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On the Relationship Between Relay and
Infrastructure Densities in Geometrically Bounded

Relay-Assisted Wireless Networks
Dene A. Hedges and Justin P. Coon, Senior Member, IEEE

Abstract—In this paper, we study the connectivity between two
fixed terminal nodes within a geometrically bounded network of
relay nodes and fixed infrastructure nodes. We assume a com-
munication path, between the terminal nodes, can be established
by direct connection (1-hop), via a relay node (2-hop) or via the
infrastructure network; the choice is based on link viability in a
Rayleigh fading environment. We adopt a probabilistic approach
to our analysis considering a homogeneous spatial distribution of
relay nodes and an inhomogeneous spatial distribution of infras-
tructure nodes. Our analysis of the relationship between relay and
infrastructure densities for a prescribed outage probability shows
that reliance on infrastructure connectivity can be appreciably
reduced by employing direct and 2-hop connectivity. We further
show that, as the relay density increases, optimum connectivity
is achieved by employing a non uniform spatial thinning of the
infrastructure, which is dependent upon the geometric extent of
the network. Our analysis provides an insight into multi-mode
connectivity in bounded network domains and has application
in many fields including cellular and vehicle-to-infrastructure
(V2X), which are often modelled as having finite extent and
where reducing the reliance on fixed infrastructure can effectively
reduce operating expenditure (OPEX) costs.

Index Terms—2-hop connectivity, cooperative networks,
stochastic geometry.

I. INTRODUCTION

IN the context of evolution towards 5th generation wireless
systems (5G), network densification [1] is considered a

key enabler in satisfying the increasing capacity demands on
wireless communication networks, whilst maximising spec-
trum utilisation [2]. The past few decades have seen the
traditional macro-cellular networks being augmented with
tiered supplemental infrastructures in the forms of micro,
pico and femto-cells. The gains and limitations associated
with the employment of these denser smaller cell networks
are discussed in [3] and references therein. As we move
down the tiered structure of the network, from the macro
layer, we observe three general trends: the location of cells
migrates from being planned to unplanned (spatially random),
energy consumption of the cell decreases and cell densities
(number of active nodes per unit area) increase [4] [5]. The
5G picture is further complicated by the integration of a
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number of disparate technologies, such as Internet of Things
(IoT), Wireless Sensor Networks (WSN) and Wireless Local
Area Networks (WLAN), to provide seamless ‘always-on’
data transfer through the composite 5G network by choosing
communication paths that optimise total network performance
[6] [7].

Energy efficiency in future wireless networks is also a grow-
ing concern for network operators in response to global pres-
sure to reduce carbon footprints and maintain profitability, with
the term ‘green cellular network’ typically employed to convey
an energy efficient network. [8] provides a cost-capacity per-
formance analysis of femto-cell and macro-cellular networks,
concluding that the optimum network structure depends on
capacity demands. [9] provides a quantitative analysis of
energy savings in green cellular networks and [10] provides
a survey of research issues and challenges associated with
managing energy consumption. A consensus is that the capital
expenditure (CAPEX), costs associated with commissioning
an infrastructure, and operating expenditure (OPEX), ongoing
cost associated with running the infrastructure, are dominant
in macro-cells but the costs associated with lower tier cells
cannot be ignored due to their significantly higher spatial
densities compared to macro-cell network. Recent research has
concluded that the most efficient way to save energy in cellular
networks is to switch base stations on and off dynamically
according to the distribution of user equipment in real time.
This is often termed ‘Idle Mode’ capability or ‘Basestation
Sleeping’ and a number of strategies, and their effects on
network performance, have been studied, including [11]–[14].

Another method to offload traffic from a network infras-
tructure is to allow users within range of each other to
communicate directly or via a multi-hop route, through other
user equipment. Spatial densification of user equipment (UE),
e.g. mobile phones, is clearly beneficial in this context. Direct
connection of proximity UEs, often termed device-to-device
(D2D), has gained rapid traction over the past few years [15],
[16]. Looking ahead, [17] predicts that few-hop networking
is likely to play a key role in future wireless networks;
optimised towards as few hops as possible in order to minimise
end-to-end delivery latency and system complexity. Although
significant research on this subject has been undertaken in
geometrically unbounded networks, few papers have addressed
the effects associated with finite geometries. [18], [19] and
references therein provide useful insights into the effects of
geometrically bounding wireless networks and [20] provides
closed form expressions for the 2-hop connection probability
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in networks having circular and rectangular boundaries. We
chose a working assumption that wireless networks are finite
(geometrically bounded) because (a) it is realistic (wireless
networks are not infinite), (b) connectivity performance analy-
sis is mathematically tractable and (c) it enables us to consider
the effects of inhomogeneity on a large scale, which can be
useful in practice.

The connectivity between any two devices, wishing to
communicate directly, is governed by their spatial separation,
channel fading and a number of other system constants: wave-
length, signal-to-noise ratio (SNR), etc. By allowing the two
nodes to communicate via an intermediate node, i.e. forming a
2-hop path, it is possible to increase the communication range
and/or connection probability. However, since the intermediate
nodes are randomly distributed within the domain, we need to
consider their spatial distribution and the distributions of other
system variables in order to accurately analyse connectivity
performance. Further, in the finite domain, the effects of the
domain boundary need to borne in mind. To aid connectivity
analysis, in these types of stochastic networks, we use tools
taken from the world of stochastic geometry [21].

In this paper, we consider the use of direct (1-hop) and
2-hop connectivity, between two terminal nodes wishing to
communicate, as a mechanism to reduce the reliance on a
fixed infrastructure. This allows infrastructure nodes to be
switched off according to the density of relay nodes within the
network. Our approach considers outage probability between
terminal nodes as our connectivity metric, which we average
over all possible spatial relay/infrastructure node configura-
tions within the network. For tractability, we consider the
case of a circularly geometrically bounded wireless network
subject to Rayleigh fading and assume negligible inter-node
interference. The consideration of interference is clearly of
concern in many applications; however we maintain general-
ity by assuming a suitable medium access control protocol
(MAC) [22] is employed to ensure interference is prevented,
e.g. frequency/time division multiple access (FDMA/TDMA).
Under these working assumptions, we are able to offer several
contributions:

1) we provide mathematical expressions involving well-
understood special functions for the connectivity proba-
bility of two terminal nodes in the network;

2) we exploit this mathematical framework to demonstrate
the trade-off in relay and infrastructure node densities
for a prescribed level of connectivity;

3) we demonstrate that it is possible to obtain a Pareto
frontier in the different node densities by appropriately
thinning the active infrastructure set in an inhomoge-
neous manner.

The remainder of the paper is organised as follows. Section
II details our system model. Section III derives mathematical
expressions involving well-understood special functions for
outage probability between fixed terminal nodes, and Section
IV provides insights into the relative contributions of relay
and infrastructure networks for a prescribed outage probability
when averaged over all spatial relay/infrastructure/terminal
node configurations. Conclusions are detailed in section V.

II. NETWORK DEFINITIONS AND SYSTEM MODEL

We consider the connectivity between two terminal nodes,
at fixed locations p1 and p2, within a circular domain
V ⊂ R2. Also contained within V, are independent identi-
cally distributed (i.i.d.) relay nodes and i.i.d. infrastructure
nodes, spatially distributed according to independent Poisson
point processes (PPP), ΦR and ΦI respectively. Note that the
spatial distributions of relay and infrastructure networks are
not necessarily identical. We employ PPP in our analysis
for mathematical tractability and because we do not assume
prior knowledge of the number of nodes in the networks. We
characterise our relay and infrastructure networks by their
average node densities ρR and ρI respectively; with zero
node densities in R2 \ V. It is worth noting the distinction
between a binomial point process and a PPP in a finite
domain V is that different realisations of the PPP consist of a
different number of points having a Poisson distribution [23,
sect. 2.4.2]. We assume a homogeneous spatial distribution of
relay nodes whereas the infrastructure nodes can follow an
inhomogeneous spatial distribution where the density ρI is, in
general, dependent upon the position within V, as we define
later. We denote the location of any arbitrary node-i by the
vector pi with index i ∈ {1, 2, . . . , (ΦR(V) + ΦI(V) + 2)},
where Φy(V) ∼ Poisson(ρy|V|), y ∈ {R, I}. Hereafter, we use
pi to represent both node-i and its location interchangeably.

The direct communication path between any two nodes, at
locations pi and pj , is considered undirected with reciprocal
channel gain and connected with probability

Hij = P(SNRij · |hij |2 > τ), (1)

where SNRij denotes the long term average signal-to-noise
ratio, hij is the small scale fading coefficient for single input
single output (SISO) systems, with E|hij |2 = 1, and τ is
the required minimum instantaneous SNR for signal detection.
Assuming identical lossless antennas with non directive gain,
G, in the R2-plane, we have from the well known modified
Friis transmission formula that

SNRij =
PG2

σ2

(
λ

4π

)2

‖pi − pj‖−η, (2)

where η is the path loss exponent, P is the transmit power, σ2

represents the thermal noise variance at the receiving node, λ
is the wavelength of the RF carrier employed and ‖·‖ is the l2-
norm. For convenience, we consider a fixed connectivity scale
r0 and, hereafter, normalise all distance variables to this scale.
Further, we define r0 as the hard connection range [24], which
is the Euclidean distance beyond which there is insufficient
signal level to allow signal detection. r0 is determined solely
by large scale path loss and from (2)

rη0 =
PG2

τσ2

(
λ

4π

)2

. (3)

Letting rij denote the Euclidean distance between pi and pj ,
normalised to r0, we obtain

Hij = P(|hij |2 > rηij) (4)

For mathematical tractability we assume the small scale fading
coefficient follows a Rayleigh distribution, hij ∼ CN(0, 1). It
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Fig. 1. Direct and 2-hop connectivity between two terminal nodes, p1 and
p2, in a finite convex domain V containing uniformly distributed intermediate
relay nodes pk ∈ ΦR and non-uniformly distributed infrastructure nodes
pm,pn ∈ ΦI.

then follows that |hij |2 has a standard exponential distribution,
|Hij |2 ∼ exp(1), which yields a connection probability
defined by

Hij = e−r
η
ij . (5)

We consider three independent mechanisms whereby two
terminal nodes p1 and p2 can connect: directly, via an inter-
mediate node pk ∈ ΦR forming a 2-hop path, or independent
connection to two infrastructure nodes pm,pn ∈ ΦI, which
is depicted in Fig. 1. Although our analysis is limited to
the 2-hop relay case, K-hop connectivity could be considered
[25]. The connectivity between any two infrastructure nodes is
assumed to be guaranteed i.e. there exists some form of low
latency fixed infrastructure with infinite capacity. For math-
ematical tractability, we assume that relaying nodes employ
regenerative (decode-and-forward) relaying which eliminates
interdependency on the connectivity of the 2-hops and allows
the probability of 2-hop connectivity, between p1 and p2 via
pk, to be simply expressed as the product H1kH2k. This also
assumes that the small scale fading component of the 1-k and
2-k channels are statistically independent1.

1Although this is not necessarily the case when p1 and p2 are located
within the coherence distance rc of each other since their connectivity
behaviour to an arbitrary common relay node will be more highly correlated
and therefore independence cannot be assumed. Taking the example of a
circular domain V of radius R and assume rc � R, then the measure
of space in V corresponding to the case ‖p1 − p2‖ < rc is small
compared to the whole space of node configurations. Therefore, if we average
the exponential connectivity functions, between terminal nodes, over all
possible node locations, then the portion of the average corresponding to
‖p1 − p2‖ < rc, will be negligible. This assumption has been shown on
several occasions to yield accurate results [18] [26].

III. CONNECTIVITY ANALYSIS

We choose outage probability as our connectivity met-
ric between terminal nodes p1 and p2, for any spatial re-
lay/infrastructure node configuration, denoted by O12. We
assume the three aforementioned connection mechanisms are
independent and evaluate O12 as the product of outage prob-
abilities of all possible connection mechanisms2 such that

O12 = (1−H12)
∏

pk∈ΦR

(1−H1kH2k)

×
[
1−

[
1−

∏
pm∈ΦI

(1−H1m)

][
1−

∏
pn∈ΦI

(1−H2n)

]]
. (6)

We now proceed to average the outage probability over
all spatial relay/infrastructure node configurations within a
finite circularly bounded domain V with radius R. A circularly
bounded network is considered to be a reasonable approxima-
tion to a network constrained to a typical residential area or a
clustering of communication nodes within a larger heteroge-
neous network for example. Alternative geometric boundaries,
e.g. rectangular [20], can be treated in a similar manner to
that outlined here. We firstly consider the simpler case of a
homogeneous infrastructure network, also considering the spe-
cial case R→∞, followed by analysis of an inhomogeneous
infrastructure network. Closed form expressions are developed
wherever possible to provide analytical insights.

A. Homogeneous Infrastructure

We define Ō12 := EΦR,ΦI [O12|p1,p2] as the outage prob-
ability (6) averaged over all possible locations of relay and
infrastructure nodes in V, conditioned on the locations of the
terminal nodes p1 and p2 . Since relay and infrastructure node
locations are independent and identically distributed (i.i.d.),
this can be expressed as

Ō12 = (1−H12)EΦR

[ ∏
pk∈ΦR

(1−H1kH2k)

]
×

{
EΦI

[ ∏
pn∈ΦI

(1−H1n)

]
+

[
EΦI

[ ∏
pn∈ΦI

(1−H2n)

]
− EΦI

[ ∏
pn∈ΦI

(1−H1n)(1−H2n)

]}
. (7)

Employing the probability generating functional for ΦR and
ΦI to solve the expectations, gives

Ō12 = (1−H12) exp

[
− ρRV H̄

(2R)
12

]
×
{

exp

[
− ρIV H̄1I

]
+ exp

[
− ρIV H̄2I

]
− exp

[
− ρIV

(
H̄1I + H̄2I − H̄(2I)

12

)]}
,

(8)

2We interpret connectivity, between terminal nodes, as a route exists
in theory. The mathematical analysis is identical to the case of selection
combining [27], although selection combining is impractical at a large scale.
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where V = |V| = πR2 and H̄
(2y)
12 , y ∈ {R, I}, denotes

the 2-hop connection probability, between p1 and p2 via
a relay/infrastructure node, averaged over all possible loca-
tions of a relay/infrastructure node in V. H̄iI, i ∈ {1, 2},
is the probability of a terminal node connecting directly
to an infrastructure node, averaged over all locations of an
infrastructure node in V. Since we consider homogeneous relay
and infrastructure networks,

H̄
(2y)
12 =

1

V

∫
V

H1kH2kdpk, (9)

Note that the r.h.s. of (9) is independent of y and the probabil-
ities of terminal nodes connecting via a relay or infrastructure
nodes are identical for the homogeneous spatial distribution
of the infrastructure. The final term in the curly braces in
(8) (similarly, (7)) is the probability of the union of two
events, namely that each of the two terminal nodes does not
connect to an infrastructure node. Hence, we can apply the
union bound to simplify this expression. Intuitively, as the
domain size increases, for a given ρI , the probability of the
terminal nodes connecting to independent infrastructure nodes
will be significantly higher than the probability of terminal
nodes connecting to the same infrastructure node. Thus, we
expect the union bound to provide a tight upper bound in
outage probability. We denote this upper bound by ŌUB

12 , where

ŌUB
12 := (1−H12) exp

[
− ρRV H̄

(2R)
12

]
×
{

exp

[
− ρIV H̄1I

]
+ exp

[
− ρIV H̄2I

]}
. (10)

Hereafter we chose the special case of free space prop-
agation, η = 2, to provide mathematical tractability in our
analysis. Alternative path loss exponents could be employed
but would not necessarily yield behavioural insights due to
the limitations of a purely numeric analysis. (9) is evaluated
in [20], for this special case, yielding

H̄
(2y)
12 =

π

2V
e−

r212
2

[
1−Q1

(
2‖p12‖, 2R

)]
, (11)

where Q1(a, b) =
∫∞
b
xe−

(x2+a2)
2 Io(ax)dx is the first order

Marcum Q-function, I0(a) = 1
π

∫ π
0
ea cos θdθ is the zeroth

order modified Bessel function of the first kind and p12 =
(p1 + p2)/2 is the mid-point between p1 and p2. Further,
since we initially consider a uniform spatial distribution of
infrastructure nodes,

H̄iI =
1

V

∫
V

Himdpm. (12)

Using the approach detailed in [20], this evaluates to

H̄iI =
π

V

[
1−Q1

(√
2ri,
√

2R
)]
, (13)

where ri = ‖pi‖ is the radial offset of node pi.
Fig. 2 illustrates (8), and the upper bound (10), for a

range of relay and infrastructure densities with fixed terminal
nodes, located at polar coordinates 2∠0 and 2∠π/2, within
a circular domain of radius 2.5. The figure illustrates that
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Fig. 2. Outage probability as a function of ρR, for ρI ∈ {0.5, 1, 1.5, 2} and
η ∈ {2, 3}, averaged over locations of relay and infrastructure nodes in a
circular domain V of radius 2.5, as given by (8). Terminal node located at
polar coordinates 2∠0 and 2∠π/2. Blue markers show results from Monte
Carlo simulations. Dashed red lines indicate upper bound as given by (10).

our expectation in upper bound tightness is indeed correct.
Although we focus our analysis on free space propagation,
we demonstrate the tightness of the bound for increased path
loss exponent by including the case η = 3, evaluating (9) and
(12) numerically. Results from Monte Carlo simulations are
included to validate the analysis. The figure clearly shows an
exponential improvement in outage probability with increasing
infrastructure density. Since 1−Q1(x, ·) is strictly decreasing
with respect to x, then (11) and (13) exhibit a reduction in
connection probability as the terminal nodes move closer to
the boundary of V; following observations made in [19], [28]
where this phenomena is attributed to loss in connectivity
mass towards the boundary. We also observe a tight upper
bound as the average number of infrastructure nodes increases.
If we analyse the asymptotic behaviour of (11) and (13)
with increasing r12 and their relative contributions in (8),
we observe that (13) becomes the dominant term due to the
exponential term, yielding a tight upper union bound for larger
terminal node separation or when we average connectivity over
all possible terminal node positions with increasing domain
size. Further, we can approximate performance with terminal
node located towards the domain centre by employing the
special cases for the first order Marcum Q-function

Q1

(
0, x) = e−x

2/2, (14)

and similarly at the boundary

Q1

(
x, x) =

1

2

[
1 + e−x

2

I0(x2)

]
(15)

which by taking the asymptotic expansion of the modified
Bessel function for large argument x becomes

Q1

(
x, x) ∼ 1

2

[
1 +

1√
2π

1

x

]
. (16)
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Fig. 3. Illustration of the accuracy of first order approximation (19). The
red solid traces show ρI as a function of ρR as defined by (8) (determined
through successive approximation) and the black dashed traces show the first
order approximation as given by (19). We fix R = 4 and κ = 0.01 and
consider terminal nodes located within the central bulk region at radial and
angular offsets ri ∈ {0.5, 1.0, 1.5} and π/2 respectively.

The effectiveness of these special cases for approximating
performance at the centre and boundary of circular domains is
demonstrated in [20]. From Q1(x,∞) = 0 [29] we can show
that, in the limit R→∞ (V→ R2), (8) reduces to

Ō12 =
R→∞

(1− e−r
2
12) exp

(
−πρR

2
e−

r212
2

)
× exp(−πρI)

[
2− exp

[
− πρI

2

(
2− e−

r212
2

)]]
(17)

and similarly

ŌUB
12 =

R→∞
2(1− e−r

2
12) exp

(
−πρR

2
e−

r212
2

)
exp(−πρI), (18)

which are solely functions of the Euclidean distance between
the terminal nodes and the relay and infrastructure node
densities. It is worth noting that the simplicity of (18) provides
a convenient approximation for outage behaviour in the central
bulk region (ri < 0.5R, i ∈ {1, 2}) under the conditions
R > 3, yielding 0 < Q1(

√
2ri,
√

2R) � 0.1 and ρI > 1,
yielding a tighter upper performance bound. Further, for a
fixed r12 and a prescribed outage probability ŌUB

12 = κ, we
can approximate the infrastructure density required for a given
relay infrastructure by simply rearranging (18) such that

ρI ≈ −
1

π
ln

[
0.5κ

1− e−r212

]
− 0.5e−

r212
2 ρR. (19)

This accuracy of this approximation is illustrated in Fig. 3.
If we wish to average connectivity performance over terminal
node positions within the central bulk region we can employ
the probability distribution of r12 within a circle [30]. Further
analysis in the bulk region of homogeneous networks has
not been included for brevity; our main motivation is to
understand the relationship between boundary conditions and
spatial distribution of the infrastructure network.

Fig. 4. Realisations of the spatial distribution of infrastructure nodes, with
density ρI = 10 within a circle of radius R = 4, for α ∈ {0.1, 1, 10} and
β = 2.

B. Inhomogeneous Infrastructure

Conjecturing that, for a non zero density of relays, an inho-
mogeneous distribution of infrastructure nodes will mitigate
loss in relay assisted 2-hop connectivity between terminal
nodes located closer to the boundary, we now consider an
inhomogeneous independent thinning [23, section 2.7.3] of our
infrastructure network as the density of the relay infrastructure
increases. In the thinning process, we remove infrastructure
nodes with probability 1 − g(pn), independently of all other
infrastructure nodes. This process generates an inhomogeneous
PPP with intensity function ρIg(pn), where ρI is the mean
infrastructure density over V. We propose that g(pn) has a
uniform axial distribution but varies with radial offset ‖pn‖
from the centre of V according to

g(pn) =
1

k

[
1 + (α− 1)

(
‖pn‖
R

)β]
, (20)

where the normalising constant k is given by

k =

∫
V

[
1 + (α− 1)

(
‖pn‖
R

)β]
dpn

= πR2

[
1 +

2(α− 1)

β + 2

]
. (21)

The radial distribution of (20) is defined by parameters α
and β. The exponent β ∈ R+ defines the characteristic of
the distribution, i.e. β = 1 for a linear radial distribution
and β = 2 for a quadratic radial distribution. The parameter
α ∈ R+ is a weighting factor given by the ratio of the intensity
measures of infrastructure nodes at the domain’s boundary and
centre, i.e. α < 1 provides a spatial bias towards the centre
of the domain, α > 1 spatially biases the infrastructure nodes
towards the domain boundary and α = 1 yields a homoge-
neous spatial distribution. We illustrate the effect of this spatial
bias in Fig. 4. Alternative radial distributions could have been
considered, e.g. beta distribution, but do not necessarily yield
the mathematical tractability offered by (20) or the spatial bias
simply defined by a single parameter. We now evaluate (7),
again employing the probability generating functional to solve
the expectations. For the thinned infrastructure, we evaluate
H̄iI and H̄(2I)

12 for the inhomogeneous spatial distribution.

H̄iI =

∫
V

g(pn)Hindpn,
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which, by employing polar coordinate geometry and firstly
integrating over the axial component [20], results in

H̄iI =
2π

k
e−r

2
i

∫ R

0

rne
−r2n

[
1+(α−1)

(
rn
R

)β]
I0(2rirn)drn,

(22)
where ri = ‖pi‖ is the radial offset of the terminal node
and rn = ‖pn‖ . Since (22) only produces a closed form
expression at even integers for β [31], we chose β = 2. Since
we are interested in observing the effect of this spatial bias
this is considered a reasonable assumption. Splitting (22) and
applying [31, eqs. (10) & (20)] results in

H̄iI =
π

k

{(
(α− 1)(r2

i + 1)

R2
+ 1

)[
1−Q1(

√
2ri,
√

2R)
]

− (α− 1)e−(r2i+R2)

[
ri
R

I1(2riR) + I0(2riR)

]}
.

(23)

Similarly

H̄
(2I)
12 =

∫
V

g(pn)H1nH2ndpn,

which, employing a similar approach as before (see Appendix
A), can be shown to yield

H̄
(2I)
12 =

π

2k
e−

1
2 r

2
12

×
{(

(α− 1)(2‖p12‖2 + 1)

2R2
+ 1

)
×
[
1−Q1(2‖p12‖, 2R)

]
− (α− 1)e−2(‖p12‖

2+R2)

×
[
‖p12‖
R

I1(4‖p12‖R) + I0(4‖p12‖R)

]}
. (24)

It is trivial to show that a substitution of α = 1 into (23) and
(24) reduces to (13) and (11) respectively, the homogeneous
case.

We evaluate (8), following substitutions of (23) and (24),
to yield outage probability averaged over all spatial node
configurations of our homogeneous relay and inhomogeneous
infrastructure networks, between fixed terminal nodes. This
is illustrated in Fig. 5 for the case where the domain radius
is R = 2.5, terminal nodes are located at polar coordinates
2∠0 and 2∠π/2, infrastructure density is fixed at ρI = 2,
relay density is varied over the range ρR ∈ [1, 100] and the
infrastructure spatial weighting factor is varied over the range
α ∈ {0.1, 1, 10}. Results from Monte Carlo simulations are
included to validate the analysis. The plot clearly shows that
infrastructure spatial bias influences outage performance and
that a homogeneous spatial bias is non-optimum. The plot also
demonstrates the tightness of the upper bound.

Thus far, we have only considered the case for fixed
terminals. We now proceed to average (8), and the upper bound
(10), over the locations of uniformly distributed terminal nodes
confined within V. We denote these averages by Ō and ŌUB

respectively, where

Ō := Ep1,p2
[Ō12] =

1

V 2

∫
V2

Ō12dp1dp2 (25)
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Fig. 5. Outage probability as a function of ρR, averaged over locations
of relay and infrastructure nodes over a circular domain V of radius 2.5,
as given by (8), with appropriate substitutions. Terminal node locations are
both fixed at a radial offset of 2 with angular separation of π/2 and mean
infrastructure density is ρI = 2. Plot illustrates outage probability over a
range of infrastructure spatial weighting factors α ∈ {0.1, 1, 10}, β = 2
and includes results from Monte Carlo simulations. Dashed red lines indicate
upper bounds derived from the application of the union bound of outage
probabilities between terminal nodes and infrastructure nodes.

ŌUB := Ep1,p2
[ŌUB

12 ] =
1

V 2

∫
V2

ŌUB
12 dp1dp2 (26)

It should be noted that (25) and (26) apply to both homoge-
neous and inhomogeneous cases with appropriate substitutions
for Ō12 and ŌUB

12 . Since these expression do not produce
closed form solutions, we solve numerically by employing the
polar coordinate system for p1 and p2 and using Riemann
integration. We illustrate the relationship with α in Fig. 6,
for a range of domain sizes. We observe a quasi-convex
relationship where the value of α corresponding to the global
minimum reduces as the domain size grows, approaching unity
in the limit R → ∞. Intuitively, as the domain size grows,
the average separation of terminal nodes is such that direct
connection, or connection via another relay node, occurs with
low probability and connectivity is therefore dominated by
the infrastructure. Since terminal nodes are most likely to
connect to their proximity infrastructure nodes then a uniform
spatial distribution is clearly optimal for larger domain sizes.
This can be proven by considering the dominant terms of
(8) when r12 � 1, and equating their 1st derivatives to
zero, which yields the condition that α = 1. A very tight
upper bound is also observed which simplifies subsequent
analysis of quasi-convexity in α, as detailed in Appendix B.
Although a robust mathematical proof of quasi-convexity is
generally not possible in this case, the homogeneity of the
averaging process (over the terminal and relay node positions)
intuitively suggests that such a condition is true, and an
extensive simulation study has supported this hypothesis. In
subsequent analysis we assume quasi-convexity.
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Fig. 6. Outage probability, averaged over relay, infrastructure and terminal
node locations, as a function of weighting factor α for a range of domain radii
R ∈ {2, 3, 4, 5, 10}. In all cases, mean densities of relay and infrastructure
networks are fixed at ρR = 50 and ρI = 2.5. Dashed red lines indicate upper
bounds derived from the application of the union bound of outage probabilities
between terminal nodes and infrastructure nodes averaged over terminal node
locations.

IV. NUMERICAL ANALYSIS OF RELATIVE DENSITIES OF
RELAY AND INFRASTRUCTURE NETWORKS

We now consider how our analysis may be applied in a
‘real-world’ context. By way of example, we may consider
cellular3 or vehicular networks, which typically have fixed
infrastructures and where the locations and density of mobile
phones, or vehicles, vary as they move, enter and leave
the network. Since service providers generally have full or
limited control over the network infrastructure, we may wish to
determine the minimum infrastructure density and associated
spatial distribution that achieves a minimum acceptable quality
of service (QoS) from the composite network at a given
average density of the relay (mobiles or vehicles) network. The
infrastructure can then be controlled dynamically according to
the temporal behaviour of the relay network.

In order to provide this behavioural insight, we equate
(25) to a fixed prescribed outage probability κ ∈ [0, 1]. In
subsequent analysis we assume that κ = 0.01 provides an
acceptable QoS. Understanding the infrastructure/relay density
relationship provides an insight into possible infrastructure
activation/deactivation strategies, as relay nodes enter or leave
the network. We evaluate (25) numerically, following substi-
tutions of (8), (23) and (24), and employ Newton’s method
of successive approximation to yield ρI, for a given ρR.
In reality, this approach would be significantly less compu-
tationally process intensive than employing a Monte Carlo
process. In order to illustrate the effect of infrastructure spatial
distribution bias as the domain size increases, we consider a
range of biases α ∈ {0.1, 0.5, 1.0, 2.0, 10} and domain sizes

3Although interference would need to be considered in this case.

R ∈ {1, 1.4, 1.8, 2.5, 4, 5}. The results of this analysis are
illustrated in Fig. 7. Each trace represents a Pareto frontier in
the average relay and infrastructure node densities, which vary
with spatial distribution of the infrastructure network. With
knowledge of the average relay density, we can actively reduce
or increase the average infrastructure density, by selective
deactivation or activation of infrastructure nodes, in order to
maintain or exceed our prescribed outage condition; provided
the densities lie on or above the Pareto frontier.

Remark (Deactivation Strategy). Selective deactivation of
infrastructure nodes is equivalent to the aforementioned thin-
ning of our point process ΦI, such that the resultant PPP,
representing the infrastructure, has a spatial distribution with
weighting factor α. With a ‘real-world’ network with a finite
number of infrastructure nodes at fixed locations, we may
employ an infrastructure deactivation strategy that results
in a spatial configuration of infrastructure nodes yielding
the closest approximation to this optimal spatial distribution,
defined by α and β, and the required average density ρI.

We observe, that for lower domain sizes, R < 2, ap-
preciable rates of reduction of infrastructure density, with
increasing relay density, can be realised to the point whereby
the relay density is sufficient to establish the required outage
conditions without any infrastructure network. For the cases
where R < 1.4 and with no relay nodes, a lower density
of infrastructure nodes are required when they are spatially
biased towards the centre. As the relay density increases, this
spatial bias becomes less important. This implies that, as the
density of relay nodes increases, infrastructure nodes closer to
the boundary should be deactivated in the thinning process.
We observe a transition at a radius R = 1.4, whereby for
increasing radii, lower infrastructure densities are required
when spatially biased towards the boundary.

Remark (Transition Radius). If we assume a fixed infrastruc-
ture network density, the expected number of infrastructure
nodes will reduce with domain size. For smaller domain sizes
(when the domain radius is less than or close to the hard
connection range r0) and with the absence of relay nodes,
a randomly located terminal node is likely to have more
infrastructure nodes within connection range when they are
located towards the centre of the domain. As domain size
grows above r0 and with infrastructure nodes centrally biased
there will be regions where terminal nodes are located closer
to the boundary that will have limited or no access to any
infrastructure node, thus requiring an increased spatial bias
toward the domain boundary.

As the domain size increases beyond R = 1.8, the rate
of reduction of infrastructure density, with increasing relay
density, is significantly lower and the spatial bias of the
infrastructure has a more marked effect on performance, with
an optimum spatial bias occurring at approximately α = 2 for
R = 5.

We now focus on the optimum spatial distribution for the
infrastructure network, denoted by αopt, that yields a minimum
in averaged outage probability as defined by (25). Since we
conjecture a quasi-convex relationship in (25) with respect to
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α, we solve

∂Ō

∂α
=

1

V 2

∫
V2

∂Ō12

∂α
dp1dp2 = 0. (27)

by employing Newton’s method of successive approximation.
The derivatives of Ō12, with respect to α are relatively straight-
forward and not included for brevity. We firstly consider the
optimum spatial distribution of a fixed density infrastructure,
in the absence of relay nodes, as a function of domain size.
This is illustrated in Fig. 8 for an infrastructure density ρI = 3
and zero relay density. We show that for increasing radius, we
firstly observe the sharp transition from a centrally biased to
boundary biased infrastructure; we remark on this transition
radius earlier. The spatial bias then reaches a maximum at
R ≈ 1.9, followed by an asymptotic decay towards a uniform
spatial distribution. This decay is an intuitive result since,
as we approach a network of infinite extent, a uniformly
distributed infrastructure is required to provide coverage over
the whole domain.

We now proceed to investigate both the minimum infras-
tructure density, denoted by ρImin , and the optimum spatial in-
frastructure bias, that achieves the prescribed averaged outage
probability Ō = κ. We evaluate these over a range of relay
densities and domain radii using the following process:

1) Fix domain radius R and initially set ρR = 0 and α =
αopt = 1.

2) Substitute (R, ρR, α) into (25) and determine ρImin , sat-
isfying Ō = κ, by successive approximation.

3) Substitute (R, ρI = ρImin) into (27) and determine αopt
by successive approximation.

4) Due to interdependence of α and ρI, iterate steps 2 and
3 until an acceptably low difference (e.g. 1%) is reached
between successive approximations of α and ρI; we find
2 iterations are satisfactory.

5) Increment ρR and repeat from step 2 using previous the
previous ρImin and αopt to seed the subsequent successive
approximations.

We focus on the larger domains with R ∈ {2.5, 3, 4}, since
the reduction in infrastructure with spatial bias compared
to the uniform distribution case, for lower domain sizes, is
negligible. Results are shown in Fig. 9 which includes the
density relationship for the uniform α = 1 case. Firstly, we
observe that employing a non-uniform spatial distribution of
infrastructure can realise significant reductions in the infras-
tructure density compared to the uniformly distributed case,
as illustrated in Fig. 10, where reductions between 8% and
16% are observed. Secondly, if we consider the relationship
between optimum α, denoted by αopt, and relay density, we
observe that monotonicity of the slopes of the traces change
from strictly increasing to decreasing as the domain size
increases.

Remark (Optimum Spatial Bias). The analysis for lower
domain sizes, above the aforementioned transition radius but
with R < 3, shows that, with increasing relay density,
infrastructure nodes closest to the domain centre should be
deactivated and remaining active infrastructure nodes should
be strongly concentrated at the boundary region. This suggests
that the relay network dominates connectivity within the bulk
and infrastructure nodes at the boundary compensate for loss
of relay connectivity mass towards the boundary region. This
dominance decreases with increasing domain size and we
observe that αopt reduces, an intuitive result since as we
approach a network of infinite extent, a uniformly distributed
infrastructure is required.

V. CONCLUSION AND DISCUSSIONS

In this paper, we have studied the connectivity between
two terminal nodes employing direct, 2-hop and infrastruc-
ture based connectivity within a circular domain subject to
Rayleigh fading. We derive mathematical expressions involv-
ing well-understood special functions for outage probability
and show a dependence on: domain size, spatial separation
of terminal nodes, their mid-point location and the densi-
ties of the relay and infrastructure networks. Our analysis
has demonstrated that 2-hop and infrastructure connectivity
performance reduces towards the boundaries, which agrees
with previous observations [18]. With the objective of min-
imising outage probability between two randomly selected
independent uniformly distributed (i.u.d.) terminal nodes, we
show that employment of direct and relay assisted connectivity
can significantly reduce the reliance on the infrastructure.
Furthermore, the spatial distribution of infrastructure nodes
has a marked bearing on connectivity performance in the finite
domain regime, opening up the possibility of spatially selective
deactivation of infrastructure nodes conditioned on relay den-
sity. We provide a mathematical framework that enables the
determination of the optimal density and spatial distribution
of an infrastructure network, for a given relay density and
prescribed outage condition. As the domain sizes increase,
we observe diminishing returns in employing direct and relay
assisted connectivity due to increased average separation of
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Fig. 9. Minimum infrastructure density, employing variable (non uniform) and
uniform thinning, and optimum infrastructure spatial bias αopt as a function
of relay density for radii R ∈ {2.5, 3, 4}.
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Fig. 10. Reduction in infrastructure density by employment variable (non
uniform) spatial thinning relative to the uniform spatial thinning case.

terminal nodes and therefore an increased reliance on the
infrastructure, which could be addressed by allowing 2-hop
connectivity between terminal and infrastructure nodes via an
intermediate relay node; a natural extension to this analysis.

APPENDIX A
EVALUATION OF H̄

(2I)
12

H̄
(2I)
12 =

∫
V

g(pn)H1nH2ndpn

=

∫ R

0

∫ 2π

0

rng(pn)e−(‖r1n‖η+‖r2n‖η)dφndrn, (28)

where g(pn) is given by (20). For mathematical tractability,
we assume a path loss exponent η = 2 and a quadratic spatial
distribution function for pn i.e. β = 2. Employing polar
coordinate geometry, relative to the centre of the circle where
pi = ri∠φi, then

rin =
√
r2
i + r2

n − 2rirn cos(φn − φi). (29)

Substituting (29) into (28) and simplifying gives

H̄
(2I)
12 = e−(r21+r22)

∫ R

0

rng(pn)e−2r2n

×
[ ∫ 2π

0

e−2rn[r1 cos(φn−φ1)+r2 cos(φn−φ2)]dφn

]
drn.

(30)

We now use the trigonometric identity

r1 cos(φn − φ1) + r2 cos(φn − φ2) = Ψ cos(φn − ϕ), (31)

where

ϕ = tan−1

[
r1 sin(φ1) + r2 sin(φ2)

r1 cos(φ1) + r2 cos(φ2)

]
(32)
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and

Ψ =
√

[r1 cos(φ1) + r2 cos(φ2)]2 + [r1 sin(φ1) + r2 sin(φ2)]2

=
√
r2
1 + r2

2 + 2r1r2 cos(φ2 − φ1)

= ‖p1 + p2‖
= 2‖p12‖. (33)

We use p12 = (p1 +p2)/2 to represent the mid-point between
p1 and p2. The inner integral within (30), denoted by F (rn),
can now be written as

F (rn) =

∫ 2π

0

e−rn‖p12‖ cos(φn−ϕ)dφn. (34)

Since we integrate over 2π, the angular offset ϕ can be ignored
and (34) becomes

F (rn) = 2

∫ π

0

e−4rn‖p12‖ cos(φn)dφn

= 2π I0(4rn‖p12‖), (35)

where I0(a) = 1
π

∫ π
0
ea cos θdθ is the zeroth order modified

Bessel function of the first kind. Substituting (35) into (30)
now gives

H̄
(2I)
12 = 2πe−(r21+r22)

∫ R

0

rng(pn)e−2r2n I0(4rn‖p12‖)drn.

(36)

Expanding g(pn) and letting rn = ‖pn‖ gives

H̄
(2I)
12 =

2π

k
e−(r21+r22)

[ ∫ R

0

rne
−2r2n I0(4rn‖p12‖)drn

+

(
α− 1

R2

)∫ R

0

r3
ne
−2r2n I0(4rn‖p12‖)drn

]
. (37)

Applying [31, eqs. (10) & (20)] to solve the integrals results
in

H̄
(2I)
12 =

2π

k
e−(r21+r22)

{
1

4
e2‖p12‖

2

[1−Q(2‖p12‖, 2R)]

+

(
α− 1

8R2

)
(2‖p12‖+ 1)e2‖p12‖

2

× [1−Q(2‖p12‖, 2R)]

−
(
α− 1

4

)
e−2R2

×
[
‖p12‖
R

I1(4‖p12‖R) + I0(4‖p12‖R)

]}
, (38)

where Q1(a, b) =
∫∞
b
xe−

(x2+a2)
2 Io(ax)dx is the first order

Marcum-Q-function and where I1(a) = 1
π

∫ π
0
ea cos θ cos θdθ

is the first order modified Bessel function of the first kind.

Factoring out 1
4e

2‖p12‖
2

, recognising that e2‖p12‖
2−(r21+r22) =

e
1
2 r

2
12 and simplifying, yields the final expression

H̄
(2I)
12 =

π

2k
e−

1
2 r

2
12

×
{(

(α− 1)(2‖p12‖2 + 1)

2R2
+ 1

)
×
[
1−Q1(2‖p12‖, 2R)

]
− (α− 1)e−2(‖p12‖

2+R2)

×
[
‖p12‖
R

I1(4‖p12‖R) + I0(4‖p12‖R)

]}
. (39)

APPENDIX B
QUASI-CONVEXITY IN O

We investigate the quasi-convexity in the upper bound, as
defined by (26), which expanded gives

ŌUB =
1

V 2

∫
V2

(1−H12) exp
[
− ρRV H̄

(2R)
12

]
×

{
exp

[
− ρIV H̄1I

]
+ exp

[
− ρIV H̄2I

]}
dp1dp2.

(40)

Since the probabilities of the p1 and p2 connecting to an
infrastructure node will be identical when averaged over all
possible terminal node locations in V, (40) can be reduced to

ŌUB =
1

V 2

∫
V2

2s(p1,p2) exp
[
− ρIV H̄1I

]
dp1dp2

=
2

V

∫
V

s(p1) exp
[
− ρIV H̄1I

]
dp1 (41)

where s(p1,p2) = (1−H12) exp
[
−ρRV H̄

(2R)
12

]
and s(p1) =

1
V

∫
V

s(p1,p2)dp2, which is a non negative scaling factor

independent of the infrastructure. We reduce (23) to the form

H̄1I =
A1α+B1

α+ 1
, α > 0 (42)

where

A1 =
2

R2

{(
r2
1 + 1

R2

)[
1−Q1(

√
2r1,
√

2R)
]

− e−(r21+R2)

[
r1

R
I1(2r1R) + I0(2r1R)

]}
, (43)

B1 =
2

R2

{(
1− r2

1 + 1

R2

)[
1−Q1(

√
2r1,
√

2R)
]

+ e−(r21+R2)

[
r1

R
I1(2r1R) + I0(2r1R)

]}
(44)

and r1 = ‖p1‖. We now define the exponential term within
(41) as

fab(α,p1) = exp

[
− aα+ b

α+ 1

]
, (45)

where a = ρIV A1 and b = ρIV B1. We now show that,
by inspection of sub-level sets and super-level sets, that
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fab(α,p1) is quasi-linear in dom fab = {α|α > 0}. We let Sε
denote a sub-level set, such that

Sε = {α | α > 0; fab 6 ε}
= {α | α > 0; aα+ b > −(α+ 1) ln ε}

=

{
α | α > 0;

{
α > − b+ln ε

a+ln ε , a+ ln ε > 0

α 6 − b+ln ε
a+ln ε , a+ ln ε < 0

}
(46)

Since the intersection of an open convex set and a closed
convex set is convex, quasi-convexity follows. The proof of
quasi-concavity follows in an analogous manner using super-
level sets. Hence, we deduce the function is quasi-linear as
stated. We can make further progress by considering mono-
tonicity of the function fab. Inspection of (46) shows that f−1

ab

is well defined on (0,∞). Hence, fab is injective with strict
monotonicity for all a, b subject to a 6= b. Hence, ŌUB is the
limit of a positive weighted sum of strictly monotonic func-
tions where the quasi-linear function fab(α,p1) is decreasing
monotonic for b/a < 1 and increasing monotonic for b/a > 1.
Denoting the 1st and 2nd derivatives of function fab as f ′ab
and f ′′ab respectively, where

f ′ab = − a− b
(α+ 1)2

fab (47)

f ′′ab =

[
2

a− b
(α+ 1)3

+
(a− b)2

(α+ 1)4

]
fab, (48)

we can show that when b/a < 1, the decreasing monotonic
is convex whereas, when b/a > 1 the increasing monotonic
is concave, under the condition −2 < (a − b) < 0 and
quasi-linear (convex to concave with increasing α) otherwise,
with inflection point at α = −0.5(a − b) − 1. We illustrate
the function A1 − B1 with respect to r1/R, for a range
of domain radii, in Fig. 11, clearly showing a single zero
crossing point for each radius. Denoting the radial offset at
which the zero crossing occurs by rt, we observe that rt can
be approximated by the radius where the area of a circle of
radius rt is approaching 50% of the total domain area V ; it
is relatively straightforward to show that with increasing R,
rt → 1/

√
2 and A1 −B1 → 0,∀r1. In summary, ŌUB will be

sum of a strictly decreasing convex monotone and a strictly
increasing quasi-linear function, in α, which does not prove
a uni-modal composite function. Nevertheless, the analysis
presented here coupled with extensive numerical simulation
suggests that quasi-convexity holds.
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Fig. 11. Illustration of function A1 −B1 with respect to r1/R for a range
of domain radii R ∈ {6, 7, 8, 9, 10}. Showing a single zero crossing.
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