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Abstract—For massive MIMO public channel with any sector
size in either microwave or millimeter wave (mmwave) band, this
paper studies the beamforming design to minimize the transmit
power while guaranteeing the quality of service (QoS) for ran-
domly deployed users. First the ideal beampattern is derived via
Parseval Identity, based on which a beamforming design problem
is formulated to minimize the gap with the idea beampattern.
The problem is transformable to a multiconvex one and an
iterative optimization algorithm is used to obtain the full-digital
beamformer. In addition, with the help of same beampattern
theorem, the power amplifier (PA) efficiency of the beamformer
is improved with unchanged beampattern. Finally, the practical
hybrid implementation is obtained that achieves the full-digital
beamformer solution. Simulations verify the advantages of the
proposed scheme over existing ones.

Index Terms—Massive MIMO, public channel, energy efficient,
beamforming, beampattern.

I. INTRODUCTION

In massive MIMO systems, multi-user beamforming in

dedicated channels has been investigated intensively [1], [2].

But designs for public channels are relatively limited. Public

channels play crucial roles in broadcasting essential synchro-

nization, reference, and control signals [3]. Public channel

transmissions can be divided into two categories [4]: closed-

loop and open-loop. For closed-loop approaches, instantaneous

or statistic channel state information (CSI) is assumed at the

BS and the transmission is optimized to be adaptive to the

CSI, e.g., choosing the optimal precoding matrix to maximize

the worst-case receiving signal-to-noise ratio (SNR) [5], [6].

Open-loop approaches assume no CSI and the BS broadcasts

common information blindly to users. For some applications,

quality CSI is difficult to obtain (e.g., users may be silent

for a long time [7]). Meanwhile, when the users’ covariance

matrices are largely different, CSI-based designs can have

higher complexity and little performance superiority. Thus, this

work considers open-loop schemes [3], [8].

Several beamforming designs have been proposed in ex-

isting literature for public channel communications in con-

ventional MIMO systems, e.g., global search, randomization,

and communication standard based schemes (see [8] and

references therein). Unfortunately, these methods may be

incompatible with massive MIMO systems [3]. A new design

for massive MIMO public channel can be found in [3]. Based

on a large-scale approximation of the channel correlation

matrix, Zadoff-Chu (ZC) sequence was utilized to design the

beamformer which aims to make the signal powers at M
(which is the antenna number at the BS) discrete angles

equal. But for large but finite antennas, M discrete angles
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is insufficient in representing the continuous sector, so the

design has performance degradation for unobserved angles.

Moveover, the ZC scheme is dedicated for the standard sector

only, e.g., [−90◦, 90◦], with the antenna spacing ratio being

0.5. Its direct application to the adaptive sectorization scenario

seems infeasible. In [9], by using the same beampattern

theorem [10], a broadbeam design was proposed where a

reference beampattern is first determined, then the beamformer

is obtained by solving a polynomial equation to approach

the reference beampattern. Again, only the standard sector

was considered and the polynomial coefficients tend to be

inaccurate when the number of discrete angles for optimization

is larger than 2M − 1.

Beside the widely adopted single-beam scheme mentioned

above, another approach for massive MIMO public channel

is precoding using space-time block coding, which can have

both omnidirectional coverage and high diversity performance

[4]. But generally speaking, this scheme has higher complex-

ity due to the channel estimation overheard at the receiver

side, involved modulation designs, and the decoding. Another

interesting direction is the joint dedicated channel and public

channel design [7]. But this may not achieve better perfor-

mance over orthogonal access (where dedicated channel and

public channel are given distinct time-frequency resources)

for practical massive MIMO systems [7]. Thus, we focus on

single-beam transmission design in public channel only.

For massive MIMO communications, two practical con-

straints are emphasized. First, due to the high cost of radio

frequency (RF) hardware, especially for the millimeter wave

(mmwave) band, having one high-resolution digital RF chain

for each antenna tends to be infeasible. RF chains with low-

resolution components [11], [12] and the hybrid beamforming

structure with less RF chains than antennas [13], [14] are

considered to be cost effective and have little performance

loss compared with their full-digital counterpart. Second, the

demand for high energy efficiency for 5G makes both the

constraint on the total transmit power and the power efficiency

of each antenna important for massive MIMO systems [15].

This paper is on the beamforming design of the low-

complexity single-beam transmission for public channel in

massive MIMO systems with the energy efficient hybrid

structure and arbitrary sector size. The problem is formulated

as the transmit power minimization under quality-of-service

(QoS) constraint1 with additional consideration on the power

amplifier (PA) efficiency. In solving the beamforming design

problem, first the ideal beampattern is derived, then a full-

digital beamformer optimization is formulated as finding the

beamformer whose beampattern has the minimum gap with

1The outage probability is used as the QoS metric. For massive MIMO
public channel, short packet transmission is envisioned due to the demand
for low complexity and continuously reliable decoding [16]. Such short
packet usually only spans one channel realization, consequently, the outage
performance is more relevant than the ergodic rate performance.
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the idea one. The optimization is solved by an efficient

iterative algorithm based on semi-definite programming (SDP).

Subsequently, by drawing lessons from [9], [10], [14], [15],

we utilize the same beampattern theorem to improve the beam-

former’s PA efficiency and decomposed the beamformer into

the product of a baseband beamformer and an analog one to be

applicable to the hybrid massive MIMO structure. Simulations

show that the proposed design has superior performance over

existing schemes.

The main difference of this work with existing ones is two-

fold. First, the problem formulation is fundamentally different.

In existing work, equal power at some discrete angles is

required [3], [9]. Our formulation is from the perspective

of the QoS guarantee, the energy efficiency2, and the hybrid

structure. Second, the proposed design procedure explores the

ideal beampattern result and the FIR filter theorem. Compared

with the ZC scheme [3], the proposed one is not limited to

the performance for M discrete angles and is adaptive to

the sector size. Compared with the broadbeam design [9],

the proposed design does not require predefined reference

beampattern whose design is non-trivial especially for arbitrary

sector size. Moreover, the use of convex optimization tools

enables the searching over a broader region compared with

the polynomial equation solving in [9]. Meanwhile, the strict

requirement on the number and locations of the discrete angles

for optimization can also be relaxed with the proposed design.

II. SYSTEM MODEL

Consider a massive MIMO BS with hybrid beamforming

structure, where the number of antennas is M and the num-

ber of RF chains is NRF . Let D be the antenna spacing

ratio, [Θ1,Θ2] be the radiating interval of each antenna, and

A , [Θmin,Θmax] be the sector of interest inside the antenna

radiating interval. Assume that the ideal directional radiating

antenna is employed at the BS, i.e., the signal from outside

of [Θ1,Θ2] is completely suppressed by the antenna pattern

[3]. To avoid angle ambiguity [17], it is assumed that Θ1 ≥
−π/2, Θ2 ≤ π/2 for D ≤ 0.5; and Θ1 ≥ − arcsin

(

1
2D

)

,

Θ2 ≤ arcsin
(

1
2D

)

for D > 0.5. For the public channel,

common messages are sent to all users randomly distributed

in the sector A. No CSI is available at the BS.

The received signal at User k is

yk =
√
ρh

H
k wx+ zk, (1)

where hk ∈ CM×1 is the channel vector, w ∈ CM×1 is

the beamformer normalized as w
H
w = 1, ρ is the average

transmit power, x ∼ CN (0, 1) is the common signal symbol,

and zk ∼ CN (0, 1) is the local noise. The notation CN (0, 1)
represents the circularly symmetric complex Gaussian distri-

bution with zero-mean and unit-variance and x ∼ CN (0, 1)
means that x follows such distribution. With hybrid structure,

w = WRFwBB , where WRF ∈ CM×NRF is the analog

beamforming matrix with the constraint |[WRF ]i,j | = 1
and wBB ∈ CNRF×1 is the baseband beamformer, where

[WRF ]i,j is the (i, j)-th entry of WRF .

2The term energy efficiency is generally defined as the the ratio of spectrum
efficiency to the consumed energy. In this paper, it refers to the transmit power
minimization with guaranteed QoS.

The spatially correlated channel is considered, i.e.,

hk = R
1/2
k h

iid
k , (2)

where h
iid
k ∼ CN (0, IM ) is the fast fading channel compo-

nent and Rk ∈ C
M×M is the channel covariance matrix. For

the one-ring scattering model under a far-field assumption, the

channel covariance matrix Rk can be modeled as

Rk =

∫ Θ2

Θ1

fk(θ)α(θ)αH(θ)dθ, (3)

where fk(θ) is the power azimuth spectrum (PAS) [3] which

indicates the joint effect of each antenna’s gain pattern and the

channel scattering distribution and α(θ) is the array vector for

the physical angle θ. Assume uniform linear array at the BS3,

we have α (θ) =
[

1, ..., e−j2πD sin(θ)(M−1)
]T

.
Denote the set of all possible user PAS is as follows:

F ,

{

f(θ)

∣

∣

∣

∣

∫ θmax

θmin f(θ)dθ = 1,
f(θ) = 0 for θ /∈

[

θmin, θmax
]

⊆A

}

. (4)

In the constraint in (4),
[

θmin, θmax
]

⊆ A is the channel

angular spread (AS) interval and the first part is for the

normalization. Users with different PAS have different channel

covariance matrices, thus different channel distribution. Notice

that for User k, when its PAS fk(θ) ∈ F , the condition in

(4) implies tr{Rk} = M . While this normalization does not

incorporate the large-scaling fading of user channel, it can be

seen as considering users with the worst large-scale fading.

Further, by properly setting fk(θ), many channel types can

be modeled. For example, if fk(θ) is set to be a Dirac delta

function, i.e.,
[

θmin
k , θmax

k

]

is an extremely small interval,

the corresponding channel is a single-path one typical in the

mmWave band.

III. PROBLEM FORMULATION AND SOLUTION PROCEDURE

In this section, the beamforming design problem is first

formulated. Then the solution procedure is provided.

A. Problem Formulation

For the public channel transmission, the beamforming de-

sign needs to guarantee the worst performance within the

sector. The outage probability, Pout, is chosen to be the perfor-

mance measure. In addition, the energy efficiency is important

especially from the perspective of communication carriers.

Therefore, the energy efficient hybrid beamforming design

problem for massive MIMO public channel is formulated as

P1 :min
w

ρ

s.t. max
fk(θ)∈F

{Pout (ρ,R,w, fk(θ))} ≤ P̄out,∀k, (C.1)

w = WRFwBB and |[WRF ]i,j | = 1,∀i, j, (C.2)

w
H
w = 1. (C.3)

where P̄out is the given maximum acceptable outage proba-

bility and R is the minimum rate. In P1, the transmit power

is the optimization metric and the rate constraint R functions

3Our results can be straightforwardly extended to other antenna array
topologies such as uniform planar arrays or uniform circular arrays.
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through the outage probability condition in (C.1). Define the

beampattern at the angle θ as

g (θ) , w
H
α (θ)αH (θ)w. (5)

The outage probability can be calculated as

Pout (ρ,R,w, fk(θ))

= Pr
{

log2

(

1 + ρ|hH
k w|2

)

< R
}

(a)
= Pr

{

∣

∣

∣h
iid
k

∣

∣

∣

2
∫ Θmax

Θmin

fk (θ) g (θ) dθ <
2R − 1

ρ

}

(b)
=Pr

{

∣

∣

∣
h
iid
k

∣

∣

∣

2
∫ sin(Θmax)

sin(Θmin)

fk (arcsin(x)) g (arcsin(x))√
1− x2

dx<
2R−1
ρ

}

,(6)

where hiid
k ∼ CN (0, 1). (a) follows from (2), the eigen-

decomposition of R
1/2,H
k ww

H
R

1/2
k and its rank-1 property,

and w
H
Rkw =

∫ Θmax

Θmin

fk (θ) g (θ) dθ. (b) follows from

transforming the angle domain θ to the normalized spatial

frequency domain sin(θ). Recall the normalization tr{Rk} =
M . When the worst case design is considered, ρ can be

understood as the normalized transmit power with respect to

the multiplication of noise power and the worst case path-loss.

1) Additional requirement: Besides minimizing the trans-

mit power, another important factor affecting the system

energy efficiency is the PA efficiency which is quantified by

the antenna-domain peak-to-average power ratio (PAPR)4 in

this paper, i.e.,

δ =
M maxm |wm|2

‖w‖2 . (7)

One way to incorporate PA efficiency is to directly set a

constraint on the PAPR in P1, or formulate a double-objective

problem by adding the minimization of δ. But this makes the

problem intractable [18]. Alternatively, we provide an indirect

solution for this and make it as an additional consideration.

More details are provided in Section III-B and IV-C.

B. Solution Procedure

Due to the complicated condition in (C.1) and the non-

convexity of (C.2), to directly solve P1 is difficult. Instead,

the following procedure with four steps is proposed:

1) Find the optimal beampattern g⋆ (θ) to minimize the

transmit power under the outage probability constraint

only.

2) Find a full-digital beamformer, w⋆
1 , whose beampattern

closely matches the optimal one found in Step 1.

3) Find a beamformer w
⋆
2 with the same beampattern as

that of w⋆
1 but with a lower PAPR.

4) Decompose w
⋆
2 into W

⋆
RF and w

⋆
BB to complete its

hybrid implementation.

In the following sections, details of each step will be

provided. Step 3 is used to improve the PA efficiency of

the object beamformer. If Steps 1, 2, and 4 can be solved

precisely, especially for Step 2, i.e., a full-digital beamformer

whose beampattern is the same as g⋆ (θ) can be found, the

procedure will lead the optimal solution of P1. However, as

4While time-domain PAPR is typically used for orthogonal frequency
division multiplexing (OFDM) systems, we focus on the antenna-domain
PAPR which is important for massive MIMO public channel transmissions.

will be explained in the following sections, Steps 1 and 4

can be solved precisely, but due to the FIR filter theorem, the

ideal beampattern is unattainable given the finite dimension of

w. Thus, in Step 2, the goal is to find a beamformer whose

beampattern closely matches the optimal one.

IV. SOLUTION DETAILS

This section provides the detailed formulations and solu-

tions for the proposed four-step procedure.

A. Ideal Beampattern

The first step is to find the optimal beampattern that

minimizes the transmit power under the outage probability

constraint. It can be written as the following:

P2 : minimize
g(θ)

ρ

s.t. max
fk(θ)∈F

{Pout (ρ,R, g (θ) , fk(θ))} ≤ P̄out,∀k, (C.1)

w
H
w = 1. (C.3)

The optimal beampattern g⋆ (θ) for P2, also called the ideal

beampattern, is given in the following lemma.

Lemma 1. The optimal beampattern for P2 is

g⋆ (arcsin(x)) =

{

1
D(sin(Θmax)−sin(Θmin))

, x ∈ Ã
0, x ∈ Ã−

, (8)

where ξ⋆ , (D(sin(Θmax) − sin(Θmin)))
−1 is the beam-

pattern value within the sector, Ã , [sin(Θmin), sin(Θmax)]
is the sector interval in the spatial frequency domain, and

Ã− , [sin(Θ1), sin(Θmin))∪(sin(Θmax), sin(Θ2)] is the out-

sector interval.

Proof. See Appendix A.

Remark 1. Ideal beampattern has been used in public channel

beamforming design in [3], [9]. But the proposed result in

Lemma 1 has distinctions in two aspects. First, beampatterns

in [3], [9] are for the standard sector, e.g., A = [−90◦, 90◦]
and D = 0.5 only; while our result is applicable for any

sector size. Also, the beampattern in [3] is defined for only

M discrete angles. Second, beampatterns in [3], [9] are

derived from the requirement of constant signal power at any

discrete angles; while our result links the beampattern to direct

communication objects.

Remark 2. The result in Lemma 1 shows that the ideal

beampattern is independent of the outage parameters R and

P̄out even though they appear in the Condition (C.1) of

P2. This is an interesting observation yet still reasonable.

The objective in P2 is to minimize the transmit power ρ
with guaranteed outage performance of all possible users.

Regardless of the specific value of R and P̄out, the solution of

P2 provides a flat beam strength to the targeted angle interval.

Remark 3. When entries of hk are independent and

identically distributed (i.i.d.), the frequency domain PAS

of User k, fk(arcsin(x))/
√
1− x2, is flat for x ∈

[sin(Θmin), sin(Θmax)] = [−1/(2D), 1/(2D)] [2], [3]. From

(6) and (11), the ideal beampattern condition simplifies to
∫ sin(Θmax)

sin(Θmin)
g (arcsin(x))dx = 1/D, which is equivalent to
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w
H
w = 1. Compared with the case of spatially correlated

channel, the demand for flatness of the beampattern is relaxed.

This is because in this case all users share the same uniform

scatterer distributed in the sector (in frequency domain) while

for spatially correlated channel the scatterer distribution is

different for different users.

B. Ideal Beampattern Based Beamformer Design

The second step of the solution procedure is to find a full-

digital beamformer, w⋆
1 , whose beampattern closely matches

the optimal one. Recall the equivalence between the beampat-

tern and the FIR filter response as shown in (10) of the proof

for Lemma 1. Due to the FIR filter theorem [19], there does not

exist an M -dimensional vector w whose beampattern equals

g⋆ (θ) in (8). Specifically, the ripple in both Ã (pass band) and

Ã− are unavoidable. Moreover, the transition bandwidth ∆T

should be non-zero5 in practice. Thus Ã− should be divided

into two parts, i.e., the transition band and the stop band,

in which the latter is Ã−

s , [sin(Θ1), sin(Θmin)−∆T ) ∪
(sin(Θmax) + ∆T , sin(Θ2)].

Based on the FIR filter theorem, there is an inherent

tradeoff between the ripples in Ã and the size of transition

bandwidth ∆T . Specifically, the ripple size in Ã is inversely

proportional to ∆T and the minimum beampattern decreases

with increasing ripple for constant mean beampattern in Ã. On

the other hand, due to the Parseval identity used in the proof

for Lemma 1, a larger ∆T may decrease the mean beampattern

in Ã, which decreases the minimum beampattern with constant

ripple in Ã.

By taking into consideration of the aforementioned phe-

nomenon, in what follows, a formulation for the optimization

of the full-digital beamformer is proposed to explore the

tradeoff in the equivalent filter design problem.

P3 :minimize
w1

σ

s.t.

∣

∣

∣

∣

∣

∣
w

H
1 α(arcsin(x))

∣

∣

∣
−

√

ξ⋆
∣

∣

∣
≤ σ, x ∈ Ã, (C̄.1)

∣

∣

∣w
H
1 α(arcsin(x))

∣

∣

∣ ≤
√
rs, x ∈ Ã−

s , (C̄.2)

0 < ∆T ≤ ∆max
T . (C̄.3)

w
H
1 w1 ≤ 1. (C̄.4)

In this formulation, the square root of beampattern is used

for simplicity. In (C̄.1), the gap between the beampattern of

w1 and the ideal one (ξ⋆) in Ã should be lower than σ. In

(C̄.2), to reduce possible inter-sector interference, a constraint

on the maximum beampattern rs in Ã−

s is required. Also

from this perspective, we set another (C̄.3) on the maximum

∆T (denoted as ∆max
T ). In (C̄.4), wH

1 w1 ≤ 1 is the convex

relaxation version of w
H
1 w1 = 1, which does not affect the

optimization result since the equality can always be satisfied

due to the structure of P3. Note that some finite discrete angles

within Ã ∪ Ã−

s should be selected for the optimization to be

feasible.

Remark 4. In [9], although the original object is to guarantee

the performance of the whole continuous sector, only no more

5Exception is for the full-pass filter, i.e., Ã = [sin(Θ1), sin(Θ2)], which
does not need a transition band.

than 2M − 1 carefully designed angles are selected and the

optimization is based on these discrete angles only. Since P3

is solved numerically, angle discretization is still needed. But

our method allows an arbitrary number of discrete angles

and arbitrary selections of discrete angles. In fact, for high

precision, a large number of discrete angles are considered

to have a small angle spacing. Meanwhile, the reference

beampattern used for the beamforming design in [9] is fixed as

[−90◦, 90◦] only, and its application or extension to another

sector size is non-trivial. Our formulation in P3 needs the ideal

beampattern only and focuses on the key design requirements.

Thus, the proposed design has an enlarged search space and

results in the same or better performance. In addition, our

scheme is applicable for an arbitrary sector size.

1) Algorithm Design: In P3, notice that ∆T only functions

via Ã−

s . In solving P3, we first solve the problem for a given

∆T ∈ (0,∆max
T ], then conduct a grid search over ∆T .

The difficulty lies in the non-convex constraint (C̄.1).

By drawing lessons from [20], we can transform (C̄.1) to

|(w1,1+w1,2)
H
α(arcsin(x))| ≤ σ+

√
ξ⋆ and max{0,√ξ⋆−

σ} ≤
√

4Re{wH
1,1α(arcsin(x))(wH

1,2α(arcsin(x)))H} where

w = w1,1 + w1,2 [20, Pro. 3.1]. These two new constraints

are multiconvex inequalities which is convex in w1,2 for given

w1,1 and vice versa. Since (C̄.2) and (C̄.4) are convex, an iter-

ative algorithm based on convex optimization [20, Algorithm

II] can be used to efficiently solve P3 for an arbitrarily given

∆T . The initialization can be obtained by solving the standard

semi-definite programming (SDP) problem via relaxing the

inner absolute sign of (C̄.1). Due to the space limit and

similarity, the pseudo-code and the proof for its convergence

(refer to the end of [20, Sec. III]) are omitted here.

Based on the above analysis, the complete algorithm for

Step 2 based on a grid search for the transition bandwidth

∆T is summarized in Algorithm 1, where d∆T is the step

size of ∆T and gmin is the minimum beampattern in Ã.

Algorithm 1 Algorithm for obtaining w
⋆
1

1: Input: ξ⋆, ∆max
T , d∆T , rs;

2: Initialization: w⋆
1 = 0; gmin = 0;

3: for ∆T = [∆max
T ,∆max

T − d∆T , ..., 0) do

4: Solve P3 with ∆T and obtain w̄1;

5: Denote the minimum beampattern in Ã as ḡmin;

6: if ḡmin > gmin then

7: gmin = ḡmin; w⋆
1 = w̄1;

8: end if

9: end for

10: Output: w⋆
1.

The complexity of Algorithm 1 depends on the step size and

the convergence speed of the iterative optimization in Step

4. It is higher than that of the ZC scheme in [3] since the

latter is directly based on the existing ZC sequence. As to

the design in [9], if the reference beampattern is given, the

complexity of obtaining the beamformer in general has lower

complexity than that of solving P3 in our design. However,

the only available reference beampattern design is for the

standard sector. If the reference beampattern is not chosen

appropriately, either higher complexity or worse performance
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will be resulted for the scheme in [9] compared with our

scheme. Our proposed method does not require such reference

beampattern.

C. PAPR Reduction and Hybrid implementation

The last two step of the solution procedure are to find the

beamformer w⋆
2 which has the same beampattern as that of w⋆

1

obtained in Step 2 and has the lowest PAPR, and to decompose

w
⋆
2 found in Step 3 into W

⋆
RF and w

⋆
BB for the practical

hybrid implementation, respectively.

1) PAPR Reduction: By drawing lessons from [10], w⋆
2 can

be found as follows. First, we solve the polynomial equation:

w⋆
1,1 + w⋆

1,2x + w⋆
1,3x

2 + ... + w⋆
1,MxM−1 = 0. Without loss

of geneality, the M − 1 roots x1, x2, ..., xM−1 are assumed

to be sorted so that |xi − 1/x∗

i | is in decreasing order. The

2M−1 beamformers with the same beampattern as that of w⋆
1

form the set V = {v|v1 + v2x + v3x
2 + ... + vMxM−1 =

∏M−1
m=1 (x−am), am = xm or 1/x∗

m,m = 1, ...,M−1}. Thus,

we can search this set to find the one with the smallest PAPR.

If reduction on the search complexity is desired, the reduced

set for the candidacy beamformers can be used: V̄ = {v̄|v̄1 +
v̄2x+ v̄3x

2+ ...+ v̄MxM−1 =
∏Q

m=1(x− am)
∏M−1

m=Q+1(x−
am)} with am = xm or 1/x∗

m,m = 1, ..., Q where {am,m =
Q+ 1, ...,M − 1} is predetermined randomly.

2) Hybrid Implementation: The geometric method in [15]

can be used to construct the analog beamforming matrix W
⋆
RF

and the baseband beamformer w⋆
BB without performance loss

for the hybrid structure with NRF > 1. First, to make the

algorithm [15, Algorithm 1] applicable, we give the following

baseband design.

Lemma 2. By setting w
⋆
BB = [b, b, ..., b]T with b =

max
{

|w⋆
2,i|/NRF , ∀i

}

, the sufficient condition of triangle

construction [15, Theorem 1] is satisfied for w⋆
2 = W

⋆
RFw

⋆
BB

with the constraint |[W⋆
RF ]i,j | = 1, ∀i, j.

Proof. For all i, by sorting {w⋆
2,i, w

⋆
BB,1, ..., w

⋆
BB,NRF

} ac-

cording to their magnitude in decreasing order, we have

|w⋆
2,i| ≤ ∑NRF

j=1 |wBB,j | = max
{

|w⋆
2,j |, ∀j

}

or |wBB,1| ≤
∑NRF

j=2 |wBB,j |+ |w⋆
2,i| which both satisfy the sufficient con-

dition in [15, Theorem 1] for successful triangle construc-

tion.

With the given w
⋆
BB , W

⋆
RF can be easily calculated by

directly using [15, Algorithm 1] (the details are omitted).

D. Discussions

Instead of using the ideal beampattern based design to

obtain the full-digital beamformer w
⋆
1 , another method is to

directly solve the following problem:

P4 :maximize
w1

η

s.t.

∣

∣

∣
w

H
1 α(arcsin(x))

∣

∣

∣
≥ η, x ∈ Ã, (C̃.1)

∣

∣

∣
w

H
1 α(arcsin(x))

∣

∣

∣
≤ √

rs, x ∈ Ã−

s , (C̄.2)

0 < ∆T ≤ ∆max
T . (C̄.3)

w
H
1 w1 ≤ 1. (C̄.4)

where the object along with (C̃.1) is equivalent to the original

one, i.e., minimizing ρ. P4 can be solved via a similar iterative

optimization based algorithm to Algorithm 1.

Remark 5. Compared with P3, P4 is a more direct formu-

lation without using the ideal beampattern in (8). If global

optimal solutions of P4 and P3 can be found, directly solving

P4 should render a better beamformer. However, since both

the constraint (C̄.1) in P3 and the constraint (C̃.1) in P4 are

non-convex, only local optimal solutions can be found and

the initialization point for both algorithms is crucial for the

performance [20]. A direct solution with a random or naive

initialization for P4 tends to fall in an unsatisfactory local

optimal point often. On the other hand, the formulation in

P3 is to find the closest match to the ideal beampattern with

practical considerations. This approach, in some sense, has

similar effect to taking a good initialization in the optimization.

V. SIMULATION AND ANALYSIS

In this section, the performance of the proposed scheme

will be validated. We consider D = 0.5, M = 64, [Θ1,Θ2] =
[−90◦, 90◦], a 60◦ sector where Θmin = −30◦, Θmax = 30◦,

and the maximum transition bandwidth 4◦ unless mentioned

otherwise. Thus, the ideal beampattern in the sector ξ⋆ = 2
from Lemma 1, and rs is set to be ξ⋆/103 which corresponds

to a 30 dB attenuation outside the sector. 3M discrete points

with equal space among Ã ∪ Ã− are selected in P3 and P4.

The optimized beampattern rather than the resulted transmit

power ρ is used for the performance demonstration, which is

independent of the values of R and P̄out.

In Fig. 1, the proposed scheme is compared with the ZC

scheme in [3]. It can be shown that if the sector size is

180◦, the ZC scheme can achieve ξ⋆ = 1 only in or near

the discrete angles corresponding to the spatial frequency set

(−M/2 : 1 : M/2 − 1)/(MD), while the proposed scheme

achieves ξ⋆ = 1 for all (more than M ) discrete angles for

optimization. For the smaller sector size 60◦, the beampattern

for ZC scheme within the sector is still 1 while that of the

proposed scheme approaches 2 well. These improvements

results from two respects. First, denser angle discretization is

allowed in the proposed scheme. Second, the strict constraint

of constant envelop for the ZC scheme is relaxed in the

proposed scheme in which the PAPR metric is treated as an

additional consideration. For the considered sector size, fair

comparison of the scheme in [9] and the proposed one is

unavailable due to the lack of reference beampattern for the

former. Qualitative discussions on the comparison are given in

Remark 4. Beamformers obtained by directly solving P4 with

a random initialization still performs worse than the proposed

one even with more iterations, which validates Remark 5.

The PAPR of all beamformers with the same beampattern

as that of w
⋆
1 are shown in Fig. 2 where Q = 8, i.e.,

256 beamformers besides w
⋆
1 (with beamformer index 1) are

created. It can be shown that after Step 3, the PAPR of w
⋆
2

can be decreased by 56%. Further, w⋆
2 can be decomposed

into W
⋆
RF and w

⋆
BB without error by Step 4 while the details

are omitted here.
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Fig. 2. The improvement of PAPR due to Step 3.

VI. CONCLUSION

In this work, a beamforming design was proposed for

massive MIMO public channel with any sector size which

aims to minimize the transmit power while guaranteeing the

QoS of all users. The ideal beampattern was first derived via

Parseval Identity, based on which a non-convex but multicon-

vex problem was formulated which results in the full-digital

beamformer with minimum gap with the ideal beampattern.

In addition, the PAPR performance was improved through

a search based on the same beampattern theorem. Finally,

the full-digital beamformer was perfectly implemented in the

hybrid structure through the triangle construction with the

predefined baseband beamformer. Simulations validated the

advantages of the proposed scheme over existing ones.

APPENDIX A: PROOF OF LEMMA 1

We first give a upper bound on the sum beampattern

within the sector, based on which the optimal beampattern

is provided.

From the Parseval Identity [19], we have

1

2π

∫ π

−π

|F (Ω)|2dΩ =

M−1
∑

m=0

|wm|2 = w
H
w = 1, (9)

where

|F (Ω) |2 =
∣

∣

∣

∣

∣

M−1
∑

m=0

w
∗

me
−jΩm

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

w
H
α

(

arcsin

(

Ω

2πD

))∣

∣

∣

∣

2

= g

(

arcsin

(

Ω

2πD

))

. (10)

Therefore,
∫ sin(Θmax)

sin(Θmin)

g (arcsin(x))dx
(a)
=

1

2πD

∫ 2πD sin(Θmax)

2πD sin(Θmin)

|F (Ω)|2dΩ

≤ 1

2πD

∫ π

−π

|F (Ω)|2dΩ =
1

D
, (11)

where (a) follows from defining x , Ω
2πD . If F (Ω) =

0 for Ω ∈ {[−π, 2πD sin (Θmin)] ∪ [2πD sin (Θmax) , π]},
∫ sin(Θmax)

sin(Θmin)
g (arcsin(x))dx approaches the upper bound 1/D.

Secondly, we prove that g (arcsin(x)) should be constant,

i.e., g (arcsin(x)) = c, ∀x ∈ Ã. Assume the smallest beam-

pattern is g (arcsin(x)) = c1 < c for x ∈
[

θmin
1 , θmax

1

]

. Since

users’ PASs have random interval and profile which belong

to F , if there is a User i with PAS interval
[

θmin
1 , θmax

1

]

, its

outage probability is larger than

Pr

{

∣

∣hiid
i

∣

∣

2
∫ sin(Θmax)

sin(Θmin)

fi (arcsin(x)) c√
1− x2

dx<
2R−1
ρ

}

due to (6) and a larger ρ is needed to guarantee the worst

case performance. On the other hand, with g (arcsin(x)) =
c, ∀x ∈ Ã, users with any PAS belonging to F have the same

outage performance, increasing ρ for users with worst case

performance is unnecessary.

Moreover, due to (6) a larger c can result in a smaller ρ
while maintaining the performance. Directly based on (11),

we have c ≤ (D(sin(Θmax)− sin(Θmin)))
−1 and the equality

holds for the beampattern in (8).
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