−Qoff
)

in (22). The tightness

of λ̃UB will be verified using numerical results in Section V.

F. The Proposed Approximation of λ̃

Considering the good tightness of the lower bound λ̃LB to

be shown in Section V, and the fact that the approximate

expression of λ̃LB is an increasing function with respect to

q, we propose Proposition 5 to obtain an approximate value

of λ̃.

Proposition 5. Based on the path loss model in (1) and the

adopted UAS, we propose to approximate λ̃ by

λ̃ ≈ λ0 (q
∗) , (26)

where 3.5 ≤ q∗ ≤ arg
x

{

λ0 (x) = λ̃UB
}

and λ̃UB is computed

from (22).

Note that the range of q∗ in Proposition 5 is obtained

according to the derived lower bound λ̃LB and the upper bound

λ̃UB presented in Theorem 3 and Theorem 4, respectively.

Apparently, the value of q∗ depends on the specific forms

of the path loss model given by (3) and (4). Hence, q∗

should be numerically found for specific path loss models

in consideration. Fortunately, with the deterministic bounds

of q∗ characterized in Proposition 5, the value of q∗ can
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be efficiently found using offline computation based on the

bisection method [20] by minimizing the difference between

the approximate results of λ̃ in (26) and the simulated ones.

Such difference should be accounted and averaged over all

possible values of λ because λ0 (q
∗) also varies with λ. The

average difference can be measured by, e.g., the mean squared

error (MSE), giving rise to the search of q∗ based on the

minimum MSE (MMSE) criterion.

G. The 3GPP Special Cases

As a special case to show our analytical results, follow-

ing [10], we consider a two-piece path loss and a linear LoS

probability functions defined by the 3GPP [6, 7]. Specifically,

we use the path loss function ζ (r), defined in the 3GPP as [6]

ζ (r) =

{

ALr−αL

,

ANLr−αNL

,

LoS: PrL (r)

NLoS: 1− PrL (r)
, (27)

together with a linear LoS probability function of PrL (r),
defined in the 3GPP as [7]

PrL (r) =

{

1− r
d1
,

0,

0 < r ≤ d1

r > d1
, (28)

where d1 = 300 m [7]. Considering the general path loss

model presented in (1), the combined path loss model pre-

sented in (27) and (28) can be deemed as a special case of

(1) with the following substitution: N = 2, ζL
1 (r) = ζL

2 (r) =

ALr−αL

, ζNL
1 (r) = ζNL

2 (r) = ANLr−αNL

, PrL
1 (r) = 1 − r

d1
,

and PrL
2 (r) = 0. For clarity, this 3GPP special case is

referred to as 3GPP Case 1 in the sequel. As justified

in [10], we mainly use 3GPP Case 1 to generate the numerical

results in Section V, because it provides tractable results for
{

fPath
R,n (r)

}

and
{

L Path
Iagg

(s)
}

in (9)-(16) of Theorem 1.

Moreover, as another application of our analytical work and

to demonstrate that our conclusions have general significance,

we consider another widely used LoS probability function,

which is a two-piece exponential function defined in the 3GPP

as [6, 10]

PrL (r) =

{

1− 5 exp (−R1/r) ,

5 exp (−r/R2) ,

0 < r ≤ d1

r > d1
, (29)

where R1 = 156 m, R2 = 30 m, and d1 = R1

ln 10 [6]. For

clarity, this combined case with both the path loss function and

the LoS probability function coming from [6] is referred to as

3GPP Case 2 hereafter. Moreover, to make 3GPP Case 2 more

practical than 3GPP Case 1, we further consider distance-

dependent Rician fading [7] and correlated shadow fading [6]

in 3GPP Case 2. The details can be found in the last paragraph

of Section III. Due to the great difficulty in obtaining the

analytical results for 3GPP Case 2, we will investigate 3GPP

Case 2 using simulation in Section V, and show that similar

conclusions like those for 3GPP Case 1 can also be drawn for

3GPP Case 2.

V. SIMULATION AND DISCUSSION

In this section, we investigate network performance and

use numerical results to validate the accuracy of our analysis.

According to Tables A.1-3, A.1-4 and A.1-7 of [6] and [7], we

adopt the following parameters for 3GPP Case 1: αL = 2.09,

αNL = 3.75, AL = 10−10.38, ANL = 10−14.54, BW = 10
MHz, P = 24 dBm, PN = −95 dBm (including a noise

figure of 9 dB at each UE). Besides, the UE density ρ is set

to 100UEs/km2, 300UEs/km2 and 600UEs/km2 to represent a

SCN with a low, medium and high traffic load, respectively [3].

To evaluate the impact of different path loss models on

our conclusions, we have also investigated the results for a

single-slope path loss model that does not differentiate LoS

and NLoS transmissions [4]. In such path loss model, one path

loss exponent α is defined, the value of which is assumed to

be α = αNL = 3.75. Note that in this single-slope path loss

model, the active BS density is assumed to be λ0 (3.5), shown

in (20) [5].

A. The Results of λ̃ for 3GPP Case 1

For 3GPP Case 1, the simulated results on the active BS

density, i.e., λ̃, for various values of ρ are shown in Fig. 2.

As can be seen from Fig. 2, more BSs will be activated with

the network densification. However, the value of λ̃ caps at ρ,

because one UE can activate at most one BS for its service.

Fig. 2. The active BS density λ̃ with various values of ρ for 3GPP Case 1.

Considering Proposition 5, we conduct a bisection search

to numerically find the optimal q∗ for the approximate λ̃.

Based on the MMSE criterion proposed in Subsection IV-F,

we obtain q∗ = 4.73, q∗ = 4.18 and q∗ = 3.97 for

the cases of ρ = 100UEs/km2, ρ = 300UEs/km2 and

ρ = 600UEs/km2, respectively. In Figs. 3, 4 and 5, we show

the average errors on the estimated values of λ̃ based on λ̃UB,

λ̃LB, and λ0 (q
∗). Note that in these figures, all results are

compared against the simulation results shown in Fig. 2, which

form the baseline results with zero errors. Also note that as

discussed in Subsection IV-B, the exact expression of λ̃LB is

still unknown up to now, but it can be well approximated by

λ0 (3.5), presented in (20). Hence, the results of λ0 (3.5) are

displayed in Fig. 4 to represent an lower bound of λ̃.

As an example, from Fig. 4 for ρ = 300UEs/km2, we can

draw the following conclusions:

• The proposed upper bound λ̃UB and lower bound λ̃LB

are valid according to the simulation results. More specif-

ically, λ̃UB and λ̃LB are always larger (showing positive
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Fig. 6. The coverage probability pcov (λ, γ) vs. λ for 3GPP Case 1 (γ = 0 dB,
ρ = 300 UEs/km2 and q∗ = 4.18).

errors) and smaller (showing negative errors) than the

simulation baseline results, respectively.

• λ̃UB is tighter than λ̃LB when λ is relatively small, e.g.,

when λ < 30BSs/km2.

• λ̃LB is much tighter than λ̃UB for dense and ultra-dense

SCNs, e.g., λ > 100BSs/km2.

• The maximum error associated with λ0 (q
∗) is smaller

than those of λ̃UB and λ̃LB, e.g., when ρ = 300UEs/km2

and q∗ = 4.18, the maximum error resulting from λ0 (q
∗)

is around ±0.5 BSs/km2, while those given by λ̃UB and

λ̃LB are around 12 BSs/km2 and -2 BSs/km2, respectively.

Hence, λ0 (q
∗) gives a better estimation on λ̃ than both

λ̃UB and λ̃LB.

B. Validation of Theorem 1 for 3GPP Case 1

In Fig. 6, we show the results of pcov (λ, γ) when ρ =
300UEs/km2 and γ = 0 dB, with q∗ = 4.18 plugged into

Proposition 5. As discussed in Section III, ρ = 300UEs/km2

is a typical density of active UEs in 5G [3], which will be used

to evaluate network performance in the following subsections.

Note that in our numerical results here and in the following

subsections, the proposed analysis is given by Theorem 1 and

Proposition 5 with q∗ = 4.18. As a benchmark, we also display

the results for ρ = +∞UEs/km2 with all BSs being active.

As one can observe, our analytical results well match

the simulation results, which validates the accuracy of our

analysis. In fact, Fig. 6 is essentially the same as Fig. 1,

except that the results for the single-slope path loss model

with ρ = 300UEs/km2 are also plotted here for a complete

view of the performance behavior. Moreover, Fig. 6 confirms

the key observations presented in Section I:

• For the single-slope path loss model with ρ =
+∞UEs/km2, the coverage probability approaches a

constant for dense SCNs, as reported in [4]. As ρ ap-

proaches infinity, all BSs are active. Thus, this scenario

corresponds to a network condition that does not require

the IMC, i.e., the fully loaded network.

• For 3GPP Case 1 with ρ = +∞UEs/km2, and when

the network is dense enough, i.e., λ > 20BSs/km2, the
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coverage probability decreases as λ increases due to the

NLoS to LoS transition of interference paths [10], leading

to a faster increase of the interference power compared

with the signal power.

• For both path loss models with ρ = 300UEs/km2, the

coverage probability performance continuously increases

toward one, i.e., the Coverage Probability Takeoff. This

shows the benefits of the IMC in dense SCNs, as dis-

cussed in Sections I and IV.

C. The ASE Performance for 3GPP Case 1

In Fig. 7, we plot the results of AASE (λ, γ0) when ρ =
300UEs/km2 and γ0 = 0 dB, with q∗ = 4.18 plugged into

Proposition 5.

Fig. 7. The ASE AASE (λ, γ0) vs. λ for 3GPP Case 1 (γ0 = 0 dB, ρ =
300 UEs/km2 and q∗ = 4.18).

From Fig. 7, we can draw the following conclusions:

• For 3GPP Case 1, the ASE suffers from a slow growth

or even a slight decrease when λ ∈ [20, 200] BSs/km2

because of the interference transition from NLoS to

LoS [10]. Such performance degradation has also been

confirmed in Fig. 6.

• After such BS density region of interference transition,

for both path loss models with ρ = 300UEs/km2 and the

BS IMC, the ASEs monotonically grow as λ increases

in dense SCNs, but with noticeable performance gaps

compared with those with ρ = +∞UEs/km2.

• As discussed in Section IV, the takeaway message should

not be that the IMC generates an inferior ASE in dense

SCNs. Instead, since there is a finite number of the active

UEs in the network, some BSs are put to sleep and thus

the spatial spectrum reuse in practice is fundamentally

limited by ρ. The key advantage of the BS IMC is that

the per-UE performance should increase with the network

densification as exhibited in Fig. 6.

D. The Performance of 3GPP Case 2

In this subsection, we investigate the performance for 3GPP

Case 2 with an alternative path loss model, Rician fading

and correlated shadow fading, which have been discussed

in Subsection IV-G. Due to the complex modeling of 3GPP

Case 2, it is difficult to obtain the analytical results for 3GPP

Case 2. Hence, we conduct simulation to investigate 3GPP

Case 2 and the results are plotted in Fig. 8. As one can observe

from Fig. 8, all the conclusions in Subsections V-B and V-C

are qualitatively valid for Fig. 8. Only some quantitative

deviations exists, which shows the usefulness of our theoretical

analysis to predict the performance trend for dense SCNs with

the BS IMC.

E. The EE Performance

As discussed in Subsection IV-C, since we consider the

realistic EE performance, we should acknowledge the fact

that modern telecommunication systems usually work in the

interference limited regime and the BS transmission power P
should vary with λ. In this section, we formulate P using

the practical power model presented in [3]. Specifically, the

transmit power of each BS is configured such that it provides

a signal-to-noise-ratio (SNR) of η0 = 15 dB at the edge of

the average coverage area for a UE with NLoS transmissions,

which corresponds to the worst-case path loss. In addition,

the distance from a cell-edge UE to its serving BS with an

average coverage area is calculated by r0 =
√

1
λπ

, which is

the radius of an equivalent disk-shaped coverage area with an

area size of 1
λ

. Therefore, the worst-case pathloss is given by

ANLr−αNL

0 and the required transmission power to enable a

η0 dB SNR for this case can be computed as [3]

P (λ) =
10

η0
10 PN

ANLr−αNL

0

. (30)

In Fig. 9(a), we plot the BS density dependent transmission

power in dBm to illustrate this realistic power configuration

when η0 = 15 dB. Note that our modeling of P is very

practical, covering the cases of macrocells and picocells rec-

ommended in the 3GPP Long-Term Evolution (LTE) networks.

More specifically, the typical BS densities of LTE macrocells

and picocells are respectively several BSs/km2 and around 50

BSs/km2 [21]. As a result, the typical P of macrocell BSs and

picocells BSs are respectively assumed to be 46 dBm and 24

dBm in the 3GPP standards [21], which match well with our

modeling of P in Fig. 9(a).

As a result of (30), PTOT
IMC (λ) and PTOT

ACT (λ) in (19) are cal-

culated numerically using the Green-Touch power model [15],

and the results are displayed in Fig. 9(b) assuming a future

SCN BS model in year 2020 and a 10 MHz bandwidth. From

this figures, we can draw the following observations:

• The total power of each active BS, i.e., PTOT
ACT (λ), is

always larger than that of each idle BS, i.e., PTOT
IMC (λ),

because some BS component(s) will be deactivated to

save energy consumption when a BS enters an idle mode.

• As mentioned in Subsection IV-C, we consider the Green-

Touch slow idle mode and the Green-Touch shut-down

mode to characterize PTOT
IMC (λ), which are represented

by IMC Mode 1 and IMC Mode 2, respectively. In
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Figure 9. The BS density dependent power configuration.

comparison, IMC Mode 2 consumes less energy than

IMC Mode 1 as shown in Fig. 9(b).

• Following [3], we also consider two futuristic idle modes

to further characterize PTOT
IMC (λ), where their energy

consumption is 15% (IMC Mode 3) or 1% (IMC Mode 4)

of that of the Green-Touch slow idle mode (IMC Mode 1).

The former mode (IMC Mode 3) accounts less en-

ergy consumption than the Green-Touch shut-down mode

(IMC Mode 2), and the latter mode (IMC Mode 4)

assumes that a BS consumes almost nothing.

Based on the results of PTOT
IMC (λ) and PTOT

ACT (λ) displayed

in Fig. 9(b), in Fig. 10 we plot the EE performance for 3GPP

Case 1 and Case 2 when ρ = +∞UEs/km2 without the IMC

and ρ = 300UEs/km2 with various IMC modes.

Here, Fig. 10(a) shows our analytical results for 3GPP

Case 1 based on the ASE performance exhibited in Sub-

section V-C, while Fig. 10(b) displays our simulation results

for 3GPP Case 2 based on the ASE performance discussed

in Subsection V-D. Although 3GPP Case 2 is more realistic

than 3GPP Case 1, as one can observe from Fig. 10(a) and

Fig. 10(b), the EE performance shows the same trend in both

figures, only with some quantitative deviations. Again, this

indicates the usefulness of our theoretical analysis to predict

the network performance trend for dense SCNs with the BS

IMC.

As discussed in Subsection IV-C, λ̃ represents the active BS

density, which is a function of λ due to the BS IMC. Hence,

λ is used as the x-axis instead of λ̃ in Fig. 10.

From Fig. 10, we can draw the following conclusions:

• As predicted in Subsection V-C, the baseline scheme

with ρ = +∞UEs/km2, where all BSs are active, is

the least energy efficient scheme for most BS densities,

because each BS suffers from a diminishing EE return

with the network densification due to the deteriorating

performance of the coverage probability as the BS density

increases (see Fig. 6). Such deteriorating performance is

caused by the interference path transition from NLoS to

LoS as discussed in previous sections.

• On the other hand, the EE performance of various IMC

modes benefits from the Coverage Probability Takeoff,

which improves the performance of each active BS as the

SCN densifies, and thus the IMC scheme outperforms the

baseline scheme in terms of the EE. When comparing the

EE performance of different IMC modes, it can be seen

that the lower the power consumption in the idle mode

exhibited in Fig. 9(b), the larger the EE of such IMC

mode.

• When using the Green-Touch slow idle mode (IMC

Mode 1) and the Green-Touch shut-down mode (IMC

Mode 2), the EE first increases and then decreases with

the network densification. This decrease is because the

increase in the ASE provided by the Coverage Probability
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Figure 10. The EE performance with the BS density dependent power configuration and various IMC modes.

Takeoff is not large enough to compensate the increase in

power consumption that the dense network brings about,

mostly because idle BSs following the Green-Touch

power models still consume a non-negligible amount

of energy. Nevertheless, the schemes with the IMC are

superior to the baseline scheme. In more detail, when

λ = 103 BSs/km2, the Green-Touch slow idle mode (IMC

Mode 1) and the Green-Touch shut-down mode (IMC

Mode 2) can achieve EE performance of 17.2Mbits/J and

20.2Mbits/J, respectively, which are around two times the

EE of the baseline scheme, i.e., 9.95Mbits/J.

• When considering the EE of the futuristic IMC Mode 3

and IMC Mode 4, the above trend starts changing. For

IMC Mode 3, the EE is always larger than that of the

baseline scheme across all BS densities, as BSs consume

much less energy in this idle mode. For IMC Mode 4,

idle BSs barely consume any energy, and thus the above

trend fundamentally alters, i.e., as the network evolves

into an ultra-dense one, the EE continuously increases. As

a result, when λ = 103 BSs/km2, IMC Mode 3 and IMC

Mode 4 can achieve EE performance of 29.6Mbits/J and

33.6Mbits/J, respectively, which triple that of the baseline

scheme, i.e., 9.95Mbits/J. This help us to conclude that

idle mode schemes similar to IMC Mode 4 are needed to

ensure an energy-efficient deployment of dense SCNs in

5G and beyond.

F. Future Work of Ultra-Dense SCNs

In this subsection, we indicate several research directions

for ultra-dense SCNs:

• It would be good to study a proportional fair (PF) sched-

uler in ultra-dense networks [22]. Currently, in stochastic

geometry analyses, usually a typical UE is randomly

chosen for the performance analysis, which implies that

a round Robin (RR) scheduler is employed in each BS.

However, in the 3GPP performance evaluations, the typi-

cal UE is not chosen randomly and a PF scheduler is often

used as an appealing scheduling technique to smartly

serve UEs that can offer a better system throughput than

the RR scheduler.

• It would be good to study the near-field effect in the con-

text of ultra-dense networks. In particular, the Rayleigh

distance as investigated in [23], should be considered in

the extremely ultra-dense networks because the BS-to-UE

distance becomes very small as the network densifies.

• A very recent discovery shows the 5G network capacity

might decrease to zero if the antenna height difference

between BSs and UEs is non-zero [24]. Hence, it is of

great interest to study whether the BS IMC can help to

mitigate such network capacity crash.

• It would be good to study a non-uniform distribution of

BSs with some constraints on the minimum BS-to-BS

distance [25]. In stochastic geometry analyses, BSs are

usually assumed to be uniformly deployed in the inter-

ested network area. However, in the 3GPP performance

evaluations, small cell clusters are often considered, and it

is forbidden to place any two BSs too close to each other.

Such assumption is in line with the realistic network

planning to avoid strong inter-cell interference.

• It would be good to study ultra-dense networks in

new emerging network scenarios, such as heterogeneous

networks [26], distributed networks [27], high mobility

applications [28, 29], device to device (D2D) communica-

tions [30–32], body area networks [33], unmanned aerial

vehicles [34], etc.

VI. CONCLUSION

In this paper, we have studied the performance impact of

the IMC on dense SCNs considering probabilistic LoS and

NLoS transmissions. The impact is significant on the coverage

probability performance, i.e., as the BS density surpasses the

UE density, the coverage probability continuously increases

toward one in dense SCNs (the Coverage Probability Takeoff ),

addressing the critical issue of coverage probability decrease

that may lead to “the death of 5G”.

Two important conclusions have been drawn from our study:

(i) the active BS density with the mentioned probabilistic LoS

and NLoS path loss model is lower-bounded by that with a

simplistic single-slope path loss model derived in [5], and (ii)

such lower bound, shown in [5], is tight, especially for dense

SCNs. This shows a simple way of studying the IMC in dense

SCNs.
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Moreover, from our studies based on practical power models

of the Green-Touch project and realistic 3GPP propagation

models, we conclude that idle mode schemes similar to IMC

Mode 4 are needed to ensure an energy-efficient deployment

of dense SCNs in 5G and beyond.

APPENDIX A: PROOF OF LEMMA 2

To prove Lemma 2, first we would like to emphasize the

insights or the proof sketch of Theorem 1 as follows. In (8),

T L
n and TNL

n are the components of the coverage probability

for the case when the signal comes from the n-th piece LoS

path and for the case when the signal comes from the n-th

piece NLoS path, respectively. The calculation of T L
n is based

on (9) and (13), which are explained in the sequel.

• In (9), fL
R,n (r) characterizes the geometrical density

function of the typical UE with no other LoS BS and

no NLoS BS providing a better link to the typical UE

than its serving BS (a BS with the n-th piece LoS path).

• In (13), exp
(

− γPN

PζL
n(r)

)

is the probability that the signal

power exceeds the noise power by a factor of at least

γ, and L L
Iagg

(

γ
PζL

n(r)

)

(further computed by (14)) is the

probability that the signal power exceeds the aggregate

interference power by a factor of at least γ.

• Since h follows an exponential distribution, the product

of the above probabilities yields the probability that the

signal power exceeds the sum power of the noise and the

aggregate interference by a factor of at least γ.

The calculation of TNL
n is based on (10) and (15). The

interpretation of (10) and (15) are similar to that for the

calculation of T L
n .

Hence, Lemma 2 is valid because:

• For pcov (λ, γ) with the BS IMC and that with all BSs

being active, (9) and (10) are the same, indicating an

increasing signal power as λ grows. This is because that

as λ increases, to achieve the same fL
R,n (r) in (9) or

fNL
R,n (r) in (10), r has to be reduced, meaning that the

typical UE will connect to a nearer BS with a larger signal

power.

• For pcov (λ, γ) with the BS IMC, λ̃ is plugged into (14)

and (16), while for pcov (λ, γ) with all BSs being active,

λ was used in (14) and (16) [10]. The former case is

able to generate a larger pcov (λ, γ) than the latter one,

since λ̃ ≤ λ and exp (−x) is a decreasing function with

respect to x in (14) and (16). The intuition is that the

aggregate interference power of the former case with

the BS IMC is less than that of the latter case without,

since L L
Iagg

(

γ
PζL

n(r)

)

in (14) and L NL
Iagg

(

γ
PζNL

n (r)

)

in

(16) capture the impact of the aggregate interference on

pcov (λ, γ), as discussed above.

APPENDIX B: PROOF OF THEOREM 3

For clarity, the main idea of our proof is summarized as

follows:

• We will prove that from a typical UE’s point of view, the

equivalent BS density of the considered UAS based on

probabilistic LoS and NLoS transmissions is larger than

that of the nearest-distance UAS based on single-slope

path loss transmissions.

• Considering such increased equivalent BS density and the

fact that a larger λ always leads to a larger λ̃ due to a

higher BS diversity, we can conclude that λ̃ ≥ λ̃minDis.

First, let us consider a baseline scenario that all BSs only

have NLoS links to UEs. In such scenario, the nearest-distance

UAS is a reasonable one and the active BS density should be

characterized by λ̃minDis [5].

Next, for the proposed scenario with probabilistic LoS and

NLoS transmissions, we consider a typical UE k and an

arbitrary BS b located at a distance r from UE k. Due to

probabilistic LoS and NLoS transmissions, such BS b can be

virtually split into two probabilistic BSs, i.e., a LoS BS bL

to UE k with a probability of PrL (r) and a NLoS BS bNL

to UE k with a probability of
(

1− PrL (r)
)

. Compared with

the baseline scenario that all BSs only have NLoS links to

UEs, the equivalent distance from the NLoS BS bNL to UE

k remains to be r, while that from the LoS BS bL to UE k
can be calculated as r1 = arg

r1

{

ζNL (r1) = ζL (r)
}

, which is

shown in (11). The calculation of r1 is straightforward because

it finds an equivalent position for the LoS BS bL as if the

LoS transmission is replaced with a NLoS one. Since a LoS

transmission is always stronger than a NLoS one, we have

r1 < r.

Consequently, in a disk area centered on UE k with a radius

of r1, the equivalent BS number is increased by at least PrL (r),
which is a non-negative value. Due to the arbitrary value of r1,

from a typical UE’s point of view, the equivalent BS density

of the considered UAS based on probabilistic LoS and NLoS

transmissions is larger than that of the nearest-distance UAS

based on single-slope path loss transmissions. In other words,

the existence of LoS BSs provides more candidate BSs for a

typical UE to connect with, and thus the equivalent BS density

increases for each UE.

Finally, we can conclude that λ̃ ≥ λ̃minDis ≈ λ0 (q),
because a larger λ leads to a larger λ̃ due to a higher BS

diversity.

APPENDIX C: PROOF OF THEOREM 4

For clarity, the main idea of our proof is summarized as

follows:

• First, we derive an conditional probability that an ar-

bitrary UE w is not associated with an arbitrary BS

b conditioned on the distance between UE w and BS

b being r. Such conditional probability is denoted by

Pr [w ≁ b| r].
• Next, we derive an unconditional probability that an

arbitrary UE w is not associated with an arbitrary BS b
by performing an integral over r considering the uniform

distribution of UEs in the considered network. Such

unconditional probability is denoted by Pr [w ≁ b].
• Finally, we derive a lower bound of the probability that

every UE is not associated with an arbitrary BS b, so that

BS b should switch off its transmission. The lower bound

of the BS deactivation probability is then translated to an

upper bound of the active BS density, i.e., λ̃.
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For convenience, the PDF of the distance between a typical

UE and its serving BS, i.e.,
{

fL
R,n (r)

}

and
{

fNL
R,n (r)

}

are

stacked into piece-wise functions written as

fPath
R (r) =























fPath
R,1 (r) , when 0 ≤ r ≤ d1

fPath
R,2 (r) , when d1 < r ≤ d2

...
...

fPath
R,N (r) , when r > dN−1

, (31)

where the string variable Path takes the value of “L” and

“NL” for the LoS and the NLoS cases, respectively.

Based on fPath
R (r), we define the cumulative distribution

function (CDF) of r as

FPath
R (r) =

∫ r

0

fPath
R (v) dv. (32)

In addition, we define the sum of FL
R (r) and FNL

R (r) as

FR (r) = FL
R (r) + FNL

R (r), which is the CDF of the UE

association distance of the presented UAS. Obviously, we have

FR (+∞) = 1. Then, Pr [w ≁ b| r] can be calculated by (25)

because Pr [w ≁ b| r] should be the sum of the probabilities

of the following two events that lead to the event [w ≁ b| r]:

• The first term of (25): The link between UE w and BS b
is a LoS one with a probability of PrL (r) while UE w is

associated with another LoS/NLoS BS that is stronger

than BS b with a probability of
[

FL
R (r) + FNL

R (r1)
]

,

with FL
R (r) and FNL

R (r1) corresponding to the cases of

a stronger LoS BS and a stronger NLoS BS, respectively;

• The second term of (25): The link between UE w and

BS b is a NLoS one with a probability of
[

1− PrL (r)
]

while UE w is associated with another LoS/NLoS

BS that is stronger than BS b with a probability of
[

FL
R (r2) + FNL

R (r)
]

, with FL
R (r2) and FNL

R (r) corre-

sponding to the cases of a stronger LoS BS and a stronger

NLoS BS, respectively.

Next, for an arbitrary BS b, we suppose that all its candidate

UEs are randomly distributed in a disk Ω centered on BS b
with a radius of rmax > 0. Then, for an arbitrary UE w inside

the disk Ω, Pr [w ≁ b] can be computed by (24), where 2r
r2max

is the distribution density function with respect to r for UE

w [4], because UEs are assumed to be uniformly distributed.

Finally, the number of candidate UEs inside disk Ω, denoted

by K , should follow a Poisson distribution with a parameter

of λΩ = ρπr2max. Thus, the probability mass function (PMF)

of K can be written as [35]

fK (k) =
λk
Ωe

−λΩ

k!
, k ∈ {0, 1, 2, . . . , } . (33)

Hence, the probability that BS b should be muted, i.e., no UE

is associated with BS b, can be computed by (23).

It is very important to note that (23) ignores the correlation

between nearby UEs inside disk Ω, i.e., a UE k not associated

with BS b may imply that a nearby UE k′ should have a

large probability of also not connecting with BS b, due to the

possible existence of a high-link-quality BS near UEs k and

k′. Therefore, Qoff under-estimates the probability that BS b
should be muted, and thus the active BS density λ̃ can be

upper-bounded by λ
(

1−Qoff
)

, which concludes our proof.
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