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Abstract

In this paper, we propose a scheme referred to as integer-forcing message recovering (IFMR) to

enable receivers to recover their desirable messages in interference channels. Compared to the state-of-

the-art integer-forcing linear receiver (IFLR), our proposed IFMR approach needs to decode considerably

less number of messages. In our method, each receiver recovers independent linear integer combinations

of the desirable messages each from two independent equations. We propose an efficient algorithm

to sequentially find the equations and integer combinations with maximum rates. We evaluate the

performance of our scheme and compare the results with the minimum mean-square error (MMSE) and

zero-forcing (ZF), as well as the IFLR schemes. The results indicate that our IFMR scheme outperforms

the MMSE and ZF schemes, in terms of achievable rate, considerably. Also, compared to IFLR, the

IFMR scheme achieves slightly less rates in moderate signal-to-noise ratios, with significantly less

implementation complexity.

I. INTRODUCTION

Various wireless communication setups can be modeled as interference channels consisting

of multiple coexisting transmitter-receiver pairs. To reduce the interference in such systems,
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there are mainly two categories of receiver structures [1]-[2]. The first category are maximum

likelihood (ML)-based receivers achieving the highest possible rates [1]. However, the ML-based

estimation may be practically infeasible, as the size of the search space grows exponentially with

the codeword length, the number of antennas, and the number of transmitters [1]. The second

category are linear receivers (LR) which have low complexity in filtering the received signals

through a linear structure for decoding. LRs are often proposed based on the criteria of zero-

forcing (ZF) and minimum mean-square error (MMSE) [1]-[4].

Recently, a novel linear receiver referred to as integer-forcing linear receiver (IFLR) has

been designed to simultaneously recover the transmitted messages in point-to-point multiple-

input multiple-output (MIMO) systems [5]. This idea was derived from the compute-and-forward

scheme [6]. Based on noisy linear combinations of the transmitted messages, IFLR recovers

independent equations of messages through a linear receiver structure. In this way, in contrast

to MMSE and ZF schemes, instead of combating, IFLR exploits the interference for a higher

throughput. Application of the IFLR scheme in MIMO multi-pair two-way relaying is proposed

in [7]. It is shown in [8] and [9] that precoding in IFLR can achieve the full diversity and the

capacity of Gaussian MIMO channels up to a gap, respectively. Also, [10] applies successive

decoding in IFLR and proves its sum rate optimality.

IFLR recovers all desirable and undesirable transmitted messages by decoding sufficient

number of the best independent equations in terms of achievable rate. Hence, considering IFLR in

interference networks, the complexity of the lattice decoding and also the best equation selection

process grows considerably with the number of transmitters and data streams. The combination

of IFLR and interference alignment [11], referred to as integer-forcing interference alignment

(IFIA), is proposed in [12] to decode sufficient equations to recover the desirable messages.

However, IFIA requires channel state information at the transmitter (CSIT). This is the motivation

for our paper in which we design an efficient low-complexity receiver for interference channels

with no need for CSIT.

Here, we propose a linear receiver scheme, referred to as integer-forcing message recovering

(IFMR), for interference networks. Benefiting from a special equation structure of IFLR, we

propose a novel receiver model in which the required number of decodings is limited to twice the

number of desirable messages. In our IFMR, independent integer combinations of the desirable

messages are recovered in each receiver. Each integer combination, referred to as desirable
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combined message (DCM), is recovered by decoding two independent equations. Here, with a

new formulation, the equations can be optimized such that a DCM is recovered with maximum

achievable rate. Despite of its much less complexity, we prove that our sequential approach in

optimizing DCMs achieves the same rate as the optimal approach when we can jointly optimize

DCMs (Theorem 1).

Instead of NP hard exhaustive search in optimizing the equations of IFMR, we present a

practical and efficient suboptimal algorithm to maximize the achievable rate in polynomial time.

The proposed algorithm iterates in three steps, one for the coefficient factors of the two equations

and the others for the coefficient vectors of an undesirable combined message (UCM) and DCM.

The associated problem with each step is solved in polynomial time. The convergence of the

proposed algorithm is also proved (Theorem 3). Hence, our IFMR scheme provides a low-

complexity scheme in recovering the desirable messages through a few decodings of near-optimal

integer combinations in interference channels.

Our scheme is different and much less complex compared to the IFLR scheme that uses a

large number of equations for message recovery. Particularly, the complexity of IFMR does not

depend on the number of transmitters and the data streams of the interfering transmitters. Also,

as opposed to IFIA, our scheme requires no CSIT.

We evaluate the performance of our scheme and compare the results with the minimum mean-

square error (MMSE) and zero-forcing (ZF), as well as the IFLR schemes. The results indicate

that, in all signal-to-noise ratios (SNRs), our IFMR scheme outperforms the MMSE and ZF

schemes, in terms of achievable rate, substantially. Also, the IFMR scheme achieves slightly less

rates in moderate SNRs, compared to IFLR, with significantly less implementation complexity.

In addition, our proposed algorithm provides a tight lower bound for the results obtained via the

NP hard exhaustive search. For instance, consider a three-pair interference channel with single

antenna at the transmitters/receivers. Then, the achievable rate of the exhaustive search is only

1 dB better than our proposed algorithm in 1 bit/channel use.

The remainder of this paper is organized as follows. In Section II, the system model and

IFLR are briefly described. Section III presents the IFMR scheme. Numerical results are given

in Section IV. Finally, Section V concludes this paper.

Notations: The operators (A)∗, det(A), Tr(A), ||A||, and span {A} stand for conjugate

transpose, determinant, trace, frobenius norm, and the space spanned by the column vectors of
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matrix A, respectively. The Zn×1 and Rn×1 are the n dimensional integer field and n dimensional

real field, respectively. Moreover, log+ (x) denotes max {log (x) , 0}. The operator < refers to

the generalized inequality associated with the positive semidefinite cone. Also, ∇af represents

the partial derivative of function f with respect to vector a. Finally, I and 1 stand for the identity

matrix and the vector with all elements equal to one, respectively.

II. SYSTEM MODEL AND INTEGER-FORCING LINEAR RECEIVER (IFLR)

A. System Model

We consider K-pair interference channels where K transmitters are transmitting independent

data streams to K receivers simultaneously, as shown in Fig 1. It is assumed that there is no

coordination among the transmitters and receivers. We assume no CSIT and, as a result, we do

not use beamforming. This is an acceptable assumption in simple setups with no coordinations

and central processing units in which channel state information (CSI) feedback and beamforming

is infeasible. Incorporating partial CSIT is left for future work. In this system, the k-th transmitter

and receiver are equipped with Ntk and Nrk antennas, respectively. The matrix Hkj denotes the

channel matrix from transmitter k to receiver j, with dimension Nrj ×Ntk . The elements of Hkj

are assumed to be independent identically distributed (IID) Gaussian variables with variance ρ2kj .

We focus on real-valued channels. However, our scheme and results are directly applicable to

complex-valued channels via a real-valued decomposition, as in [5]-[6]. Transmitter k exploits

a lattice encoder with power constraint P to map Ntk message streams wk to a real-valued

codeword matrix xk with dimension Ntk × n, where n is the codeword length.

According to Fig. 1, the received signal at receiver k is given by

Yk = Hkkxk +
K∑

j=1,j 6=k

Hjkxj + nk, (1)

where nk is IID additive white Gaussian noise with the variance σ2, ∀k.

B. Integer-Forcing Linear Receiver (IFLR)

Since the objective of our proposed approach is to limit the complexity of the IFLR scheme [5]

for interference channels, it is interesting to briefly review this scheme as follows. The readers

familiar with the IFLR scheme can skip this part.
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Fig. 1. K-pair interference channel.

Let us rewrite (1) as

Yk = ĤkX + nk, (2)

where Ĥk
∆
= [H1k, . . . ,HKk] and X

∆
=
[

x∗1, . . . ,x
∗
K

]∗
. Since X is of size L ∆

=
K∑
k=1

Ntk , the IFLR

scheme recovers L independent equations from Yk. The L independent equations with equation

coefficient vectors (ECVs) akl , l = 1, . . . , L, totally shown by matrix Ak ∆
=
[

ak1, . . . , a
k
L

]∗
, are

then solved to recover the desirable messages of the receiver k. Quantizing Yk, the answer of

the equation with ECV akl can be recovered as [6, Eq. (68)]

tkl = akl
∗
X = Q

(
bkl
∗
Yk

)
, (3)

where Q(·) denotes lattice equation quantizer, and vector bkl , of length Nrk , is the projection

vector. Also, bkl is given by [5, Eq. (28)]

bkl
∗
= akl

∗
Ĥ∗k

(
1

SNR
I + ĤkĤ

∗
k

)−1
, (4)

where SNR = P
σ2 . Finally, the rate of the equation with ECV akl is obtained by [5, Eq. (30)]

R
(
akl
)
= log+

(akl
∗
(

I− Ĥ∗k

(
1

SNR
I + ĤkĤ

∗
k

)−1
Ĥk

)
akl

)−1 . (5)

Hence, the optimal value of Ak, in terms of (5), is obtained by solving the following problem

Ak
opt = arg min

Ak∈ZL×L
max
l=1,...,L

akl
∗
(

I− Ĥ∗k

(
1

SNR
I + ĤkĤ

∗
k

)−1
Ĥk

)
akl ,

subject to det(Ak) 6= 0. (6)
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The problem (6) is an NP hard integer programming and its complexity grows with L signifi-

cantly.

Note that the IFLR scheme does the lattice equation quantization (3) L times, which increases

the implementation complexity with L significantly. Hence, the IFLR scheme leads to signifi-

cantly higher complexity compared to the MMSE and ZF schemes [1]-[2], i.e., Lc
∆
= L − Ntk

more decoding for each receiver k.

In Section III, we propose our IFMR scheme where, independently of K and Nti ,∀i 6= k, each

receiver k only requires lattice equation decoding twice the number of the desirable messages,

i.e., 2×Ntk , with a low complexity best equation selection process.

III. INTEGER-FORCING MESSAGE RECOVERING (IFMR)

In summary, our proposed IFMR scheme is based on the following procedure. From the

received signals Yk in (1), independent DCMs are recovered. For each DCM, the observed

interfered signal is integer-forced to an UCM. Then, two independent equations of the DCM

and UCM are decoded by the lattice quantizer as in (3) which lead to recovering the DCM.

Finally, solving the recovered DCMs results in the desirable messages.

In Subsection III.A, the structure of an equation in IFMR is proposed, and accordingly its

receiver model is presented. Then, in Subsection III.B, we develop a sequential three-step

algorithm to efficiently find the coefficient factors of the required equations in the first step

and their associated coefficient vectors of UCMs and DCMs in the second and third steps,

respectively, with maximum rates in polynomial time. Theorem 1 proves that our scheme with

sequential selection of DCMs achieves the same rate as the optimal scheme jointly selecting

DCMs. Theorem 2 proves that Lenstra-Lenstra-Lovasz (LLL) algorithm [13] is qualified to be

used for the optimization problem of the first step, and Theorem 3 proves the convergence of

the proposed algorithm. Simulation results are presented in Section IV where we compare the

performance of our proposed scheme with those in the literature.

A. Receiver Structure

We consider an equation in the general form tk = dkxDCM
k + ekxUCM

k for receiver k, which

is an integer combination of two messages xDCM
k and xUCM

k . Here, xDCM
k

∆
= ak

∗
xk and xUCM

k
∆
=

K∑
j=1,j 6=k

ckj
∗
xj are referred to as DCM and UCM, respectively. In other words, according to the
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Fig. 2. The proposed structure of receiver k. In each branch i = 1, ..., Ntk , Bk
i includes the projection vectors in (4) related

to the two equations of the branch with integer coefficients ek,i1 , dk,i1 , ek,i2 , dk,i2 , ak,i, and ck,i. Note ck,i, related to undesirable

recovered messages, is not shown in the figure.

IFLR receiver structure, tk has ECV equal to

 dkak

ekck

, where ck
∆
=
[
ck1
∗
, . . . , ckk−1

∗
, ckk+1

∗
, . . . , ckK

∗]∗.
dk and ek are integer coefficient factors in Z space. Also, ak and ckj ,∀j, are integer coefficient

vectors in ZNtk×1 and ZNtj×1, respectively.

It is straightforward to show that two equations with independent set of coefficient factors

(dk1, e
k
1) and (dk2, e

k
2), and same ak and ck for the combined messages can obtain xDCM

k = ak
∗
xk.

According to (5) and for given coefficient vector of xUCM
k and coefficient factors of the two

equations, the rate of recovering xDCM
k is obtained by

RDCM
(
ak|ck, dk1, ek1, dk2, ek2

)
= min

R
 dk1a

k

ek1c
k

 , R

 dk2a
k

ek2c
k

 , (7)

with R(·) given in (5). Hence, the unconditional achievable rate of xDCM
k is determined by

RDCM
(
ak
)
= max

dk1 ,e
k
1 ,d

k
2 ,e

k
2∈Z,ck∈ZLc×1

RDCM
(
ak|ck, dk1, ek1, dk2, ek2

)
. (8)

Due to the size of xk, it is sufficient to recover Ntk independent DCMs. An illustration of the

receiver structure is given in Fig. 2.
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B. Best Integer Coefficients Selection

From (7) and (8), it is clear that the coefficients of the optimal independent DCMs with

maximum rates are jointly selected from the following optimization

max
dk,ml ,ek,ml ∈Z,ak,m∈ZNtk×1

,ck,m∈ZLc×1

min
m=1,...,Ntk

min
l=1,2

R

 dk,ml ak,m

ek,ml ck,m

 ,

subject to 
det

 dk,m1 ek,m1

dk,m2 ek,m2

 6= 0, ∀m = 1, ..., Ntk

det
([

ak,1, . . . , ak,Ntk
])
6= 0

. (9)

The problem (9) is complex, because it requires searches over space Z(L+2)
Ntk×1. For this

reason, we propose a sequential selection in Ntk stages which only requires a search over space

ZNtk (L+2)×1. Hence, the sequential scheme is of interest because it simplifies the search process,

compared to (9), significantly. In the sequential selection, each stage t is to recover the best DCM

xDCM,t
k with maximum rate independently of the previously recovered messages xDCM,j

k ,∀j < t.

To be more specific, in each stage t, it is required to solve

max
dkl ,e

k
l ∈Z,ak∈Z

Ntk
×1
,ck∈ZLc×1

min
l=1,2

R

 dkl a
k

ekl c
k

 ,

subject to 
det

 dk1 ek1

dk2 ek2

 6= 0

det
([

ak,gk1 , . . . ,g
k
t−1
])
6= 0

, (10)

where gkj is the integer coefficient vector associated with xDCM,j
k obtained in the stage j < t. In

Theorem 1, we prove that the sequential selection (10) is optimal, in the sense that it achieves

the same rate as optimal search (9), with considerably less implementation complexity.

Theorem 1: The sequential selection (10) achieves the same rate as the optimal selection (9).

Proof: See Appendix I.

Note that (10) is still an NP hard integer programming problem, requiring an exhaustive search

over integer coefficients. For this reason, we propose a suboptimal scheme presented in Algorithm

1 to efficiently solve (10) in polynomial time and iteratively in three steps. In words, the algorithm



9

is based on the following procedure. In Step I, the coefficient factors of the equations are

optimized to maximize the rate of recovering given DCM and UCM. Then, in Step II, using

equation factors obtained in Step I and given coefficient vector of DCM, we find the optimal

coefficient vector of UCM. Finally, in Step III, for the obtained coefficient vector of UCM in

Step II and the equation factors obtained in Step I, the coefficient vector of DCM is optimized.

The convergence of the algorithm is proved in Theorem 3.

Step I: For given ck and ak, solve

min
dk1 ,e

k
1 ,d

k
2 ,e

k
2∈Z

max
l=1,2

fl(a
k, ck),

subject to det

 dk1 ek1

dk2 ek2

 6= 0. (11)

Defining fl(ak, ck)
∆
= R

 dkl a
k

ekl c
k

 and Hk
∆
=
[
H1k, . . . ,H(k−1)k,H(k+1)k, . . . ,HKk

]
, we use

(5) to expand fl(ak, ck) as

fl(a
k, ck) = dkl

2
ak
∗
ak+ekl

2
ck
∗
ck−

(
dkl a

k∗H∗kk + ekl c
k∗H∗k

)( 1

SNR
I + HkkH

∗
kk + HkH

∗
k

)−1
×(

dkl Hkka
k + ekl Hkc

k
)
. (12)

Hence, with some simplifications, the optimization (11) can be written as

min
dk1 ,e

k
1 ,d

k
2 ,e

k
2∈Z

max
l=1,2

[
dkl ekl

]
U

 dkl

ekl

 ,
subject to det

 dk1 ek1

dk2 ek2

 6= 0, (13)

where

U
∆
=

 ak
∗
ak 0

0 ck
∗
ck

−
 ak

∗
H∗kk

ck
∗
H∗k

( 1

SNR
I + HkkH

∗
kk + HkH

∗
k

)−1 [
Hkka

k Hkc
k

]
.

(14)

In Theorem 2 we prove U to be positive definite, the proof of which uses Lemma 1 as follows.

Lemma 1: Matrix I− xx∗

x∗x
is semi-definite, where x 6= 0 is a vector in RL×1.
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TABLE I

"ALGORITHM 1"

For t = 1, . . . , Nt

Initialize ak,0 and ck,0

Iterate

1. Step I: Update

 dk,j+1
1 ek,j+1

1

dk,j+1
2 ek,j+1

2

 by solving (13) with the

assumption of given ak,j and ck,j .

2. Step II: Update ck,j+1 by solving (21) with the assumption of

given ak,j and

 dk,j+1
1 ek,j+1

1

dk,j+1
2 ek,j+1

2

.

3. Step III: Check which of the cases 1-3 are valid and update

ak,j+1 accordingly with the assumption of given ck,j+1 and dk,j+1
1 ek,j+1

1

dk,j+1
2 ek,j+1

2

.

Until min

R
 dk1a

k

ek1c
k

 , R

 dk2a
k

ek2c
k

 converges with

convergence threshold δ.

Then gkt ← ak,end

End

Proof: See Appendix II.

Theorem 2: U is a positive definite matrix.

Proof: See Appendix III.

According to Theorem 2, U admits a unique Cholesky decomposition. Hence, (13) can be solved

efficiently in polynomial time with the LLL method [13].

Step II: For given ak and coefficient factors (ek1, d
k
1) and (ek2, d

k
2), solve

min
ck∈ZLc×1

max
l=1,2

fl(a
k, ck), (15)

which, according to (12), can be rewritten by

min
ck∈ZLc×1

max
l=1,2

ck
∗
Qlc

k − 2q∗l c
k, (16)

where

Ql
∆
= ekl

2
I− ekl

2
H∗k

(
1

SNR
I + HkkH

∗
kk + HkH

∗
k

)−1
Hk, (17)
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ql
∆
= ekl d

k
l H
∗
k

(
1

SNR
I + HkkH

∗
kk + HkH

∗
k

)−1
Hkkak. (18)

The min-max quadratic problem (16) is an NP-hard integer programming. Therefore, we propose

an efficient suboptimal solution for (16) which is obtained in polynomial time as follows. First,

we relax the constraint ck ∈ ZLc×1, and let the optimal value of ck to be continuous, i.e.,

ck ∈ RLc×1, with the constraint diag
{
ck
}
(ck−1) ≥ 0. Then, the obtained real-valued solution

is rounded to its closest integer point. It is shown in [14] that the constraint xi(xi − 1) ≥ 0 for

each element i of a real-valued vector x can achieve a tight lower bound on the optimal value

of the integer quadratic minimization of x.

Following the same approach as in [14], we relax (16) as

min
ck∈RLc×1

max
l=1,2

ck
∗
Qlc

k − 2q∗l c
k,

subject to diag
{
ck
}
(ck − 1) ≥ 0. (19)

With the definition of Ck ∆
= ckck

∗, the problem (19) is reformulated as

min
ck∈RLc×1

max
l=1,2

Tr
{
QlC

k
}
− 2q∗l c

k,

subject to

 diag
{
Ck
}
≥ ck

Ck = ckck
∗ . (20)

Then, relaxing the nonconvex constraint Ck = ckck
∗ into a convex constraint Ck < ckck

∗, the

non-convex problem (20) with the help of a Schur complement is relaxed to a convex problem

as

min
ε,ck∈RLc×1

ε,

subject to



Tr
{
Q1C

k
}
− 2q∗1c

k ≤ ε

Tr
{
Q2C

k
}
− 2q∗2c

k ≤ ε

diag
{
Ck
}
≥ ck Ck ck

ck
∗

1

 < 0

. (21)

The problem (21) is a semidefinite programming (SDP) and can be efficiently solved by CVX

[15], which is a software package developed for convex optimization problems.
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Step III: For given ck and coefficient factors (ek1, d
k
1) and (ek2, d

k
2), solve

min
ak∈ZNtk×1

max
l=1,2

fl(a
k, ck),

subject to det
([

ak,gk1 , . . . ,g
k
t−1
])
6= 0, (22)

which is an NP-hard integer programming. Here, because of the constraint det
([

ak,gk1 , . . . ,g
k
t−1
])
6=

0, we cannot achieve a tight bound with an approach similar to Step II. Therefore, we propose

a search over integer space ZNtk×1 which can obtain an efficient suboptimal solution of (22) as

follows. First, we optimize (22) with a relaxation on the constraint ak ∈ ZNtk×1 as ak ∈ RNtk×1.

Then, we search over a Ntk-dimensional quantization sphere which has the obtained real valued

solution ak ∈ RNtk×1 as its center, and find the best candidate according to (22). Since fl(ak, ck)

is a convex quadratic function, the proposed search can achieve a tight suboptimal solution of

(22) when the quantization sphere has sufficiently large radius. The quantization scheme will be

further discussed in the sequel.

Here, the problem (22) is relaxed as

min
ak∈RNtk

×1
max
l=1,2

fl(a
k, ck). (23)

To obtain the solution of (23) in closed form, we use the same procedure as in [16, Subsection

III.A] to convert (23) to an equivalent problem as

max
0≤α≤1

min
ak∈RNtk

×1
V
(
α, ak

)
, (24)

where V (α, ak) = αf1(a
k, ck) + (1−α)f2(ak, ck), and 0 ≤ α ≤ 1 is an auxiliary parameter. As

details are given in Appendix IV, the solution of (24) is

ak = uk(α∗)

(
vk(α∗)I−H∗kk

(
1

SNR
I + HkkH

∗
kk + HkH

∗
k

)−1
Hkk

)−1

×H∗kk

(
1

SNR
I + HkkH

∗
kk + HkH

∗
k

)−1
Hkc

k, (25)

where α∗ is obtained according to the considered three cases in Appendix IV. Also, functions

uk(p) and vk(p) are defined as follows

uk(p)
∆
= pek1d

k
1 + (1− p) ek2dk2,

vk(p)
∆
= pdk1

2
+ (1− p) dk2

2
. (26)
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As a polynomial-time approach to search over the quantization sphere, we can consider slowest

descent lines with directions of the eignevectors of the hessien of the cost function fl(ak, ck) in

(12), i.e., dkl
2
I−dkl

2
H∗kk

(
1

SNRI + HkkH
∗
kk + HkH

∗
k

)−1
Hkk, which crosses the center ak ∈ RNtk×1

in (25). Then, the closest integer points to the lines and independent of gk1 , . . . ,g
k
t−1 are checked

to find the best candidate. This approach is based on the slowest descent method which can

efficiently search over discrete points [17].

Assume that the quantization radius is R and the number of the slowest descent lines is W . It

is straightforward to show that our approach needs to search over at most W × (2R+ 1)×Ntk

integer points. Through the following lemma, we can exclude those ak from the quantization

sphere for which the rate (7) are zero. It also determines the maximum required radius for the

quantization sphere, which guarantees to include the optimal solution of (22). The Lemma is of

interest because it reduces the complexity for searching in the quantization sphere.

Lemma 2: Assume e1, e2, d1, d2, and ck are given. The search space ak with the following

norm leads to rate 0 in (7).∣∣∣∣ak∣∣∣∣2 ≥ min
l=1,2

1

e2l

(
1 + SNRλ2max

(
Ĥk

)
− d2l

∣∣∣∣ck∣∣∣∣2) , (27)

where λmax

(
Ĥk

)
is the maximum singular value of Ĥk.

Proof: See Appendix V.

Algorithm 1, summarized in Table 1, is iterated until a convergence threshold δ, considered

by the algorithm designer, is reached. In the simulation results, we will show the performance of

our polynomial time suboptimal algorithm in comparison with the NP-hard optimal exhaustive

search of the equations and UCM and DCM coefficients over the cost function of (10). The

following theorem proves the convergence of Algorithm 1.

Theorem 3: Algorithm 1 is convergent.

Proof: See Appendix VI.

IV. SIMULATION RESULTS

In this section, we provide simulation results that demonstrate the performance of the proposed

IFMR scheme. Consider a three pair interference channel in which each node is equipped with
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N antennas, unless otherwise stated. The elements of the channel matrices are assumed to have

Gaussian distribution with variance 1, i.e., ρ2kj = 1, ∀k, j. The additive white Gaussian noise has

σ2 = 1. The convergence threshold parameter δ in Algorithm 1 is set to 10−3. We average over

10000 randomly generated channel realizations.

In Figs. 3 and 4, we evaluate the achievable rates of our proposed IFMR scheme and compare

the results with the state-of-the-art works, i.e., MMSE and ZF [2], and IFLR scheme [5], for

N = 1 and N = 2, respectively. As observed, Algorithm 1 can achieve almost the same

performance as in the optimal exhaustive search-based scheme. For instance, in the cases with

N = 1 and N = 2, the performance degradation, compared to the optimal exhaustive search-

based approach, is less than 1 dB in 1 bit/channel use and 1 dB in 2 bit/channel use, respectively.

It is also observed that the IFMR scheme outperforms the conventional MMSE and ZF receivers

at all SNRs, and the performance gap increases with SNR which is because of the increase

in interference. Also, the IFMR scheme achieves slightly higher rates compared to the IFLR

scheme at low SNRs. It is due to the fact that the optimal equations recovered from (6) may

have zero elements with high probability at low SNRs [18], whereby a subset of the equations

would be enough for recovering the desirable messages. Note that the IFLR scheme leads to

better achievable rates compared to the IFMR scheme at high SNRs, at the expense of much

higher complexity. For example, the IFLR scheme has 2 dB improvement compared to the IFMR

scheme at 1.15 bit/channel use in the one antenna case (Fig. 3) and 2.5 dB improvement at 2.5

bit/channel use in two antennas case (Fig. 4). That is because, in comparison with IFMR, the

IFLR scheme has more flexibility in decoding the interference as equations.

In Fig. 5, we investigate the average number of required iterations as a function of SNR

for the cases with N = 2. It is observed that for all considered SNRs less than 5 iterations

are required for the algorithm convergence. Thus, our algorithm can be effectively applied in

delay-constrained applications.

Fig. 6 shows the throughput versus the target rate Rt for the case with N = 2. The throughput

is defined as, e.g., [19, Eq. (4)]

η = Rt × (1− Pr(Rachievable < Rt)) .

As observed, for small values of Rt, the throughput increases with the rate almost linearly,

because with high probability the data is correctly decoded. On the other hand, the outage



15

0 5 10 15 20 25 30
0

0.5

1

1.5

2

SNR (dB)

A
ch

ie
v
ab

le
 R

at
e 

(b
it

s/
ch

an
n
el

 u
se

)

 

 

IFMR, exhaustive search

IFMR, Algorithm 1

IFLR [5]

MMSE/ZF [2]

Fig. 3. Achievable rate of IFMR vs conventional MMSE, ZF, and IFLR for SISO, i.e., 1× 1 MIMO, three pair interference

channel.

probability increases and the throughput goes to zero for large values of Rt. Moreover, depending

on the SNR, there may be a finite optimum for the target rate in terms of throughput.

In Figs. 7 and 8, the effect of the number of receiving antennas N is assessed on the achievable

rate and the outage probability of the proposed algorithm when each transmitter has one antenna.

The outage probability is defined as Pr(Rachievable < Rt). Here, Rt = 1 bit/channel use is

considered. As can be observed from Fig. 7, the achievable rate increases with the number of

antennas N . For example, in sum rate of 2 bit/channel use, the system with N = 4 improves the

power efficiency by 4 dB and 10 dB compared to the cases with N = 3 and N = 2, respectively.

Also, from Fig. 8, the IFMR scheme results in diversity, i.e., the slope of the outage probability

curves at high SNRs, approximately equal to N .

V. CONCLUSION

In this paper, we proposed a low-complexity linear receiver scheme, referred to as IFMR,

for interference channels. In IFMR, an integer combination of the desirable messages of each

receiver can be recovered with the help of only two equations independently of the number

of transmitters and data streams. We first proved that the sequential selection of the integer

combinations can achieve the same rate as in the optimally joint selection. Then, we proposed a



16

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

SNR (dB)

A
ch

ie
v

ab
le

 R
at

e 
(b

it
s/

ch
an

n
el

 u
se

)

 

 

IFMR, exhaustive search

IFMR, Algorithm 1

IFLR [5]

MMSE [2]

ZF [2]

Fig. 4. Achievable rate of IFMR vs conventional MMSE, ZF, and IFLR for 2× 2 MIMO three pair interference channel.

Fig. 5. The average number of required iterations of IFMR for 2× 2 MIMO three pair interference channel.

suboptimal algorithm to optimize the required equations and integer combinations in polynomial

time and proved its convergence. Despite of its much less complexity for IFMR, our proposed

algorithm can achieve almost the same performance as in the exhaustive search scheme. The

IFMR scheme also shows a significantly better performance, in terms of the achievable rate, in

comparison with the MMSE and ZF schemes.
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Fig. 7. Achievable rate of IFMR for SIMO, i.e., 1×N MIMO, three pair interference channel with N receiving antennas.

APPENDIX I

PROOF OF THEOREM 1

Let the independent DCM coefficient vectors
{
gk1 , . . . ,g

k
Nt

}
be selected by the sequential

method in (10). According to the constraint in (10), we have RDCM
(
gk1
)
≥ RDCM

(
gk2
)
≥ . . . ≥

RDCM
(
gkNt
)
. Hence, the achievable rate of the sequential technique is Rseq = Nt×RDCM

(
gkNt
)
.



18

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

O
u
ta

g
e 

P
ro

b
ab

il
it

y

 

 

N = 2

N = 3

N = 4

Fig. 8. Outage probability of IFMR for SIMO, i.e., 1×N MIMO, three pair interference channel with N receiving antennas

and Rt = 1 bit/channel use.

Suppose also that the independent set
{
dk1, . . . ,d

k
Nt

}
, i.e., rank

{
dk1, . . . ,d

k
Nt

}
= Nt, are the

optimum solution of (9). Without loss of generality, assume that RDCM
(
dk1
)
≥ RDCM

(
dk2
)
≥

. . . ≥ RDCM
(
dkNt
)
. Thus, the achievable rate of the optimal technique is Ropt = Nt×RDCM

(
dkNt
)
.

Using contradiction, assume Ropt > Rseq. Hence, RDCM
(
dkNt
)
> RDCM

(
gkNt
)
. From (10), gkNt

is obtained from two equations which have the maximum achievable rate among all set of two

equations whose associated DCM coefficient vectors are linearly independent of
{
gk1 , . . . ,g

k
Nt−1

}
.

This implies that every DCM coefficient vector with a rate higher than RDCM
(
gkNt
)

is linearly

dependent to the set
{
gk1 , . . . ,g

k
Nt−1

}
. Thus, we conclude dkNt exists in the span

{
gk1 , . . . ,g

k
Nt−1

}
.

As a result, for all dki ,∀i ≤ Nt, we have{
dk1, . . . ,d

k
Nt

}
∈ span

{
gk1 , . . . ,g

k
Nt−1

}
, (28)

which indicates that rank
{
dk1, . . . ,d

k
Nt

}
≤ Nt − 1. However, this contradicts the assumption of

linear-independency of these equations. Hence, Ropt = Rseq.
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APPENDIX II

PROOF OF LEMMA 1

For every vector y 6= 0 in RL×1, we can write

Γ
∆
= y∗

(
I− xx∗

x∗x

)
y = y∗y − y∗

xx∗

x∗x
y = y∗y − 1

x∗x
y∗xx∗y. (29)

Then, from the Cauchy-Schwarz inequality y∗xx∗y ≤ (y∗y) (x∗x), we conclude Γ ≥ 0. Thus,

I− xx∗

x∗x
is semi-definite.

APPENDIX III

PROOF OF THEOREM 2

From the definition of U in (14) and adding then subtracting a term, we can write

U =

 ak
∗
ak 0

0 ck
∗
ck

−
 ak

∗
H∗kk

ck
∗
H∗k

( 1

SNR
I + Hkk

akak
∗

ak∗ak
H∗kk + Hk

ckck
∗

ck∗ck
H∗k

)−1

×
[

Hkka
k Hkc

k

]
+

 ak
∗
H∗kk

ck
∗
H∗k

( 1

SNR
I + Hkk

akak
∗

ak∗ak
H∗kk + Hk

ckck
∗

ck∗ck
H∗k

)−1 [
Hkka

k Hkc
k

]

−

 ak
∗
H∗kk

ck
∗
H∗k

( 1

SNR
I + HkkH

∗
kk + HkH

∗
k

)−1 [
Hkka

k Hkc
k

]
. (30)

According to matrix inverses identities in [20, Eqs. (159) and (165)], we can rewrite (30) as

U =

( 1
ak∗ak

0

0 1
ck∗ck

+ SNR

 1
ak∗ak

ak
∗
H∗kk

1
ck∗ck

ck
∗
H∗k

[ 1
ak∗ak

Hkka
k 1

ck∗ck
Hkck

])−1

+

 ak
∗
H∗kk

ck
∗
H∗k

{( 1

SNR
I + Hkk

akak
∗

ak∗ak
H∗kk + Hk

ckck
∗

ck∗ck
H∗k

)−1

×
(

HkkH
∗
kk −Hkk

akak
∗

ak∗ak
H∗kk + HkH

∗
k −Hk

ckck
∗

ck∗ck
H∗k

)(
1

SNR
I + HkkH

∗
kk + HkH

∗
k

)−1}
×
[

Hkka
k Hkck

]
. (31)

It is straightforward to show that matrices F, G, and T with

F =

( 1
ak∗ak

0

0 1
ck∗ck

+ SNR

 1
ak∗ak

ak
∗
H∗kk

1
ck∗ck

ck
∗
H∗k

[ 1
ak∗ak

Hkka
k 1

ck∗ck
Hkc

k

])−1
,
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G =

(
1

SNR
I + Hkk

akak
∗

ak∗ak
H∗kk + Hk

ckck
∗

ck∗ck
H∗k

)−1
,

T =

(
1

SNR
I + HkkH

∗
kk + HkH

∗
k

)−1
, (32)

are positive definite.

According to Lemma 1, since HkkH
∗
kk −Hkk

akak
∗

ak∗ak
H∗kk and HkH

∗
k −Hk

ckck
∗

ck∗ck
H∗k are positive

semi-definite matrices, the matrix X with

X =

(
1

SNR
I + Hkk

akak
∗

ak∗ak
H∗kk + Hk

ckck
∗

ck∗ck
H∗k

)−1
×
(

HkkH
∗
kk −Hkk

akak
∗

ak∗ak
H∗kk + HkH

∗
k −Hk

ckck
∗

ck∗ck
H∗k

)(
1

SNR
I + HkkH

∗
kk + HkH

∗
k

)−1
,

(33)

is also semi-definite. Hence, the overall matrix U, which is sum of a positive definite matrix

and a semi-definite matrix, is positive definite.

APPENDIX IV

DETAILS FOR THE SOLUTION OF (24)

For (24), we further define a function

V (α)
∆
= min

ak∈RNtk
×1V

(
α, ak

)
= V

(
α, ak

(α)
)
, (34)

where ak
(α) minimizes V (α, ak) for given α. Let α∗ denote the solution of max0≤α≤1V (α).

There are three cases according to the relationship of f1
(
ak

(α∗)
, ck
)

and f2
(
ak

(α∗)
, ck
)

, one of

which includes the solution of (24).

Case 1: If α∗ = 0, we have

f1

(
ak

(0)
, ck
)
≤ f2

(
ak

(0)
, ck
)
. (35)

Hence, (24) is changed to

min
ak(0)∈RNtk

×1
f2

(
ak

(0)
, ck
)
, (36)
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which can be effectively solved by setting the derivative of f2
(
ak

(0)
, ck
)

with respect to ak
(0)

equal to zero. Hence, according to (12), the optimal ak
(0) is given by

∇akf2
(
ak, ck

)
=

(
dk2

2
I−H∗kk

(
1

SNR
I + HkkH

∗
kk + HkH

∗
k

)−1
Hkk

)
ak

− ek2dk2H∗kk
(

1

SNR
I + HkkH

∗
kk + HkH

∗
k

)−1
Hkc

k = 0, (37)

which respectively leads to

ak
(0)

= ek2d
k
2

(
dk2

2
I−H∗kk

(
1

SNR
I + HkkH

∗
kk + HkH

∗
k

)−1
Hkk

)−1
×H∗kk

(
1

SNR
I + HkkH

∗
kk + HkH

∗
k

)−1
Hkc

k. (38)

Case 2: If α∗ = 1, then we have

f1

(
ak

(1)
, ck
)
≥ f2

(
ak

(1)
, ck
)
. (39)

Thus, similar to Case 1, we can find the ak
(1) as

ak
(1)

= ek1d
k
1

(
dk1

2
I−H∗kk

(
1

SNR
I + HkkH

∗
kk + HkH

∗
k

)−1
Hkk

)−1
×H∗kk

(
1

SNR
I + HkkH

∗
kk + HkH

∗
k

)−1
Hkc

k. (40)

Case 3: If 0 < α∗ < 1, then we have

f1

(
ak

(α∗)
, ck
)
= f2

(
ak

(α∗)
, ck
)
, (41)

in which α∗ can be found by the Bisection method. In this case, (24) is rephrased as

min
ak(α

∗)∈RNtk
×1V

(
α∗, ak

(α∗)
)
= α∗f1

(
ak

(α∗)
, ck
)
+ (1− α∗) f2

(
ak

(α∗)
, ck
)
, (42)

which can be solved by setting the derivative of V
(
α∗, ak

(α∗)
)

with respect to ak
(α∗) equal to

zero. With the same arguments and using some manipulations, ak
(α∗) is obtained by

ak
(α∗)

= uk(α∗)

(
vk(α∗)I−H∗kk

(
1

SNR
I + HkkH

∗
kk + HkH

∗
k

)−1
Hkk

)−1

×H∗kk

(
1

SNR
I + HkkH

∗
kk + HkH

∗
k

)−1
Hkc

k, (43)

where

uk(α∗)
∆
= α∗ek1d

k
1 + (1− α∗) ek2dk2,

vk(α∗)
∆
= α∗dk1

2
+ (1− α∗) dk2

2
. (44)
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APPENDIX V

PROOF OF LEMMA 2

An equation with ECV akl has rate (5) equal to zero if
∣∣∣∣akl ∣∣∣∣2 ≥ 1 + SNRλ2max

(
Ĥk

)
[5].

Thus, the rate (7) is zero if

e21
∣∣∣∣ak∣∣∣∣2 + d21

∣∣∣∣ck∣∣∣∣2 ≥ 1 + SNRλ2max

(
Ĥk

)
, (45)

or

e22
∣∣∣∣ak∣∣∣∣2 + d22

∣∣∣∣ck∣∣∣∣2 ≥ 1 + SNRλ2max

(
Ĥk

)
. (46)

Accordingly, we should have∣∣∣∣ak∣∣∣∣2 ≥ 1
e21

(
1 + SNRλ2max

(
Ĥk

)
− d21

∣∣∣∣ck∣∣∣∣2) or 1
e22

(
1 + SNRλ2max

(
Ĥk

)
− d22

∣∣∣∣ck∣∣∣∣2), which

completes the proof.

APPENDIX VI

PROOF OF THEOREM 3

For each t, assume εj(ak,j, ck,j) = max
l=1,2

fl
j
(
ak,j, ck,j

)
, where flj

(
ak,j, ck,j

)
corresponds to the

j-th iteration. For the iteration j + 1 of Step I, we have εj+1(ak,j, ck,j) ≤ εj(ak,j, ck,j), in Step

II, εj+1(ak,j, ck,j+1) ≤ εj+1(ak,j, ck,j), and in Step III, εj+1(ak,j+1, ck,j+1) ≤ εj+1(ak,j, ck,j+1).

According to fl(a
k, ck), the latter is guaranteed when we assume the quantization sphere has

sufficiently large radius to find a suitable ak,j+1. Even for a small quantization sphere with no

candidate, we can update as ak,j+1 = ak,j which in the worst case of ck,j+1 = ck,j leads to

εj+1(ak,j+1, ck,j+1) = εj+1(ak,j, ck,j). Hence, εj+1(ak,j+1, ck,j+1) ≤ εj(ak,j, ck,j) at the end of

iteration j+1. In this way, in each iteration, the function ε = max
l=1,2

fl(a
k, ck) either decreases or

remains unchanged, and is lower bounded by zero. Thus, the proposed algorithm is convergent.
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