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Abstract—Considering both non-line-of-sight (NLoS) and line-
of-sight (LoS) transmissions, the transitional behaviors from
noise-limited regime to dense interference-limited regime have
been investigated for the fifth generation (5G) small cell networks
(SCNs). Besides, we identify four performance regimes based
on base station (BS) density, i.e., (i) the noise-limited regime,
(ii) the signal-dominated regime, (iii) the interference-dominated
regime, and (iv) the interference-limited regime. To character-
ize the performance regime, we propose a unified framework
analyzing the future 5G wireless networks over generalized
shadowing/fading channels, in which the user association schemes
based on the strongest instantaneous received power (SIRP) and
the strongest average received power (SARP) can be studied,
while NLoS/LoS transmissions and multi-slop path loss model are
considered. Simulation results indicate that different factors, i.e.,
noise, desired signal, and interference, successively and separately
dominate the network performance with the increase of BS
density. Hence, our results shed new light on the design and
management of SCNs in urban and rural areas with different
BS deployment densities.

Index Terms—Dense small cellular networks, NLoS, LoS,
generalized shadowing/fading, log-normal shadowing, Rayleigh,
Rician, Nakagami-m, PPP, ASE, 5G.

I. INTRODUCTION

According to the study of Prof. Webb [2], [3], the wireless

capacity has increased about 1 million fold from 1950 to 2000.
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Data shows that around 2700× improvement was achieved by

cell splitting and network densification, while the rest of the

gain, was mainly obtained from the use of a wider spectrum,

better coding techniques, and modulation schemes. In this con-

text, network densification has been and will still be the main

force to achieve the 1000× fold increase of data rates in the

future fifth generation (5G) wireless networks [4], [5], due to

its large spectrum reuse as well as its easy management. In this

paper, we focus on the analysis of transitional behaviors for

small cell networks (SCNs) using an orthogonal deployment

with the existing macrocells, i.e., small cells and macrocells

are operating on different frequency spectrum [6]–[9].

Regarding the network performance of SCNs, a fundamental

question is: What is the performance trend of SCNs as the

base station (BS) density increases? In this paper, we answer

this question and identify four performance regimes based on

BS density with considerations of non-line-of-sight (NLoS)

and line-of-sight (LoS) transmissions. These four performance

regimes are: (i) the noise-limited regime, (ii) the signal

NLoS-to-LoS-transition regime, (iii) the interference NLoS-to-

LoS-transition regime, and (iv) the dense interference-limited

regime. To characterize the performance regime, we propose a

unified framework analyzing the future 5G wireless networks

over generalized shadowing/fading channels. The main contri-

butions of this paper are summarized as follows:

• We reveal the transitional behaviors from noise-limited

regime to dense interference-limited regime in SCNs and

analyze in detail the factors that affect the performance

trend. The analysis results will benefit the design and

management of SCNs in urban and rural areas with

different BS deployment densities.

• We identify four performance regimes based on BS

density. For the discovered regimes, we present tractable

definitions for the regime boundaries. More specifically,

– The boundary between the noise-limited regime and

the signal NLoS-to-LoS-transition regime;

– The boundary between the signal-dominated regime

and the interference NLoS-to-LoS-transition regime;

– The boundary between the interference-dominated

regime and the interference-limited regime.

• An accurate SCN model and generalized theoretical

analysis: For characterizing the NLoS-to-LoS transitional

behaviors in SCNs, we propose a unified framework,

in which the user association strategies based on the

strongest instantaneous received power (SIRP) and the

strongest average received power (SARP) can be studied,

http://arxiv.org/abs/1701.01544v3
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assuming generalized shadowing/fading channels, multi-

slop path loss model and incorporating both NLoS and

LoS transmissions.

The remainder of this paper is organized as follows. In

Section II, motivations and some recent work closely related

to ours are presented. Section III introduces the system model

and network assumptions. An important theorem used in

the analysis on transforming the original network into an

equivalent distance-dependent network, i.e., the Equivalence

Theorem, is presented and proven in Section IV. Section

V studies the coverage probability and the ASE of SCNs,

more specifically, several special cases are also investigated. In

Section VI, the analytical results are validated via Monte Carlo

simulations. Besides, the transitional behaviors are elaborated

and tractable definitions for the regime boundaries are pre-

sented. Finally, Section VII concludes this paper and discusses

possible future work.

II. MOTIVATIONS AND RELATED WORK

The modeling of the spatial distribution of SCNs using

stochastic geometry has resulted in significant progress in

understanding the performance of cellular networks [10]–[12].

Random spatial point processes, especially the homogeneous

Poisson point process (PPP), have now been widely used to

model the locations of small cell BSs in various scenarios.

Existing results are likely to analyze the performance assuming

that the networks operate in the noise-limited regime or the

interference-limited regime. However, the transitional behav-

iors from noise-limited regime to interference-limited regime

were rarely mentioned in their work. Some assumptions in

the system model were even conflicted with each other, e.g.,

in [13] and [14], the millimeter wave networks were assumed

to be noise-limited and interference-limited, respectively. Be-

sides, most work is usually based on certain simplified assump-

tions, e.g., Rayleigh fading, a single path loss exponent with

no thermal noise, etc, for analytical tractability, which may

not hold in a more realistic scenario. For instance, consider

a SCN in urban areas, the path loss model may not follow a

single power law relationship in the near-filed and thus non-

singular [15], [16] or multiple-slop path loss model [17] should

be applied. Besides, signal transmissions between BSs and

MUs are frequently affected by reflection, diffraction, and even

blockage due to high-rise buildings in urban areas, and thus

NLoS/LoS transmissions should also be considered [14]. As a

consequence, the detailed analysis of transitional behaviors are

needed, with considerations of a more generalized propagation

model incorporating both NLoS and LoS transmissions, to

cope with these new characteristics in SCNs.

A number of more recent work had a new look at dense

SCNs considering more practical propagation models. The

closest system model to the one in this paper are in [13]–[15],

[18]–[23]. In [18], the transitional behaviors of interference

in millimeter wave networks was analyzed, but it focused on

the medium access control. In [14] and [19], the coverage

probability and capacity were calculated based on the smallest

path loss cell association model assuming multi-path fading

modeled as Rayleigh fading and Nakagami-m fading, respec-

tively. However, shadowing was ignored in their models, which

may not be very practical for a SCN. The authors of [13]

and [20] analyzed the coverage and capacity performance in

millimeter wave cellular networks. In [13], self-backhauled

millimeter wave cellular networks were analyzed assuming a

cell association scheme based on the smallest path loss. In

[20], a three-state statistical model for each link was assumed,

in which a link can either be in a NLoS, LoS or an outage

state. Besides, both [13] and [20] assumed a noise-limited

network ignoring inter-cell interference, which may not be

very practical since modern wireless networks generally work

in an interference-limited region. In [21], the authors assumed

Rayleigh fading for NLoS transmissions and Nakagami-m
fading for LoS transmissions which is more practical than

work in [19]. However, the cell association scheme in [21]

is only applicable to the scenario where the SINR threshold

is greater than 0 dB. Besides, the ASE performance was not

analyzed in [21]. In [15], a near-filed path loss model with

bounded path loss was studied. In [22], a tractable performance

evaluation method, i.e., the intensity matching, was proposed

to model and optimize the networks. Renzo et al. [23] also

introduced an analytical framework based on the strongest

average received signal power associations scheme which is

applicable to general fading distributions, including composite

fading channels, to analyze the average rate of heterogeneous

networks using a single-slope path loss model.

To summarize, in this paper, we propose a more gener-

alized framework to analyze the transitional behaviors for

SCNs compared with the work in [13]–[15], [18]–[22]. Our

framework takes into account a cell association scheme based

on the strongest received signal power, probabilistic NLoS

and LoS transmissions, multi-slop path loss model, multi-

path fading and/or shadowing. Furthermore, the proposed

framework can also be applied to analyze dense SCNs, where

BSs are distributed according to non-homogeneous PPPs, i.e.,

the BS density is spatially varying.

III. SYSTEM MODEL

We consider a homogeneous SCN in urban areas and focus

on the analysis of downlink performance. We assume that BSs

are spatially distributed on an infinite plane and the locations

of BSs X i follow a homogeneous PPP denoted by Φ = {Xi}
with an density of λ, where i is the BS index [24]. MUs

are deployed according to another independent homogeneous

PPP denoted by Φu with an density of λu. All BSs in the

network operate at the same power Pt and share the same

bandwidth. Within a cell, MUs use orthogonal frequencies for

downlink transmissions and therefore intra-cell interference is

not considered in our analysis. However, adjacent BSs may

generate inter-cell interference to MUs, which is the primary

focus of our work.

A. Path Loss Model

In a downlink SCN, the long-distance signal attenuation

is modeled by a monotone, non-increasing and continuous

path loss function l (Ri) : [0,∞] 7→ [0,∞] and l (Ri)
decays to zero asymptotically, where Ri = ‖Xi‖ denotes the

Euclidean distance between a BS at Xi and the typical MU
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(aka the probe MU or the tagged MU) located at the origin

o. Specifically, a multi-slop path loss function [17], [19] is

utilized in which the distance Ri is segmented into N pieces.

Compared with the single-slope path loss model, the multi-

slope path loss model is more flexible and can characterize

the future networks instead of only depending on the existing

cellular works. Besides, the standard path loss model does not

accurately capture the dependence of the path loss exponent

α on the link distance in many important situations [17], [19].

The multi-slop path loss function is written as

l (Ri) =







l1 (Ri) , when 0 6 Ri 6 d1

l2 (Ri) , when d1 < Ri 6 d2
...

...

lN (Ri) , when Ri > dN−1

, (1)

where each piece ln (Ri) , n ∈ {1, 2, . . . , N} , N incorpo-

rates both NLoS and LoS transmissions, whose performance

impact is attracting growing interest among researchers re-

cently. In reality, the occurrence of NLoS or LoS transmis-

sions depends on various environmental factors, including

geographical structure, distance, and clusters, etc. Note that the

corresponding points in each region form independent point

processes denoted by Φn, n ∈ N , i.e.,






Φ1 , {Xi |‖Xi‖ ∈ [0, d1]} , when n = 1

Φn , {Xi |‖Xi‖ ∈ (dn−1, dn]} , when n /∈ {1, N}
ΦN , {Xi |‖X i‖ ∈ (dN−1,∞]} , when n = N

.

(2)

In the following, we give a simplified one-parameter model

of NLoS and LoS transmissions. The occurrence of NLoS and

LoS transmissions in each piece ln (Ri) can be modeled using

probabilities pNL
n (Ri) and pL

n (Ri), respectively, i.e.,

l (Ri)=

{

lNL
n (Ri) ,

lLn (Ri) ,

with probability: pNL
n (Ri)

with probability: pL
n (Ri)

, (3)

where lNL
n (Ri) and lLn (Ri) are the n-th piece path loss

functions for the NLoS transmission and the LoS transmission,

respectively, pNL
n (Ri) and pNL

n (Ri) are the probabilities that

the transmissions are NLoS and LoS, respectively, moreover,

pNL
n (Ri)+p

L
n (Ri) = 1.

Regarding the mathematical form of pL
n (Ri) (or pNL

n (Ri)),
N. Blaunstein [25] formulated pL

n (Ri) as a negative ex-

ponential function, i.e., pL
n (Ri) = e−κRi , where κ is a

parameter determined by the density and the mean length of

the blockages lying in the visual path between the typical

MU and BSs. Bai [26] extended N. Blaunstein’s work by

using random shape theory which shows that κ is not only

determined by the mean length but also the mean width of the

blockages. The authors of [20] and [26] approximated pL
n (Ri)

by piece-wise functions and step functions, respectively. Ming

et al. [19] considered pL
n (Ri) as a linear function and a two-

piece exponential function, respectively, both recommended

by the 3GPP [27], [28].

It should be noted that the occurrence of NLoS (or LoS)

transmissions is assumed to be independent for different BS-

MU pairs. Though such assumption might not be entirely

realistic, e.g., NLoS transmissions for nearby MUs caused by

a large obstacle may be spatially correlated, the authors of [26]

showed that the impact of the independence assumption on the

SINR analysis is negligible.

In general, NLoS and LoS transmissions incur different path

losses, which are formulated by1

PLNL
dB,n = ANL

dB,n + αNL
n 10 log10 Ri + ξNL

dB,n, (4)

and

PLL
dB,n = AL

dB,n + αL
n10 log10 Ri + ξL

dB,n, (5)

where the path loss is expressed in dB unit, ANL
dB,n and

AL
dB,n are the n-th piece path losses at the reference distance

(usually at 1 meter), αNL
n and αL

n are respectively the n-th

piece path loss exponents for NLoS and LoS transmissions,

ξNL
dB,n and ξL

dB,n are independent Gaussian random variables

with zero means, i.e., ξNL
dB,n ∼ N

(

0,
(
σNL
n

)2
)

and ξL
dB,n ∼

N
(

0,
(
σL
n

)2
)

, reflecting the signal attenuation caused by

shadow fading. The corresponding model parameters can be

found in [27], [29]–[31].

Accordingly, the n-th piece received signal power for NLoS

and LoS transmissions in W (watt) can be respectively ex-

pressed by

PNL
i,n = Pt · 10−ANL

dB,n/10HNL
i,n (Ri)

−αNL
n = BNL

n HNL
i,nl

NL
n (Ri) ,

(6)

and

P L
i,n = Pt · 10−AL

dB,n/10HL
i,n (Ri)

−αL
n = BL

nHL
i,nl

L
n (Ri) , (7)

where HNL
i,n = exp

(
βξNL

dB,n

)
(or HL

i,n = exp
(
βξL

dB,n

)
) de-

notes log-normal shadowing for NLoS (or LoS) transmission,

and BNL
n = Pt · 10−ANL

dB,n/10, BL
n = Pt · 10−AL

dB,n/10 and

β = − ln 10/10 are all constants. Note that usually it is

assumed that shadowing among different BS-MU pairs are

mutually independent and identically distributed (i.i.d.) and

also independent of BS locations [10], [12], thus HNL
i,n and

HL
i,n can be denoted as HNL

n and HL
n, respectively, for the the

convenience of expression. Moreover, if we replace HNL
n (or

HL
n ) by multi-path fading, i.e., hNL

n (or hL
n ) the model can

also be applied.

Therefore, the received power by the typical MU from BS

Xi is given by Eq. (8):

Based on the path loss model discussed above, for down-

link transmissions, the SINR experienced by the typical MU

associated with BS Xi can be written as

SINRi =
S

I + η
=

Pi (Ri)
∑

Xz∈Φ\Xi

Pz (Rz) + η
, (9)

where Φ \Xi is the Palm point process [32] representing the

set of interfering BSs in the network to the typical MU and

η denotes the noise power at the MU side, which is assumed

to be the additive white Gaussian noise (AWGN). For clarity,

we summarize the notation used in Table I for quick access.

1As the derivations in scenarios with log-normal shadowing is much more
complicated than that with Rayleigh fading, we choose to take the former as
an example. It is found in Eq. (6) and Eq. (7) that the model can also be
applied to Rayleigh fading and other generalized shadowing/fading models.
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Pi (Ri) =







Pi,1 (Ri) =

{

PNL
i,1 (Ri) = BNL

1 HNL
i,1l

NL
1 (Ri) ,

P L
i,1 (Ri) = BL

1HL
i,1l

L
1 (Ri) ,

with probability: pNL
1 (Ri)

with probability: pL
1 (Ri)

, when 0 6 Ri 6 d1

Pi,2 (Ri) =

{

PNL
i,2 (Ri) = BNL

2 HNL
i,2l

NL
2 (Ri) ,

P L
i,2 (Ri) = BL

2HL
i,2l

L
2 (Ri) ,

with probability: pNL
2 (Ri)

with probability: pL
2 (Ri)

, when d1 < Ri 6 d2

...
...

Pi,N (Ri) =

{

PNL
i,N (Ri) = BNL

N HNL
i,N lNL

N (Ri) ,

P L
i,N (Ri) = BL

NHL
i,N lLN (Ri) ,

with probability: pNL
N (Ri)

with probability: pL
N (Ri)

,when Ri > dN−1

. (8)

Table I
NOTATION AND SIMULATION PARAMETERS SUMMARY

Notation Explanation
Value (if

applicable)

Φ, λ
Homogeneous BS PPP and its

density

ΦNL
n , ΦL

n
NLoS BS PPP and LoS BS

PPP, Φn = ΦNL
n ∪ ΦL

n

ΦNL
n , ΦL

n
Equivalent NLoS BS PPP and

equivalent LoS BS PPP

Pt BS transmission power 30 dBm

HNL
n , HL

n
Log-normal shadowing for

NLOS and LOS transmissions

ANL
n , AL

n
Path loss at the the reference

distance (1m)

30.8, 2.7

[27]

σNL
n , σL

n

Standard deviation of

shadowing for NLoS and LoS

transmissions

4 dB, 3

dB [27]

µNL
n , µL

n
Rate of Rayleigh fading for

NLoS and LoS transmissions
1, 1

αNL
n , αL

n
Path loss exponents for NLoS

and LoS transmissions

4.28, 2.42

[27]

η Noise power
-95 dBm

[27]

RNL
i,n, RL

i,n

Equivalent distance for NLoS

and LoS transmissions

ΛNL
n , ΛL

n
Intensity measure of ΦNL and

ΦL

λNL
n , λL

n Intensity of ΦNL and ΦL

d Radius of LoS region
250 m

[13], [14]

T SINR (or SIR) threshold 0 dB

I , INL, IL

Aggregate interference,

aggregate interference from

NLoS and LoS transmissions

B. Cell Association Scheme

Considering NLoS and LoS transmissions, two cell associ-

ation schemes can be studied, based on the strongest average

received power and the strongest instantaneous SINR, respec-

tively. As for the strongest instantaneous SINR association,

the typical MU associates itself to the BS X
∗
i given by

X
∗
i = arg max

Xi∈Φ
{SINRi} . (10)

Intuitively, the strongest instantaneous SINR association is

equivalent to the strongest instantaneous received signal power

association. Such intuition is formally presented and proved in

Lemma 1.

Lemma 1. For a non-negative set Ξ = {aq}, q ∈ N,
am∑

q 6=m

aq+W > an∑

q 6=n

aq+W if and only if am > an, ∀am, an ∈ Ξ.

Proof: For a non-negative set Ξ = {aq}, q ∈ N,
am∑

q
aq+W > an∑

q
aq+W if and only if am > an, thus

am∑

q
aq+W−am

> an∑

q
aq+W−an

if and only if am > an, which

completes the proof.

Lemma 1 states that providing the strongest instantaneous

SINR is equivalent to providing the strongest instantaneous

received power to the typical MU. It follows from Eq. (10)

and Lemma 1 that the BS associated with the typical MU can

also be written as

(X i,U,N )∗ = arg max
(Xi,U,N )∈S

{

BU
nh

U
n (Ri)

−αU
n

}

, (11)

where Xi ∈ Φ, U ∈ {NL,L} and the set S = Φ×{NL,L}×
N . Note that under SIRP, we ignore shadowing, i.e., HU

n, for

the sake of simplicity.

As for the SARP, the typical MU associates itself to the BS

(X i,U,N )
∗

given by

(Xi,U,N )∗ = arg max
(Xi,U,N )∈S

{

BU
nHNL

n (Ri)
−αU

n

}

. (12)

Note that under SARP, we ignore multi-path fading, i.e.,

hU
n, for the sake of simplicity. In the following, both cell

association schemes will be studied to characterize the network

performance.

IV. THE EQUIVALENCE OF SCNS

Before presenting our main analytical results, firstly we in-

troduce the Equivalence Theorem which will be used through-

out the paper. The purpose of introducing the Equivalence

Theorem is to unify the analysis considering different multi-

path fading and/or shadowing, and to reduce the complexity of

our theoretical analysis. Then based on this theorem, we derive

the cumulative distribution function (CDF) of the strongest

received signal power.
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A. The Equivalence of SCNs

In this subsection, an equivalent SCN to the one being

analyzed will be introduced, which specifies how the intensity

measure and the intensity are changed after a transformation

of original PPPs. Under SARP, denoting by

RNL
i,n = Ri ·

(
BNL

n HNL
n

)−1/αNL
n (13)

and

RL
i,n = Ri ·

(
BL

nHL
n

)−1/αL
n , (14)

the received signal power in Eq. (6) and Eq. (7) can be written

as

PNL
i,n =

(

RNL
i,n

)−αNL
n

(15)

and

P L
i,n =

(

RL
i,n

)−αL
n

. (16)

Note that from the viewpoint of the typical MU, each BS

in the infinite plane R2 is either a NLoS BS or a LoS BS.

Accordingly, we perform a thinning procedure on points in

the PPP Φn to model the distributions of NLoS BSs and

LoS BSs, respectively. That is, each BS in Φn will be kept

if a BS has a NLoS transmission with the typical MU, thus

forming a new point process denoted by ΦNL
n . While BSs

in Φn \ ΦNL
n form another point process denoted by ΦL

n,

representing the set of BSs with LoS path to the typical MU.

As a consequence of the independence assumption between

LoS and NLoS transmissions mentioned above, ΦNL
n and ΦL

n

are two independent non-homogeneous PPPs with intensity2

λpNL
n (Ri) and λpL

n (Ri), respectively.

Through the above transformation which scales the dis-

tances between the typical MU and all other BSs using Eq.

(13) and (14), the scaled point process for NLoS BSs (or

LoS BSs) still remains a PPP denoted by ΦNL
n (or ΦL

n )

according to the displacement theorem [33, Theorem 1.3.9].

In other words, ΦNL
n (or ΦL

n ) is obtained by randomly and

independently displacing each point of ΦNL
n (or ΦL

n ) to some

new location according to the kernel p = Pr
[

RNL
i,n ∈ b (0, t)

]

(or p = Pr
[

RL
i,n ∈ b (0, t)

]

). As the transformation is

mutually independent, the new point process is still a PPP.

The detailed proof can be obtained in [11, Lemma 1] and

we omitted it for space limitation. The intuition is that in

the equivalent networks, the received signal power and cell

association scheme are only dependent on the new equivalent

distance RNL
i,n (or RL

i,n ) between the BSs and the typical MU,

while the effects of transmit power, multi-path fading and

shadowing are incorporated into the equivalent intensity (or the

equivalent intensity measure) of the transformed point process.

Besides, ΦNL
n and ΦL

n are mutually independent because of

the independence between ΦNL
n and ΦL

n. As a result, the

performance analysis involving path loss, multi-path fading,

shadowing, etc, can be handled in a unified framework, which

motivates the following theorem.

2In this article, density and intensity have the same meaning.

Theorem 2 (The Equivalence Theorem). Assume that a gen-

eral fading or shadowing satisfy EHU
n

[(
HU

n

)2/αU
n

]

< ∞. The

system which consists of two non-homogeneous PPPs with

intensities λpNL
n (Ri) and λpL

n (Ri) respectively, representing

the sets of NLoS and LoS BSs, and in which each MU is

associated with the BS providing the strongest received signal

power is equivalent, in terms of performance to the typical

MU located at the origin, to another system consisting of

two non-homogeneous PPPs with intensities (functions) λNL
n (·)

and λL
n (·) respectively, representing the sets of NLoS and LoS

BSs, and in which the typical MU is associated with the nearest

BS. Moreover, intensities (functions) λNL
n (·) and λL

n (·) are

respectively given by

λNL
n (t) =

d

dt
ΛNL
n ([0, t]) (17)

and

λL
n (t) =

d

dt
ΛL
n ([0, t]) , (18)

where

ΛNL
n ([0, t]) = EHNL

n

[

2πλ

∫ RNL
i,max

Ri=dn−1

pNL
n (Ri)RidRi

]

(19)

and

ΛL
n ([0, t]) = EHL

n

[

2πλ

∫ RL
i,max

Ri=dn−1

pL
n (Ri)RidRi

]

, (20)

where RNL
i,max = min

{

dn, t
(
BNL

n HNL
n

)1/αNL
n

}

and RL
i,max =

min
{

dn, t
(
BL

nHL
n

)1/αL
n

}

.

Proof: See Appendix A.

In [34], a similar theorem which was also extended from

Blaszczyszyn’s work [11], [35] was proposed to analyze a n-

dimensional network, in which NLoS and LoS transmissions

are not considered. By utilizing the Equivalence theorem

above, the transformed cellular network has the exactly same

performance for the typical MU with respect to the coverage

probability and the ASE compared with the original network,

which is proved in Appendix A and validated by Monte Carlo

simulations in Section VI. After transformation, the received

signal power and cell association scheme are only dependent

on the equivalent distance between the BSs and the typical

MU, i.e., RNL
i,n and RL

i,n , while the effects of transmit power,

multi-path fading (under SIRP) and shadowing (under SARP)

are incorporated into the equivalent intensity shown in Eq. (17)

and Eq. (18). Therefore, the complexity of theoretical analysis

can be significantly reduced.

Remark 3. From Lemma 1 and Theorem 2, any cell association

scheme without considering the status of BSs and MUs, e.g.,

traffic load, spectrum usage of BSs and the battery capacity

of MUs, is equivalent to or can be transformed to the nearest

BS cell association scheme.

Remark 4. For log-normal shadowing, the condition of

EHU
n

[(
HU

n

)2/αU
n

]

< ∞ is satisfied. While for a general case

of shadowing or multi-path fading model, EHU
n

[(
HU

n

)2/αU
n

]

<
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Figure 1. CDF of the strongest received signal power, Pt = 1 W (30 dBm),
log-normal shadowing with zero means, σNL = 4 dB and σL = 3 dB,
simulation and analytical results.

∞ can also be easily met due to the bounded fading in practice.

In the next subsection, we will provide an application of the

Equivalence theorem, i.e., using the equivalence theorem to

derive the distribution of the strongest received signal power.

B. The Distribution of the Strongest Received Signal Power

In this subsection, we use stochastic geometry and Theorem

2 to obtain the distribution of the strongest received signal

power. Then we will use simulation results to validate our

theoretical analysis.

Lemma 5. Denote the strongest received signal power as P ,

i.e., P = max (Pi), the distribution of the strongest received

signal power by the typical MU can be given by

Pr [P 6 γ] = exp
[

−ΛNL
([

0, γ−1/αNL
])

− ΛL
([

0, γ−1/αL
])]

,

(21)

where ΛNL ([0, t]) and ΛL ([0, t]) are defined in Eq. (19) and

Eq. (20), respectively.

Proof: See Appendix B.

If a specific NLoS/LoS transmission model is given, the

distribution of the strongest received signal power can be

easily derived using Lemma 5. The following is an example

assuming that the LoS transmission probability follows a

negative exponential distribution.

Let’s consider a special case which assumes that N = 2,

lNL
1 (Ri) = lNL

2 (Ri) = BNL (Ri)
−αNL

, lL1 (Ri) = lL2 (Ri) =

BL (Ri)
−αL

and pL
1 (Ri) = pL

2 (Ri) = e−κRi , where κ is a

constant determined by the density and the mean length of

blockages lying in the visual path between the typical MU

and the connected BS [14], then the CDF of the strongest

received signal power is given by Eq. (21). Fig. 1 illustrates

the CDF of the strongest received signal power and it can be

seen that the simulation results perfectly match the analytical

results. From Fig. 1, we can find that over 50% of the

strongest received signal power is larger than -51 dBm when

λ = 10 BSs/km2 and this value increases by approximately 16

dB when λ = 100 BSs/km2, which indicates that the strongest

received signal power improves as the BS density increases.

V. THE COVERAGE PROBABILITY AND ASE ANALYSIS

In downlink performance evaluation, for networks where

BSs are random distributed according to a homogeneous PPP,

it is sufficient to study the performance of the typical MU

located at the origin o to characterize the performance of a

SCN using the Palm theory [32, Eq. (4.71)]. In this section,

the coverage probability and ASE are first investigated and

then several special cases will be studied.

A. General Case and Main Result

The coverage probability is generally defined as the proba-

bility that the typical MU’s measured SINR is greater than a

designated threshold T , i.e.,

pc (λ, T ) = Pr [SINR > T ] , (22)

where the definition of SINR is given by Eq. (9) and the

subscript i is omitted here for simplicity. Now, we present

a main result in this section on the coverage probability as

follows.

Theorem 6 (Coverage Probability). Given that the signal

propagation model follows Eq. (8) and the typical MU selects

the serving BS according to Eq. (11) or Eq. (12), then the

coverage probability pc (λ, T ) can be evaluated by

pc (λ, T ) =

N∑

n=1

pL
c,n (λ, T )+

N∑

n=1

pNL
c,n (λ, T ) , (23)

where

pL
c,n (λ, T ) =

∫ ∞

y=0

∫ ∞

ω=−∞

[
1− e−jω/T

2πjω

]

λL
n (y)

× exp

{

−ΛNL
n

([

0, yα
L
n/α

NL
n

])

− ΛL
n ([0, y]) + jωηyα

L
n

+

∫ ∞

t=yαL
n/αNL

n

[

ejωyαL
n t−αNL

n − 1
]

λNL
n (t) dt

+

∫ ∞

t=y

[

ejω(y/t)α
L
n − 1

]

λL
n (t) dt

}

dωdy (24)

and

pNL
c,n (λ, T ) =

∫ ∞

y=0

∫ ∞

ω=−∞

[
1− e−jω/T

2πjω

]

λNL
n (y)

× exp

{

−ΛL
n

([

0, yα
NL
n /αL

n

])

− ΛNL
n ([0, y]) + jωηyα

NL
n

+

∫ ∞

t=yαNL
n /αL

n

[

ejωyαNL
n t−αL

n − 1
]

λL
n (t) dt

+

∫ ∞

t=y

[

ejω(y/t)α
NL
n − 1

]

λNL
n (t) dt

}

dωdy, (25)

where j =
√
−1 denotes the imaginary unit, λNL

n (·) and λL
n (·)

are defined in Theorem 2.

Proof: See Appendix C.

The coverage probability evaluated by Eq. (23) in Theorem

6 is at least a 3-fold integral which is somehow complicated

for numerical computation. However, Theorem 6 gives general

results that can be applied to various multi-path fading or

shadowing models, e.g., Rayleigh fading, Nakagami-m fading,
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etc, and various NLoS/LoS transmission models as well. In the

following, we turn our attention to a few relevant special cases

where

1) NLoS transmissions and LoS transmissions are concate-

nated with different shadowing, which will be studied

in Subsection V-B;

2) NLoS transmissions and LoS transmissions are concate-

nated with Nakagami-m fading of different parameters,

which will be studied in Subsection V-C;

3) NLoS transmissions and LoS transmissions are concate-

nated with Rayleigh fading and Rician fading, respec-

tively, which will be studied in Subsection V-D.

4) Composite Rayleigh fading, Rician fading and log-

normal shadowing are considered in Subsection V-E.

B. NLoS transmissions and LoS transmissions are concate-

nated with different shadowing

In the subsection, we assume that NLoS transmission and

LoS transmission are concatenated with different log-normal

shadowing. The association scheme is based on the SARP.

Moreover, a simplified NLoS/LoS transmission model is used

for a specific analysis, which is expressed by

pL (Ri) =

{

1,Ri ∈ (0, d]

0,Ri ∈ (d,∞]
, (26)

where d is a constant distance below which all BSs connect

with the typical MU with LoS transmissions. This model has

been used in some recent work [13], [14]. With assumptions

above, the intensity measure for NLoS transmissions, i.e.,

ΛNL
log (·), is expressed as follows

ΛNL
log ([0, t]) = EHNL



2πλ

∫ t(BNLHNL)1/α
NL

Ri=0

pNL (Ri)RidRi





=
1

2
πλt2

(
BNL

)2/αNL

e1/M
2
NL erfc [MNL ln t+QNL]

− 1

2
πλd2erfc [MNL ln t+ VNL] , (27)

where erfc (·) is the complementary error function, MNL =

− αNL
√
2σNL

, QNL = αNL ln d−lnBNL
√
2σNL

− 1
MNL

and VNL =
αNL ln d−lnBNL

√
2σNL

are all constants. After obtaining ΛNL
log (·), the

density of NLoS BSs, i.e., λNL
log (·), can be readily derived as

follows

λNL
log (t) =

d

dt
ΛNL ([0, t])

= πλt
(
BNL

)2/αNL

e1/M
2
NL erfc [MNL ln t+QNL]

+
MNLλ

√
πd2

t
e−(MNL ln t+VNL)

2

−MNLλt
√
π
(
BNL

)2/αNL

e1/M
2
NL−(MNL ln t+QNL)

2

. (28)

Similarly, the intensity measure and density for LoS BSs are

ΛL
log ([0, t]) =

1

2
πλt2

(
BL
)2/αL

e1/M
2
L erfc [ML ln t+QL]

+
1

2
πλd2erfc [−ML ln t+ VL] , (29)

λL
log (t) = πλt

(
BL
)2/αL

e1/M
2
L erfc [ML ln t+QL]

+
MLλ

√
πd2

t
e−(−ML ln t+VL)

2

−MLλt
√
π
(
BL
)2/αL

e1/M
2
L −(ML ln t+QL)

2

, (30)

respectively, where ML = αL
√
2σL

, QL = lnBL−αL ln d√
2σL

+ 1
ML

and

VL = αL ln d−lnBL
√
2σL

are all constants. By substituting λNL
log (·)

and λL
log (·) above into Eq. (24) and Eq. (25), the coverage

probability can be obtained in this specific scenario, followed

by results in Section VI.

In the above scenario, the shadowing follows log-normal

distributions. However, Theorem 6 can also be applied to a

generalized fading model and the coverage probability will be

derived in the next two sections.

C. NLoS and LoS Transmissions are Concatenated with

Nakagami-m Fading

Note that if we replace HU by multi-path fading, i.e.,

hU, Theorem 6 also works for the scenario where the SIRP

association is applied. In this subsection, we assume that

both NLoS and LoS transmissions are concatenated with

Nakagami-m fading of different parameters, e.g., mNL and

mL, then the channel power gains are distributed according to

Gamma distributions. That is,

fhU (h) =

(
mU
)mU

Γ (mU)
hmU−1e−mUh. (31)

By substituting the PDF of hU into Eq. (17) – Eq. (20),

the intensity measures and intensities of ΦNL and ΦL can be

readily obtained as follows

ΛNL
Naka ([0, t]) = − πλd2

Γ (mNL)
Γ

(

mNL,
mNL

BNL

(
d

t

)αNL)

+
πλt2

Γ (mNL)

(
BNL

mNL

) 2
αNL

Γ

(

2

αNL
+mNL,

mNL

BNL

(
d

t

)αNL)

,

(32)

ΛL
Naka ([0, t]) =

πλd2

Γ (mL)
Γ

(

mL,
mL

BL

(
d

t

)αL)

+
πλt2

Γ (mL)

(
BL

mL

) 2
αL

γ

(

2

αL
+mL,

mL

BL

(
d

t

)αL)

, (33)

λNL
Naka (t) =

2πλt

Γ (mNL)

(
BNL

mNL

) 2

αNL

× Γ

(

2

αNL
+mNL,

mNL

BNL

(
d

t

)αNL)

, (34)
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and

λL
Naka (t) =

2πλt

Γ (mL)

(
BL

mL

) 2
αL

γ

(

2

αL
+mL,

mL

BL

(
d

t

)αL)

,

(35)

respectively, where Γ (s, x) =
∫∞
x

vs−1e−vdv and γ (s, x) =
∫ x

0
vs−1e−vdv denote the upper and the lower incomplete

gamma functions, respectively, Γ (s) =
∫∞
0

vs−1e−vdv is the

gamma function. The intermediate steps are easy to derive

and thus omitted here. By incorporating Eq. (32) - (35) into

Eq. (24) and Eq. (25), the coverage probability of a SCN

experiencing Nakagami-m fading can be calculated.

D. NLoS Transmission + Rayleigh Fading and LoS Transmis-

sion + Rician Fading

In this part, we consider a more common case in which

NLoS transmission and LoS transmission are concatenated

with Rayleigh fading and Rician fading, respectively, i.e., hNL

follows an exponential distribution and hL follows a non-

central Chi-squared distribution. With m = (K + 1)2 /2K+1,

Rician fading can be approximated by a Nakagami-m dis-

tribution [36], where K is the Rician K-factor representing

the ratio between the power of the direct path and that of

the scattered paths. Without loss of generality, we assume

fhNL (h) = e−h and fhL (h) = mm

Γ(m)h
m−1e−mh for NLoS

and LoS transmissions, respectively.

As we have provided the intensity measure and intensity

of ΦL experiencing Nakagami-m fading in the previous sub-

section, in this part we just provide the intensity measures

and intensities of ΦNL. By substituting the PDF of hNL into

Eq. (19) and Eq. (17), ΛNL
Ray ([0, t]) and λNL

Ray (t) can be easily

evaluated by

ΛNL
Ray ([0, t]) = πλt2

(
BNL

) 2
αNL Γ

(

2

αNL
+ 1,

1

BNL

(
d

t

)αNL)

− πλd2 exp

[

− (d/t)α
NL

BNL

]

, (36)

and

λNL
Ray (t) = 2πλt

(
BNL

) 2
αNL Γ

(

2

αNL
+ 1,

1

BNL

(
d

t

)αNL)

,

(37)

respectively. After substituting the intensity measures and

intensities of ΦNL and ΦL into Eq. (25) and Eq. (24), the

coverage probability can be obtained and we omit the rest

derivations.

E. Composite Rayleigh Fading, Rician Fading and Log-

normal Shadowing

Inspired by [23] which takes composite fading into consid-

eration, in this subsection both fading and shadowing will be

considered simultaneously. In [34], a channel gain PDF which

characterizes the composite effect of Rayleigh fading and log-

normal shadowing is given by

fH (h) =
1

√

2πσ2
s

∫ ∞

x=0

1

x2
e
−h

x− (ln x−µs)2

2σ2
s dx, (38)

where µs and σ2
s are the mean and variance of log-normal

shadowing, respectively. By substituting the PDF of H into

Eq. (19) and Eq. (17), ΛNL ([0, t]) and λNL (t) can be obtained,

which however are non-closed forms. As for the channel model

with composite Rician fading and log-normal shadowing, no

such PDF could be found like Eq. (38). In this context, we

utilize a simplified composite fading and shadowing channel

model in which the desired signal experiences Rayleigh fading

or Rician fading and the interference signal experiences log-

normal shadowing [10], [37]. For example, assume that the

desired NLoS transmission is concatenated with Rayleigh

fading, the desired LoS transmission is concatenated with

Rician fading and the aggregate interference is concatenated

with log-normal shadowing. The coverage probability can

be readily obtained by substituting λNL
log (t) into Eq. (55),

λNL
log (t) into Eq. (56) and λU

Ray (t), Λ
U
Ray ([0, t]) into Eq. (57),

respectively.

F. The Asymptotic Analysis

In the following, an asymptotic analysis will be given for the

situation where BS deployment becomes ultra-dense, i.e., λ →
∞, which helps to analyze the performance with a concise

form.

Corollary 7. If T > 1, the coverage probability of pc (λ, T )
considering a single-slope path loss model in Eq. (23) when

λ → ∞ converges as follows

lim
λ→∞

pc (λ, T ) = lim
λ→∞

Pr [SINR > T ]

(a)
= lim

λ→∞
Pr [SIR > T ]

(b)
=

αL sin
(
2π/αL

)

2πT 2/αL . (39)

Proof: A sketch of the proof of Corollary 7 is given here.

In Eq. (39), (a) is due to the reason that when λ → ∞, the

network is interference-limited and noise can be ignored com-

pared with the aggregate interference, which is also validated

by results in Section VI. The proof of (b) can be found in [11,

Remark 9] and [14, Theorem 4] and are omitted here.

From Corollary 7, it can be concluded that for dense SCNs

the coverage probability is invariant with respect to BS density

λ and even the distribution of shadowing/fading. However,

when the BS density is not dense enough, the coverage

probability reveals an interesting performance, which will be

fully studied in Section VI.

Moreover, when considering a multi-slope path model,

when λ → ∞, the noise power can be ignored compared with

the interference and the typical MU will connected to a LoS

BS almost for sure due the blockage probability model in Eq.

(3). In this context,

lim
λ→∞

pc (λ, T ) = lim
λ→∞

Pr [SIR > T ]

= lim
λ→∞

Pr
[
SIR

({
ln, α

L
n

})
> T

]
, (40)

where Pr
[
SIR

({
ln, α

L
n

})
> T

]
denotes the coverage proba-

bility with multi-slope path loss model (N piece-wise func-

tion) but only LoS transmissions being considered. From [17,
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Lemma 3] and assuming that 0 6 αL
1 6 αL

2 6 · · · 6 αL
N ,

when λ → ∞, the coverage probability approaches to

lim
λ→∞

pc (λ, T ) = lim
λ→∞

Pr
[
SIR

({
ln, α

L
n

})
> T

]

= lim
λ→∞

Pr
[
SIR

({
l1, α

L
1

})
> T

]
, (41)

which is only determined by the first piece single-slope path

loss function. As for the ASE scaling law against λ, the readers

may refer to [17], [38].

G. The ASE Upper Bound

Finally, the upper bound of ASE in units of bps/Hz/km2 for

a given BS density λ can be derived as follows [19]

ASE (λ) = λESINR [log2 (1 + SINR)]

= λ

∫ ∞

u=T

log2 (1 + u) fSINR (λ, u) du

6 λ

∫ ∞

u=0

log2 (1 + u) fSINR (λ, u) du

=
λ

ln 2

∫ ∞

u=0

pc (λ, T )

u+ 1
du, (42)

where the integral in Eq. (42) can be numerically obtained

[39, Eq. (10)]. Note that in [23], the proposed MGF–based

approach can efficiently compute the ASE instead of obtaining

the coverage probability in advance. While in our work, the

coverage probability and the ASE can be analyzed simultane-

ously at the expense of increased complexity of computation.

VI. SIMULATIONS AND DISCUSSIONS

This section presents numerical results to validate our

analysis, followed by discussions to shed new light on the

performance of SCNs. We use the following parameter values,

Pt = 30 dBm, ANL = 30.8 dB , AL = 2.7 dB, αNL = 4.28,

αL = 2.42, σNL = 4 dB, σL = 3 dB, T = 0 dB and

d = 250 m [1], [8], [13], [14], [27], [40].

A. Validation of the Analytical Results of pc (λ, T ) with Monte

Carlo Simulations

The results of pc (λ, T ) configured with T = 0 dB are

plotted in Fig. 2 and Fig. 3, which illustrate the coverage

performance of networks using SIRP and SARP, respectively.

As can be observed from Fig. 2 and Fig. 3, the analytical

results match the simulation results well, which validate the

accuracy of our theoretical analysis. Note that in the case

where both NLoS and LoS transmissions are concatenated

with Rayleigh fading, the coverage probability is the highest

among the interested cases. By contrast, in the case where

NLoS transmission is concatenated with Rayleigh fading and

LoS transmission is concatenated with Rician fading with

K = 10 dB, the coverage probability is the lowest, which

suggests that Rayleigh fading model exaggerates network per-

formance. Meanwhile, we should notice that the gap between

the plotted curves is small, which means that multi-path fading

has a minor impact on the coverage probability performance.

In Fig. 3, the coverage probability with composite fading and

shadowing channel model is also illustrated, which shows a
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similar tendency compared with others. With the assistance

of Fig. 4, we conclude that the performance of small cell

networks can be divided into four different regimes according

to the density of small cell BSs, where in each regime, the

performance is dominated by different factors. That is,

• Noise-Limited Regime (NLR): (λ 6 1 BSs/km2 in Fig.

3, Fig. 4 and Fig. 5). In this regime, the typical MU is

likely to have a NLoS path with the serving BS, see Fig.

4 . The network in the NLR regime is very sparse and

thus the interference can be ignored compared with the

thermal noise if we use SINR for performance metric. In

this case, SINR = S
η and the coverage probability will

increase with the increase of λ as the strongest received

power (S) will grow and noise power (η) will remain

the same. While if we use SIR for performance metric,

the SIR coverage probability remain almost stable in

this regime as λ increases. This is because the increase

in the received signal power is counterbalanced by the

increase in the aggregate interference power. Besides, as
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the aggregate interference power is smaller than noise

power, the SIR coverage probability is larger than the

SINR coverage probability.

• Signal-Dominated Regime (SDR): (λ ∈ (1, 10] BSs/km2

in Fig. 3, Fig. 4 and Fig. 5). In this regime, when λ is

small, the typical MU has a higher probability to connect

to a NLoS BS; while when λ becomes larger, the typical

MU has an increasingly higher probability to connect to a

LoS BS. That is to say, with the increase of λ, the typical

MU is more likely to be in LoS with the associated BS,

i.e., the received signal transforms from NLoS to LoS

path. Even though the associated BS is LoS, the majority

of interfering BSs are still NLoS in this regime and thus

the SINR (or SIR) coverage probability keeps growing.

From this regime on, noise power has a negligible impact

on coverage performance, i.e., the SCN is interference-

limited. Besides, if ignoring noise power, from the NLR

to the SDR, the coverage probability from NLoS BSs

decreases to almost zero and the coverage probability

contributed by LoS BSs increases. It is because when the

network is sparse, almost all MUs are associated with

NLoS BSs and when the network goes denser, MUs shift

from NLoS BSs to LoS BSs.

• Interference-Dominated Regime (IDR): (λ ∈
(10, 250] BSs/km2 in Fig. 3, Fig. 4 and Fig. 5). In

this regime, the typical MU is connected to a LoS BS

with a high probability. However, different from the

situation in the SDR, the majority of interfering BSs

experience transitions from NLoS to LoS path, which

causes much more severe interference to the typical

MU compared with interfering BSs with NLoS paths.

As a result, the SINR (or SIR) coverage probability

decreases with the increase of λ because the transition

of interference from NLoS path to LoS path causes a

larger increase in interference compared with that in

signal. Note that in this regime the coverage probability

performance in our model exhibits a huge difference

from that of the analysis in [10], which are indicated as

“NLoS only” and “LoS only” in Fig. 5.

• Interference-Limited Regime (ILR): (λ > 250 BSs/km2

in Fig. 3, Fig. 4 and Fig. 5). In this regime, the network

is extremely dense and grow close to the LoS-BS-only

scenario as the increase of λ. The SINR (or SIR) coverage

probability will become stable with the increase in BS

density as any increase in the received LoS BS signal

power is counterbalanced by the increase in the aggregate

LoS BS interference power, which is also illuminated by

Corollary 7.

To validate the four performance regimes still exist in the

networks employing actual building topology. Followed by

[13], we present the coverage probability of Chicago in Fig.

7 whose topology is shown in Fig. 6. Note that the NLoS

transmissions and LoS transmissions are not determined by

the one-parameter distance-based statistic model which is used

in our work. Instead, they are determined by whether the

transmission links are blocked by buildings or not. It is found

that the four performance regimes still exist especially when
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the noise power is considered with a real building topology.

The only difference is that the BS density at which the

coverage probability peaks shifts from around 10 BSs/km2 to

around 100 BSs/km2. In our work, the probability function

of blockage is a piece-wise function which can be adjusted

according to the real scenario.

B. Boundary Definitions

Based on the qualitative results above, it is interesting

to develop a qualitative definition of the boundaries among

adjacent regimes. In this subsection, we propose the following

definition to characterize three BS density boundaries, which

makes the analysis of SCNS more formal.

Definition 8. The boundary between NLR and SDR is λNLR
SDR

which is defined as follows

λNLR
SDR = arg

λ
{E [I] = η} . (43)

The intuition of this definition is when λ > λNLR
SN2LTR,

the aggregate interference has a greater impact on network

performance than that caused by noise.
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Definition 9. The boundary between SDR and IDR is λSDR
IDR ,

which is defined as the BS density that the coverage proba-

bility achieves the highest, i.e.,

pmax
c = pc

(
λSDR

IDR , T
)
, (44)

which is equivalent to λSDR
IDR = argmax

λ
{pc (λ, T )}. The

definition above reveals that pc
(
λSDR

IDR , T
)

is the maximum

coverage probability if other parameters are fixed. From dis-

cussions above, the performance in the SDR is dominated

by the desired signal, while in the IDR, the performance

is dominated by the interference. When λ > λSDR
IDR , LoS

interference will degrade the coverage performance.

Definition 10. The boundary between IDR and ILR is λIDR
ILR ,

which is defined as ∀λ > λIDR
ILR

E [I] ≫ η, (45)

which is equivalent to λIDR
ILR = arg

λ
{E [I] = ǫη} , where ǫ ≫

1. When λ becomes larger and larger, the SCNs fall into the

10-1 100 101 102 103 104

BS Density  [BSs/km 2]

10-4

10-2

100

102

104

106

A
re

a 
S

pe
ct

ra
l E

ffi
ci

en
cy

 B
ou

nd
 [b

ps
/H

z/
km

2 ] Rician - Rayleigh [K=10 dB] (Ana.)
Rician - Rayleigh [K=5 dB] (Ana.)
Rayleigh - Rayleigh (Ana.)

Nakagami [mNL=2, mL=4] (Ana.)
Rayleigh [NLoS only] (Ana.)
Rayleigh [LoS only] (Ana.)

ILR

NLR SDR

IDR

Figure 8. ASE vs. BS density λ, η = −95 dBm, µNL = µL = 1.

ILR, i.e., the aggregate interference might be extremely large

compared with the noise power η, which is shown by Eq. (45).

When λ > λIDR
ILR , the coverage changes slowly and approaches

the asymptotic value. In the following, we will analyze the

ASE performance in the four defined regimes.

C. Discussion on the Analytical Results of the Upper Bound

ASE (λ)

In this part, the upper bound of ASE with T = 0 dB is

evaluated analytically only, as the upper bound is a function

of pc (λ, T ) shown in Eq. (42).

Fig. 8 illustrates the upper bound with different fading

models vs. λ. It is found that the upper bound of the SCN

incorporating both NLoS and LoS transmissions reveal a

deviation from that of the analysis considering NLoS (or

LoS) transmissions only [10]. Specifically, when the SCN is

sparse and thus in the NLR or the SDR, the upper bound

quickly increases with λ because the network is generally

noise-limited, and thus adding more small cells immensely

benefits the ASE. When the network becomes dense, i.e.,

λ enters the IDR, which is the practical range of λ for

the existing 4G networks and the future 5G networks, the

trend of the upper bound is very interesting. First, when

λ ∈ (10, 50] BSs/km2, the upper bound exhibits a slowing-

down in the rate of growth due to the fast decrease of the

coverage probability at λ ∈ (10, 50] BSs/km2, as shown in

Fig. 2 and Fig. 3. Second, when λ > 50 BSs/km2, the upper

bound will pick up the growth rate since the decrease of the

coverage probability becomes a minor factor compared with

the increase of λ. When the SCN is extremely dense, e.g.,

λ is in the ILR, the upper bound exhibits a nearly linear

trajectory with respect to λ because both the signal power

and the interference power are now LoS dominated, and thus

statistically stable as explained before. Moreover, it can be

observed that the change of the multi-path fading model has a

minor impact on the upper bound compared with the change

of the path loss model.
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D. Discussion on the Value of Theoretical Analysis

Simulation is time consuming for λ > 103 BSs/km2

and almost infeasible for λ > 105 BSs/km2. For example,

simulation for networks with λ = 105 BSs/km2 needs at

least 4 × 105 BSs to get a smooth curve, which consumes

almost 2 weeks for a 8 core PC. On the other hand, the

computational complexity for theoretical analysis is stable for

all BS densities. In this context, the theoretical analysis is

useful when you want to analyze an ultra-dense network, i.e.,

λ > 105 BSs/km2.

Based on the findings of NLoS-to-LoS-transition, next we

will introduce some guidance on how to design and manage

the cellular networks in order to optimize the network perfor-

mance as we evolve into dense SCNs.

As described in section VI-A and VI-C, the ASE increases

almost for sure as SCNs becomes denser due to the gain

of frequency reuse. In contrast, the coverage probability of

SCNs will firstly increase and then decrease with the in-

crease of BS density λ. In this context, there is a trade off

between the coverage probability and the ASE in the future

5G SCNs incorporating both NLoS and LoS transmissions.

While in [10], denser SCNs always provide better network

performance with respect to the ASE as well as the coverage

probability. It is noted that compared with the existing work

[10], [13] which assume the network works either in the

NLR or the ILR, our findings with more elaborate working

regimes partition provide guidance for network design and

optimization. A rough working regimes partition may not

give useful suggestions on network performance enhancement

especially in the transitional regimes between the NLR and the

ILR. For example, increasing BS transmit power can improve

the coverage probability in the NLR but fails in the ILR [10].

In the transitional regimes between the NLR and the ILR, we

may imagine that this technique transforms form being useful

to being useless. However, due to the lack of detailed features

in the transitional regimes, we are still not sure whether to use

this technique or not. Regarding the four performance regimes,

in the following, we try to provide different techniques which

can be used to enhance the network performance.

1) NLR: When the network works in the NLR, e.g., most

mmWave network, the interference is not the dominate

factor and the desired signal strength could be enhanced

by utilizing BS power control, and directional antennas,

etc.

2) SDR: In this regime, the desired signal strength is still

the dominate factor. Thus the techniques used in the

NLR to enhance the performance are valid as well.

However, some techniques will not as useful as that

in the NLR. For example, directional antenna technique

may work efficiently, but BS power control technique

may be not so efficient as in this regime increasing the

transmit power may cause interference to other users.

3) IDR: According to the data, the current 4G network is

operating in the SDR. As we deploy more and more

BSs in the future to meet the skyrocketing demands

on wireless data, the network will fall into the IDR. In

this regime, we need elaborately design the network sys-

tem including transmission techniques, medium access

control (MAC) protocols and coding techniques, etc, to

compensate the impair of network coverage caused by

strong LoS interference. The most common MAC pro-

tocols are interference cancellation, interference avoid-

ance, and interference control. By jointly utilizing ad-

vanced transmission techniques like beamforming tech-

niques, multiple-input-multiple-output (MIMO), multi-

antenna, coordinated multi-point (CoMP) transmissions

and better coding techniques, the interference will be

mitigated to an acceptable level, which benefits both the

coverage probability and the ASE a lot.

4) ILR: In this regime, the coverage performance is so poor

even though the ASE increases with the BS density.

Techniques mentioned for IDR should be already uti-

lized in advance to avoid entering this regime.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we illustrated the transition behaviors in SCNs

incorporating both NLoS and LoS transmissions. Based on our

analysis, the network can be divided into four regimes, i.e., the

NLR, the SDR, the IDR and the ILR, where in each regime the

performance is dominated by different factors. The analysis

helps to understand as the BS density grows continually,

which dominant factor that determines the cellular network

performance and therefore provide guidance on the design

and management of the cellular networks as we evolve into

dense SCNs. Moreover, our work adopt a generalized shad-

owing/fading model, in which log-normal shadowing and/or

Rayleigh fading can be treated in a unified framework.

It is noted that constant transmit power is assumed in our

work, however, when the BS density, i.e., λ is large, the

BS transmit power usually decreases to reduce the inter-cell

interference. In our on-going work, i.e., [41], [42], density-

dependent transmit power is considered and the coverage

probability and the ASE reveal a different tendency. In our

future work, shadowing and multi-path fading model will be

considered simultaneously which is more practical for the

real network. Furthermore, heterogeneous networks (HetNets)

incorporating both NLoS and LoS transmissions will also be

investigated.

APPENDIX A: PROOF OF THEOREM 2

Firstly, we will obtain the intensity measure ΛNL
n of ΦNL

n ;

and then the intensity λNL
n will be easily acquired by taking a

derivation of ΛNL
n . By using displacement theorem [11], [33],
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the point process ΦNL
n is Poisson with intensity measure

ΛNL
n ([0, t]) = EΦNL

n

[

ΦNL
n [b (0, t)]

]

=

∫

R2

Pr
[

RNL
i,n < t

]

pNL (Ri)λdXi

= EHNL
n

{∫

R2

Pr
[

Ri < t
(
BNL

n HNL
n

)1/αNL
n

]

pNL
n (Ri)λdX i

}

(a)
= EHNL

n





∫ 2π

θ=0

∫ t(BNL
n HNL

n )
1/αNL

n

Ri=0

pNL
n (Ri)λRidRidθ





= EHNL
n



2πλ

∫ t(BNL
n HNL

n )1/α
NL
n

Ri=0

pNL
n (Ri)RidRi



 , (46)

where b (0, t) is a ball centered at the origin o with radius t and

(a) results by converting from Cartesian to polar coordinates.

Considering the distance range of dn−1 < Ri 6 dn (define d0
and dN as 0 and ∞, respectively), the equation above should

be revised as follows

ΛNL
n ([0, t]) = EHNL

n

[

2πλ

∫ RNL
i,max

Ri=dn−1

pNL
n (Ri)RidRi

]

, (47)

where we define RNL
i,max = min

{

dn, t
(
BNL

n HNL
n

)1/αNL
n

}

.

Then the intensity of ΦNL
n denoted by λNL

n (·) can be given

by

λNL
n (t) =

d

dt
ΛNL
n ([0, t]) . (48)

Note that to ensure the intensity measure is finite for any

bounded set (a set is bounded if it can be contained in a ball

with a finite radius), HNL
n has to satisfy a certain condition. As

pNL
n (Ri) 6 1, from Eq. (47), we get an inequality as follows

ΛNL
n ([0, t]) = EHNL

n

[

2πλ

∫ RNL
i,max

dn−1

pNL
n (Ri)RidRi

]

6 EHNL
n

[

2πλ

∫ RNL
i,max

0

RidRi

]

= πλmin
{

d2n, t
2
(
BNL

n

)2/αNL
n
EHNL

n

[(
HNL

n

)2/αNL
n

]}

. (49)

If the expectation EHNL
n

[(
HNL

n

)2/αNL
n

]

< ∞, then

ΛNL
n ([0, t]) < ∞. Using similar approach, the intensity mea-

sure and intensity of the PPP ΦL
n are obtained by Eq. (20) and

Eq. (18), respectively.

As for the cell association scheme, it is

obvious that the original scheme (Xi,U,N )
∗

=

arg max
(Xi,U,N )∈S

BU
nHU

n (Ri)
−αU

n is equivalent to the scheme

(Xi,U,N )
∗

= arg max
(Xi,U,N )∈S

(
Ri,n

)−αU
n which actually

corresponds to the nearest BS association scheme. Thus the

proof is completed.

APPENDIX B: PROOF OF LEMMA 5

Denote the strongest NLoS received signal power and the

strongest LoS received signal power by PNL and PL, respec-

tively. Note that we drop subscript n under this special case for

simplicity. That is, PNL = max
(
PNL
i

)
and PL = max

(
P L
i

)
.

Then the probability Pr [P 6 γ] can be derived as

Pr [P 6 γ]

= Pr

[

max

(

RNL
i

−αNL
)

6 γ ∩max

(

RL
i

−αL
)

6 γ

]

= Pr
[

min
(

RNL
i

)

> γ−1/αNL ∩min
(

RL
i

)

> γ−1/αL
]

= Pr
[

no nodes within γ−1/αNL ∩ no nodes within γ−1/αL
]

= Pr
[

ΦNL

(

b
(

0, γ−1/αNL
))

= 0 ∩ΦL

(

b
(

0, γ−1/αL
))

= 0
]

(a)
= Pr

[

ΦNL

(

b
(

0, γ−1/αNL
))

= 0
]

× Pr
[

ΦL

(

b
(

0, γ−1/αL
))

= 0
]

(b)
= exp

[

−ΛNL
([

0, γ−1/αNL
])]

· exp
[

−ΛL
([

0, γ−1/αL
])]

,

(50)

where the notation ΦU (Ξ) refers to the number of points x ∈
ΦU contained in the set Ξ, while equality (a) follows from the

independence of PPP ΦNL and PPP ΦL , and (b) comes from

the fact that the void probability Pr
[

ΦU (b (0, r)) = 0
]

=

exp
[
−ΛU ([0, r])

]
for a non-homogeneous PPP. Then the rest

of the proof is straightforward.

APPENDIX C: PROOF OF THEOREM 6

By invoking the law of total probability and considering the

independence between ΦNL
n and ΦL

n, the coverage probability

can be divided into two parts in each segment, i.e., pNL
c,n (λ, T )

and pL
c,n (λ, T ), which denotes the conditional coverage prob-

ability given that the typical MU is associated with a BS in

ΦNL
n and ΦL

n, respectively. Moreover, denote by PNL
n and PL

n

the strongest received signal power from BS in ΦNL
n and ΦL

n,

i.e., PNL
n = max

(
PNL
i,n

)
and PL

n = max
(
P L
i,n

)
, respectively.

Then by applying the law of total probability, pL
c,n (λ, T ) can

be computed by

pL
c,n (λ, T ) = Pr

[(
SINRL

n > T
)
∩
(
PL
n > PNL

n

)
∩ YL

n

]

= EYL
n

{

Pr
[

SINRL
n > T

∣
∣
(
PL
n > PNL

n

)
∩ YL

n

]

︸ ︷︷ ︸

II

× Pr
[
PL
n > PNL

n

∣
∣YL

n

]

︸ ︷︷ ︸

I

}

, (51)

where YL
n is the equivalent distance between the typical MU

and the BS providing the strongest received signal power to

the typical MU in ΦL
n, i.e., YL

n = argmax
RL

i,n∈ΦL
n

(

RL
i,n

)−αL
n

, and

also note that PL
n =

(
YL
n

)−αL
n . Besides, Part I guarantees

that the typical MU is connected to a LoS BS and Part II

denotes the coverage probability conditioned on the proposed

cell association scheme in Eq. (11). Next, Part I and Part II
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will be respectively derived as follows. For Part I,

Pr
[
PL
n > PNL

n

∣
∣YL

n

]

= Pr
[(

YL
n

)−αL
n >

(
YNL
n

)−αNL
n

∣
∣
∣YL

n

]

(a)
= exp

[

−ΛNL
n

([

0,
(
YL
n

)αL
n/α

NL
n

])]

, (52)

where YNL
n , similar to the definition of YL

n, is the equivalent

distance between the typical MU and the BS providing the

strongest received signal power to the typical MU in ΦNL
n ,

i.e., YNL
n = argmax

RNL
i,n∈ΦNL

n

(

RNL
i,n

)−αNL
n

, and also note that PNL
n =

(
YNL
n

)−αNL
n , and (a) follows from the void probability of a

PPP.

For Part II, we know that SINR = P
I+η = P

INL+IL+η , where

INL and IL denote the aggregate interference from NLoS

BSs and LoS BSs, respectively. The conditional coverage

probability is derived as follows

Pr
[

SINRL
n > T

∣
∣
(
PL
n > PNL

n

)
∩ YL

n

]

= Pr

[
1

SINRL
n

<
1

T

∣
∣
∣
∣

(
PL
n > PNL

n

)
∩ YL

n

]

(a)
=

∫ 1/T

x=0

∫ ∞

ω=−∞

e−jωx

2π
F 1

SINRL
n

(ω) dω

︸ ︷︷ ︸

dx

PDF

=

∫ ∞

ω=−∞

[
1− e−jω/T

2πjω

]

F 1

SINRL
n

(ω) dω, (53)

where SINRL
n denotes the SINR when the typical MU is

associated with a LoS BS, the inner integral in (a), i.e.,
∫∞
ω=−∞

e−jωx

2π F 1

SINRL
n

(ω) dω is the conditional PDF of 1
SINRL

n

due to the definition of the inverse characteristic function, i.e.,

fX (x) = F
′

X (x) = 1
2π

∫

R
e−jωxϕX (ω) dω, and F 1

SINRL
n

(ω)

denotes the conditional characteristic function of 1
SINRL

n
which

is given by

F 1
SINRL

n

(ω) = EΦn

[

exp

(

jω
1

SINRL
n

)∣
∣
∣
∣

(
PL
n > PNL

n

)
∩ YL

n

]

= EΦn

[

exp

(

jω
INL + IL + η

PL
n

)∣
∣
∣
∣

(
PL
n > PNL

n

)
∩ YL

n

]

= EΦn

{

exp
[

jω
(
INL + IL + η

) (
YL
n

)αL
n

]∣
∣
∣

(
PL
n > PNL

n

)
∩ YL

n

}

(a)
= EΦNL

n

{

exp
[

jωINL ·
(
YL
n

)αL
n

]∣
∣
∣

(
PL
n > PNL

n

)
∩ YL

n

}

︸ ︷︷ ︸

III

× EΦL
n

{

exp
[

jωIL ·
(
YL
n

)αL
n

]∣
∣
∣

(
PL
n > PNL

n

)
∩ YL

n

}

︸ ︷︷ ︸

IV

× ejωη(YL
n)

αL
n

, (54)

where (a) comes from the facts that Φn = ΦNL
n ∪ ΦL

n and

the mutual independence of ΦNL
n and ΦL

n. Now by applying

stochastic geometry, we will derive the term III in Eq. (54) as

follows

EΦNL
n

{

exp
[

jωINL ·
(
YL
n

)αL
n

]∣
∣
∣

(
PL
n > PNL

n

)
∩ YL

n

}

(a)
= E

ΦNL
n

{

exp




jω ·

(
YL
n

)αL
n

∑

i:RNL
i,n∈ΦNL

n

′

(

RNL
i,n

)−αNL
n






∣
∣
∣
∣
∣
∣
∣

(
PL
n

> PNL
n

)
∩ YL

n

}

(b)
= EΦNL

n

{
∏

i:RNL
i,n∈ΦNL

n

′

exp

[

jω ·
(
YL
n

)αL
n

(

RNL
i,n

)−αNL
n

]

∣
∣
∣
∣
∣
∣
∣

(
PL
n

> PNL
n

)
∩ YL

n

}

(c)
= exp

{
∫ ∞

t=(YL
n)

αL
n/αNL

n

[

ejω(Y
L
n)

αL
nt−αNL

n − 1

]

λNL
n (t) dt

}

,

(55)

where in (a), ΦNL
n

′
= ΦNL

n \ b
(

0,
(
YL
n

)αL
n/α

NL
n

)

and RNL
i,n ∈

ΦNL
n

′
can guarantee the condition that PL

n > PNL
n , (b) follows

from rewriting the exponential of summation as a product of

several exponential functions, and (c) is obtained by applying

the probability generating functional (PGFL) [10, Eq. (3)] of

the PPP. Similarly, the term IV in Eq. (54) is given by

EΦL
n

{

exp
[

jωIL ·
(
YL
n

)αL
n

]∣
∣
∣

(
PL
n > PNL

n

)
∩ YL

n

}

(a)
= EΦL

n

{

exp




jω ·

(
YL
n

)αL
n

∑

i:RL
i,n∈ΦL

n

′

(

RL
i,n

)−αL
n






∣
∣
∣
∣
∣
∣
∣

(
PL
n

> PNL
n

)
∩ YL

n

}

= EΦNL
n

{
∏

i:RL
i,n∈ΦL

n

′

exp

[

jω ·
(

YL
n/R

L
i,n

)αL
n

]

∣
∣
∣
∣
∣
∣
∣

(
PL
n

> PNL
n

)
∩ YL

n

}

= exp

{
∫ ∞

t=YL
n

[

ejω(Y
L
n/t)

αL
n − 1

]

λL
n (t) dt

}

, (56)

where in (a), ΦL
n

′
= ΦL

n \ b
(
0,YL

n

)
and RL

i,n ∈ ΦL
n

′
can

guarantee that the typical MU is associated with a LoS

BS providing the strongest received signal power. Then the

product of Part I and Part II in Eq. (51) can be obtained by

substituting them with Eq. (52) – (56).

Finally, note that the value of pL
c,n (λ, T ) in Eq. (51) should

be calculated by taking the expectation with respect to YL
n in

terms of its PDF, which is given as follows

fYL
n
(y) =

d

dy

[
1− Pr

(
YL
n > y

)]
= λL

n (y) exp
[
−ΛL

n ([0, y])
]
.

(57)
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Given that the typical MU is connected to a NLoS BS, the

conditional coverage probability pNL
c,n (λ, T ) can be derived in a

similar way as the above. In this way, the coverage probability

is obtained by pc (λ, T ) =
N∑

n=1
pL
c,n (λ, T )+

N∑

n=1
pNL
c,n (λ, T ).

Thus the proof is completed.
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