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Abstract—Unmanned aerial vehicles (UAVs) are anticipated to
be widely deployed in future wireless communications, due to
their advantages of high mobility and easy deployment. However,
the broadcast nature of air-to-ground line-of-sight wireless chan-
nels brings a new challenge to the information security of UAV-
ground communication. This paper tackles such a challenge in the
physical layer by exploiting the mobility of UAV via its trajectory
design. We consider a UAV-ground communication system with
multiple potential eavesdroppers on the ground, where the
information on the locations of the eavesdroppers is imperfect.
We formulate an optimization problem which maximizes the
average worst-case secrecy rate of the system by jointly designing
the robust trajectory and transmit power of the UAV over a given
flight duration. The non-convexity of the optimization problem
and the imperfect location information of the eavesdroppers make
the problem difficult to be solved optimally. We propose an
iterative suboptimal algorithm to solve this problem efficiently by
applying the block coordinate descent method, S-procedure, and
successive convex optimization method. Simulation results show
that the proposed algorithm can improve the average worst-case
secrecy rate significantly, as compared to two other benchmark
algorithms without robust design.

I. INTRODUCTION

Due to the advantages of high mobility and flexibility,

unmanned aerial vehicles (UAVs) have found interesting ap-

plications in wireless communications [1]–[5]. Line-of-sight

(LoS) channels usually exist between UAVs and ground nodes

in UAV wireless communication systems [6]. This has also

inspired a proliferation of studies recently on the new research

paradigm of jointly optimizing the UAV trajectory design and

communication resource allocation, for e.g. multiple access

channel (MAC) and broadcast channel (BC) [7], [8], inter-

ference channel (IFC) [9], and wiretap channel [10], [11]. In

particular, as shown in [7] and [8], significant communication

throughput gains can be achieved by mobile UAVs over static

UAVs/fixed terrestrial BSs by exploiting the new design degree

of freedom via UAV trajectory optimization, especially for

delay-tolerant applications. In [9], a joint UAV trajectory,

user association, and power control optimization framework

is proposed for cooperative multi-UAV enabled wireless net-

works. However, legitimate UAV-ground communications are

more prone to be intercepted by potential eavesdroppers on

the ground, as compared to terrestrial wireless communica-

tion systems, which gives rise to a new security challenge.
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Fig. 1. A UAV (Alice) communicates with a ground node (Bob) with K

potential eavesdroppers (Eves) on the ground.

Although security can be conventionally handled by using

cryptographic methods adopted in the higher communication

protocol layers, physical layer security is now emerging as a

promising alternative technology to realize secrecy in wireless

communication [12]. One widely adopted performance metric

in the physical layer security design is the so-called secrecy

rate [13], at which confidential information can be reliably

conveyed. For secure UAV communications, a joint UAV

trajectory and transmit power control design framework has

been proposed in [10], where the average secrecy rate is

maximized by proactively enhancing the legitimate link and

degrading the eavesdropping link via UAV trajectory design

in addition to power adaptation. However, the location of the

eavesdropper is assumed to be perfectly known in [10], which

is overly optimistic. In practice, although the UAV can estimate

the location of a potential eavesdropper by applying an camera

or synthetic aperture radar [16], the eavesdropper may remain

silent to hide its existence and thus the location estimation is

expected suffering from errors. As a result, existing security-

enabled techniques based on the assumption of perfect location

information of eavesdroppers may result in significant degra-

dation on security performance. Moreover, there may be more

than one eavesdroppers trying to intercept the legitimate UAV-

ground communication in practice. In this scenario, the UAV

transmitter needs to steer away from multiple eavesdroppers

and at the same time approach its intended receiver as close as

possible to enhance secrecy rate. Hence, designing the UAV

trajectory in such a scenario is an interesting but challenging

problem, which has not been addressed in [10].

In this paper, we consider secure legitimate UAV-ground

communications via robust joint UAV trajectory and transmit

power design in a practical scenario, where there are multiple
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eavesdroppers on the ground, as shown in Fig. 1. The UAV

only knows the approximate regions in which the eavesdrop-

pers are located while the exact locations of the eavesdroppers

are unknown. We aim to maximize the average worst-case

secrecy rate over a given flight duration of the UAV, subject to

its mobility constraints as well as its average and peak transmit

power constraints. The main contributions are summarized as

follows.
• The considered problem is intractable and obtaining the

globally optimal solution is difficult due to its non-

convexity and semi-infinite numbers of constraints. To

tackle the intractability, we propose an efficient sub-

optimal algorithm to solve this problem, based on the

block coordinate descent method, S-Procedure, and the

successive convex optimization method.

• Since the proposed algorithm takes into account and

provides robustness against the imperfect location infor-

mation of multiple eavesdroppers, it is more suitable for

practical applications, as compared to the existing work

on secure UAV communications [10], [11].

• Simulation results show that the proposed algorithm can

improve the average worst-case secrecy rate significantly,

compared to other benchmark schemes assuming perfect

location information of the eavesdroppers or ignoring the

eavesdroppers.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a UAV-ground communication system, where

K eavesdroppers (Eves) on the ground try to intercept the

legitimate communication from a UAV (Alice) to a ground

node (Bob), as shown in Fig. 1. We express locations in the

three-dimensional Cartesian coordinate system. Without loss

of generality, we assume that Bob locates at (0, 0, 0), which is

perfectly known by Alice. For k ∈ K , {1, . . . ,K}, the exact

location of Eve k, denoted by (xk, yk, 0) in meters (m), is not

known, but its estimated location, denoted by (xEk
, yEk

, 0) in

m, is assumed to be known. The relation between the actual

and the estimated x-y coordinates of Eve k is given by

xk = xEk
+∆xk, yk = yEk

+∆yk, (1)

respectively, where ∆xk and ∆yk denote estimation errors on

xk and yk, respectively, and satisfy the following condition

(∆xk,∆yk) ∈ Ek , {(∆xk,∆yk)|∆x2
k +∆y2k ≤ Q2

k}, (2)

where Ek denotes a continuous set of possible errors. Thus,

Eve k can be regarded as locating in an uncertain circular

region with center (xEk
, yEk

, 0) and radius Qk.

It is assumed that Alice flies at a constant altitude H
in m, which is specified for safety considerations such as

building avoidance [9]. Thus, Alice’s coordinate over time is

denoted as (x(t), y(t), H), 0 ≤ t ≤ T , where T in seconds

(s) is its flight duration. To facilitate trajectory design for

Alice, we quantize the flight duration T into N sufficiently

small time slots with equal length dt. Since dt is small

enough, Alice can be regarded as static within each slot.

Thus, Alice’s trajectory over the duration T can be represented

by a sequence {(x[n], y[n], H)}Nn=1. We let (x[0], y[0], H)
and (x[N + 1], y[N + 1], H) denote Alice’s initial and final

locations, respectively, and then write the mobility constraints

of Alice as

(x[n+1]−x[n])2+(y[n+1]−y[n])2 ≤ (vmaxdt)
2, ∀n, (3)

where vmax denotes the maximum speed of Alice.

The channel from Alice to Bob is assumed to be LoS

channel [9], [14], [15]1. Thus, the power gain of the channel

from Alice to Bob in slot n is given by

gAB[n] = β0d
−2
AB [n] =

β0

x2[n] + y2[n] +H2
, (4)

where β0 denotes the power gain of a channel with reference

distance d0 = 1m [9], and dAB[n] =
√

x2[n] + y2[n] +H2

denotes the distance between Alice and Bob in slot n. Simi-

larly, the channel from Alice to Eve k can be assumed to be

LoS channel, whose power gain in slot n is given by

gAEk
[n] =

β0

(x[n]− xk)2 + (y[n]− yk)2 +H2
. (5)

Let P [n] denote the transmit power of Alice in slot n, and P̄
and Ppeak denote the average power and peak power of Alice,

respectively. Thus, we write the average and peak transmit

power constraints of Alice as

1

N

N
∑

n=1

P [n] ≤ P̄ , (6a)

0 ≤ P [n] ≤ Ppeak, ∀n. (6b)

To ensure that (6a) is a non-trivial constraint, we assume P̄ <
Ppeak. Then, we can express the achievable rate from Alice to

Bob in slot n in bits/second/Hertz (bps/Hz) as

RAB[n] = log2

(

1 +
P [n]gAB[n]

σ2

)

= log2

(

1 +
γ0P [n]

x2[n] + y2[n] +H2

)

, (7)

where γ0 = β0/σ
2 and σ2 is Gaussian noise power at the

receiver. Similarly, we express the achievable rate from Alice

to Eve k in slot n in bps/Hz as

RAEk
[n] = log2

(

1 +
γ0P [n]

(x[n]− xk)2 + (y[n]− yk)2 +H2

)

.

(8)

With (7) and (8), the average worst-case secrecy rate from

Alice to Bob over the flight duration T in bps/Hz is [13]

Rsec =
1

N

N
∑

n=1

[

RAB[n]−max
k∈K

max
(∆xk,∆yk)∈Ek

RAEk
[n]

]+

,

(9)

where [x]+ , max(x, 0).
For secure the communication from Alice to Bob, we jointly

design the trajectory and transmit power of Alice to maximize

the average worst-case secrecy rate in (9) subject to its

mobility and power constraints in (3) and (6). The optimization

variables include Alice’s trajectory and transmit power over

N time slots, which are denoted as x , [x[1], . . . , x[N ]]
†
,

y , [y[1], . . . , y[N ]]
†
, and P , [P [1], . . . , P [N ]]

†
, where †

denotes the transpose operation. The problem is formulated as

follows, where the constant term 1/N in (9) has been dropped,

1Measurement results in [6] show that the LoS channel model is a good
approximation for UAV-ground communications in practice even if the UAV
flies at a moderate altitude, e.g., 85m.
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max
x,y,P

N
∑

n=1

[

RAB[n]−max
k∈K

max
(∆xk,∆yk)∈Ek

RAEk
[n]

]+

(10)

s.t. (3), (6).

Problem (10) is difficult to solve optimally because of the

following reasons. First, the operator [·]+ introduces non-

smoothness to the objective function. Second, the objective

function is still not jointly concave with respect to x, y,

and P even without [·]+. Third, the infinite number of

possible (∆xk,∆yk) makes (10) an intractable semi-infinite

optimization problem. In the following section, we propose a

computational efficient iterative suboptimal algorithm to solve

problem (10) approximately.

III. PROPOSED ALGORITHM FOR PROBLEM (10)

We first tackle the non-smoothness of the objective function

of problem (10) by using the following lemma.

Lemma 1. Problem (10) is equivalent2 to the following

problem:

max
x,y,P

N
∑

n=1

[

RAB[n]−max
k∈K

max
(∆xk,∆yk)∈Ek

RAEk
[n]

]

(11)

s.t. (3), (6).

Proof. Denote W ∗
1 and W ∗

2 as the optimal values of problems

(10) and (11), respectively. First, since [x]+ ≥ x, ∀x, we have

W ∗
1 ≥W ∗

2 . Next, denote (x∗,y∗,P∗) as the optimal solution

to (10), where P∗ = [P ∗[1], . . . , P ∗[N ]]†. Let f(P [n]) =
RAB[n]−maxk∈K max(∆xk,∆yk)∈Ek

RAEk
[n]. We construct a

feasible solution (x̂, ŷ, P̂) to (11), such that x̂ = x∗, ŷ =
y∗, and the elements of P̂ are obtained as: if f(P ∗[n]) ≥ 0,

P̂ [n] = P ∗[n]; otherwise P̂ [n] = 0. Denote the objective value

of (11) attained at (x̂, ŷ, P̂) as Ŵ . The newly constructed

solution (x̂, ŷ, P̂) ensures that Ŵ = W ∗
1 . Since (x̂, ŷ, P̂) is

feasible to (11), it follows that W ∗
2 ≥ Ŵ and thus W ∗

2 ≥W ∗
1 .

Therefore, W ∗
1 = W ∗

2 , which completes the proof.

Although problem (11) is more tractable, it is still difficult

to solve due to its non-convexity. Nevertheless, we observe that

the optimization variables can be partitioned into two blocks,

i.e., (x,y) and P, which facilitates the algorithm design for

solving problem (11) via the block coordinate descent method

[9], [17]. Specifically, we solve (11) by solving the following

two sub-problems iteratively: sub-problem 1 optimizes P un-

der given (x,y); while sub-problem 2 optimizes (x,y) under

given P, as detailed in the next two subsections, respectively.

In the end, we summarize the overall algorithm and show its

convergence.

A. Solution to Sub-Problem 1

For given (x,y), sub-problem 1 can be written as

max
P

N
∑

n=1

[

log2(1 + αnP [n])− log2(1 + βn)
]

s.t. (6), (12)

where

αn =
γ0

x2[n] + y2[n] +H2
, βn =

γ0
mink∈K θk,n

, (13)

θk,n = min
(∆xk,∆yk)∈Ek

(x[n]− xk)
2 + (y[n]− yk)

2 +H2. (14)

2In this paper, the word “equivalent” means that both problems share the
same optimal solution.

By substituting (1) and (2) into (14), θk,n can be obtained as

θk,n =

{

H2 dk ≤ Qk,

(dk −Qk)
2 +H2 dk > Qk,

(15)

where dk =
√

(x[n] − xEk
)2 + (y[n]− yEk

)2. The optimal

solution to problem (12) can be obtained as [12]

P ∗[n] =

{

min
(

[P̂ [n]]+, Ppeak

)

αn > βn,

0 αn ≤ βn,
(16)

where

P̂ [n] =

√

(

1

2βn

−
1

2αn

)2

+
1

λ ln 2

(

1

βn

−
1

αn

)

−
1

2βn

−
1

2αn

.

(17)

In (17), λ ≥ 0 is a parameter to ensure that the constraint (6a)

is satisfied at the optimal solution, which can be determined

by bisection search [17].

B. Solution to Sub-Problem 2

By setting Pn = γ0P [n], sub-problem 2 can be expressed

as (18) shown at the top of next page, which cannot be

solved optimally in polynomial time due to its non-convexity.

By introducing slack variables u , [u[1], . . . , u[N ]]† and

t , [t[1], . . . , t[N ]]†, we first consider the following equivalent

problem:

max
x,y,u,t

N
∑

n=1

[

log2

(

1 +
Pn

u[n]

)

− log2

(

1 +
Pn

t[n]

)]

(19a)

s.t. min
(∆xk,∆yk)∈Ek

(x[n]− xk)
2 + (y[n]− yk)

2 +H2

≥ t[n], ∀n, k, (19b)

x2[n] + y2[n] +H2 − u[n] ≤ 0, ∀n, (19c)

t[n] ≥ H2, ∀n, (3).

Problems (18) and (19) have the same optimal solution of

(x,y), since the constraints (19b) and (19c) are active at

the optimal solution to problem (19). This can be proved by

contradiction: if constraints (19b) and (19c) are inactive, the

objective value of (19) can be improved by increasing t[n]
(decreasing u[n]). Hence, we can focus on solving problem

(19). However, problem (19) is still intractable, since there

is an infinite number of (∆xk,∆yk) in constraint (19b) due

to the continuous nature of Ek. Now, we convert (19b) into

equivalent constraints as follows. First, we substitute (1) and

(2) into (19b) and rewrite it as

∆x2
k +∆y2k −Q2

k ≤ 0, ∀k, (20a)

− (x[n] − xEk
−∆xk)

2 − (y[n]− yEk
−∆yk)

2

−H2 + t[n] ≤ 0, ∀k. (20b)

Next, according to S-Procedure [17], since there exists a

point (∆x̂k,∆ŷk) (e.g., (∆x̂k,∆ŷk) = (0, 0)) such that

∆x̂2
k + ∆ŷ2k − Q2

k < 0, the implication (20a) ⇒ (20b) holds

if and only if there exists ξk[n] ≥ 0 such that

Φ(x[n], y[n], t[n], ξk[n]) � 0, ∀k, n, (21)

where
Φ(x[n], y[n], t[n], ξk[n])

=





ξk[n] + 1 0 xEk
− x[n]

0 ξk[n] + 1 yEk
− y[n]

xEk
− x[n] yEk

− y[n] −Q2
kξk[n] + ck[n]



 , and
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max
x,y

N
∑

n=1

[

log2

(

1 +
Pn

x[n] + y2[n] +H2

)

− log2

(

1 +
Pn

min
k∈K

min
(∆xk,∆yk)∈Ek

(x[n]− xk)2 + (y[n]− yk)2 +H2

)]

s.t.(3). (18)

ck[n] = x2[n]− 2xEk
x[n] + x2

Ek
+ y2[n]− 2yEk

y[n] + y2Ek

+H2 − t[n]. (22)

By replacing (19b) with (21) and introducing slack variables

Ξ , [ξ1, . . . , ξK ], where ξk , [ξk[1], . . . , ξk[N ]]†, we rewrite

problem (19) into an equivalent form:

max
x,y,u,t,Ξ

N
∑

n=1

[

log2

(

1 +
Pn

u[n]

)

− log2

(

1 +
Pn

t[n]

)]

(23a)

s.t. Φ(x[n], y[n], t[n], ξk[n]) � 0, ∀k, n, (23b)

t[n] ≥ H2, ξk[n] ≥ 0, ∀k, n, (23c)

(3), (19c).

The objective function in (23a) is non-concave, since log2(1+
Pn

u[n] ) is convex. Moreover, the constraint (23b) is non-convex,

since the terms x2[n] and y2[n] contained in ck[n] (see (22))

are non-linear. Thus, problem (23) is difficult to be solved

optimally due to its non-convexity. We propose an iterative

algorithm to find an approximate solution to problem (23) as

follows. First, the algorithm assumes a feasible point xfea ,

[xfea[1], . . . , xfea[N ]]
†
, yfea , [yfea[1], . . . , yfea[N ]]

†
and ufea ,

[ufea[1], . . . , ufea[N ]]
†
, which is feasible to (23). Then, by using

the first-order Taylor expansions of log2(1 +
Pn

u[n] ), x
2[n] and

y2[n] at ufea[n], xfea[n] and yfea[n], respectively,

log2

(

1 +
Pn

u[n]

)

≥ log2

(

1 +
Pn

ufea[n]

)

−
Pn(u[n]− ufea[n])

ln 2(u2
fea[n] + Pnufea[n])

, (24)

x2[n] ≥ −x2
fea[n] + 2xfea[n]x[n], (25)

y2[n] ≥ −y2fea[n] + 2yfea[n]y[n], (26)

problem (23) is approximately transformed to

max
x,y,u,t,Ξ

N
∑

n=1

−
Pn(u[n]− ufea[n])

ln 2(u2
fea[n] + Pnufea[n])

− log2

(

1 +
Pn

t[n]

)

(27a)

s.t. Φ̃(x[n], y[n], t[n], ξk[n]) � 0, ∀k, n, (27b)

(3), (19c), (23c).

where

Φ̃(x[n], y[n], t[n], ξk[n])

=





ξk[n] + 1 0 xEk
− x[n]

0 ξk[n] + 1 yEk
− y[n]

xEk
− x[n] yEk

− y[n] −Q2
kξk[n] + c̃k[n]



 , and

c̃k[n] = −x
2
fea[n] + 2xfea[n]x[n]− 2xEk

x[n] + x2
Ek
− y2fea[n]

+ 2yfea[n]y[n]− 2yEk
y[n] + y2Ek

+H2 − t[n]. (28)

Note that problem (27) is a semidefinite programming prob-

lem, which can be optimally solved by the interior-point

method [17].

Algorithm 1 Proposed Algorithm for Problem (10).

1: Initialize P(0), x(0), y(0), and u(0). Set m = 0.

2: repeat

3: Set m← m+ 1.

4: Let xfea = x(m−1), yfea = y(m−1) and ufea = u(m−1).

Solve problem (27) under given P(m−1) to obtain

(x(m),y(m)).
5: Solve problem (12) under given (x(m),y(m)) to obtain

P(m).

6: until The fractional increase of the objective value is

smaller than a threshold ǫ > 0.

Remark 1: Since (25) and (26) are lower bounds for x2[n]
and y2[n], respectively [17], we have ck[n] ≥ c̃k[n] and thus

Φ(x[n], y[n], t[n], ξk[n]) � Φ̃(x[n], y[n], t[n], ξk[n]), (29)

which means that (27b) implies (23b). Hence, the solution to

problem (27) must be a feasible solution to problem (23).

Remark 2: Since (24) is a lower bound of log2(1 + Pn

u[n] )
[17], problem (27) maximizes a lower bound of the objective

function of (23). This lower bound is equal to the objective

value of (23) only at (xfea,yfea,ufea), so the objective value

of problem (23) with the solution to problem (27) is equal to

or greater than that with the solution (xfea,yfea,ufea).
C. Overall Algorithm

We summarize the detail of the overall algorithm in Algo-

rithm 1, which solve problems (12) and (27) alternatively and

iteratively until it converges. Since as shown in the previous

two subsections, the objective value of problem (11) with the

solutions obtained by solving problems (12) and (27) is non-

decreasing over iterations and the optimal value of problem

(11) must be finite, the solution obtained by Algorithm 1

can be guaranteed to converge to a suboptimal solution [9].

Algorithm 1 is suitable for UAV applications, since it has

a complexity of O
[

Nite(4N +KN)3.5
]

and can obtain the

solution in polynomial time, where Nite is the iteration number

[17].

IV. SIMULATION RESULTS

This section provides simulation results to verify the per-

formance of our proposed robust joint trajectory and transmit

power design algorithm, as compared to the following two

benchmark algorithms: 1) non-robust joint trajectory and trans-

mit power design; 2) best-effort trajectory design with equal

transmit power [10]. Specifically, the non-robust algorithm

only has the estimated locations of Eves and treats them as

perfect information. Thus, it jointly designs the UAV trajectory

and transmit power control by using Algorithm 1 assuming

Qk = 0, ∀k. The best-effort algorithm performs equal transmit

power allocation over time and designs Alice’s trajectory in

the following heuristic best-effort manner: Alice flies to the

location right above Bob at speed vmax, then hovers there,
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Fig. 2. Trajectories and average worst-case secrecy rates of different algorithms.

and finally flies at speed vmax to reach the final location

at time T . If Alice does not have sufficient time to reach

the location above Bob, it will turn its direction midway

and fly to the final location directly. The initial feasible

points for the proposed robust and benchmark non-robust

algorithms are generated by the best-effort algorithm. There

are K = 2 Eves, whose estimated horizontal coordinates

are (xE,1, yE,1) = (−200, 0)m and (xE,2, yE,2) = (200, 0)m,

respectively, and Q1 = 20m and Q2 = 80m. The other param-

eters are set as follows: H = 100m, vmax = 10m/s, dt = 0.5s,

γ0 = 80dB, Ppeak = 4P̄ , (x[0], y[0]) = (−400,−200)m,

(x[N ], y[N ]) = (400,−200)m, and ǫ = 10−4.

Fig. 2(a) shows the trajectories of Alice by applying differ-

ent algorithms when P̄ = −5dBm. It is observed that when T
is small (e.g., T = 80s), the trajectories obtained by the robust

and non-robust algorithms are very similar, since the flexibility

in trajectory design is limited as Alice is required to fly from

the initial location to the final location in a given duration T .

As T increases, the flexibility in designing efficient trajectory

increases. This magnifies the differences between the robust

and non-robust algorithms. When T is sufficiently large (e.g.,

T = 160s), by these two algorithms, Alice first flies at its

maximum speed in an arc path to keep away from Eve 1

and reaches a certain point near Bob; then it hovers at that

point as long as possible, and finally flies to the final location

along an arc path bypassing Eve 2 at its maximum speed.

However, in the proposed robust algorithm, the hovering point

is on the left of Bob; while in the non-robust algorithm, the

hovering point is directly above Bob. This is because although

the distances from the estimated locations of Eves 1 and 2 to

Bob are equal, the radius of the uncertain region of Eve 1 is

smaller than that of Eve 2. Considering the worst case, the

proposed robust algorithm adjusts the hovering point closer

to Eve 1 and farther from Eve 2 to strike a balance between

enhancing the legitimate link from Alice to Bob and degrading

the quality of the eavesdropping links from Alice to Eves 1

and 2, while the non-robust algorithm fails to strike such a

balance by treating Eve 1 and Eve 2 equally.

Figs. 2(b) and 2(c) show the corresponding average worst-

case secrecy rates of all algorithms versus the flight duration

T and average power P̄ , respectively. In both figures, it can be

observed that the secrecy rates of all algorithms increase with

T and P̄ . In particular, the proposed robust algorithm signif-

icantly outperforms the other two benchmark algorithms. In

Fig. 2(c), it is observed that the secrecy rates of all algorithms

are saturated when P̄ is high. This is because as shown in (7)–

(9), the secrecy rate maximization problem (10) is independent

on the transmit power P [n] and only depends on the UAV

trajectory in the high transmit power regime. Furthermore, Fig.

2(c) shows that although the non-robust algorithm outperforms

the best-effort algorithm, the secrecy rate gap between them

becomes smaller as P̄ increases. This is because the non-

robust algorithm ignores the location estimation errors of Eves

1 and 2, and thus suffers from the performance loss. The

above results demonstrate the importance and the potential

performance gain brought by the robust joint trajectory and

transmit power design.

V. CONCLUSION

This paper investigated a secure UAV communication sys-

tem when the locations of the eavesdroppers are not per-

fectly known as in the practical scenario. A robust joint

trajectory and transmit power design algorithm was proposed

to maximize the average worst-case secrecy rate subject to

the UAV’s mobility constraints as well as its average and

peak transmit power constraints. Simulation results showed

that the proposed joint design algorithm which considers the

location uncertainties of Eves can improve the worst-case

secrecy rate performance significantly, as compared to two

benchmark algorithms without considering the uncertainties

of the eavesdroppers’ location information.
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