
1

Adaptive Tube-based Nonlinear MPC for Ecological
Autonomous Cruise Control of Plug-in Hybrid
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Abstract—This paper proposes an adaptive tube-based nonlin-
ear model predictive control (AT-NMPC) approach to the design
of autonomous cruise control (ACC) systems. The proposed
method utilizes two separate models to define the constrained
receding horizon optimal control problem. A fixed nominal model
is used to handle the problem constraints based on a robust tube-
based approach. A separate adaptive model is used to define the
objective function, which utilizes least square online parameter
estimators for adaption. By having two separate models, this
method takes into account uncertainties, modeling errors and
delayed data in the design of the controller and guaranties robust
constraint handling, while adapting to them to improve control
performance. Furthermore, to be able implement the designed
AT-NMPC in real-time, a Newton/GMRES fast solver is employed
to solve the optimization problem. Simulations performed on
a high-fidelity model of the baseline vehicle, the Toyota plug-
in Prius, which is a plug-in hybrid electric vehicle (PHEV),
show that the proposed controller is able to handle the defined
constraints in the presence of uncertainty, while improving the
energy cost of the trip. Moreover, the result of the hardware-in-
loop experiment demonstrates the performance of the proposed
controller in real time application.

Index Terms—Advanced driver assistant systems; ecological
autonomous cruise controller; adaptive tube-based model predic-
tive control, real-time control and plug-in hybrid electric vehicles.

I. INTRODUCTION

THE current number of vehicles in the world is approxi-
mately 1 billion, a number that with the existing high

demand for personal transportation, is expected to double
over the next few decades. [1]. The rapid growth in the
number of vehicles has resulted in high air pollution, increased
energy demand, higher traffic intensity, longer travel times
and increased risk of accidents. In fact, the annual cost of
traffic injuries worldwide is estimated at $518 billion [2].
Approximately 1.3 million people die in car accidents each
year; this number is expected to increase to 1.9 million
annually, based on the current growth rate in vehicle ownership
[3]. At the same time, air pollution caused by the transportation
sector is escalating in many parts of the world. Greenhouse gas
emissions produced by the transportation sector has doubled
in the past few decades, and is currently responsible for ap-
proximately 22% of the total anthropogenic global greenhouse
gas emissions[4]. Issues such as these have provided the basis
for many researchers to pursue the development of safe and
efficient transportation systems using modern technology.

In the recent years, advancements in embedded digital
computing and communication networks have enabled the

development of automated driving systems, with Advance
Driver Assistance Systems (ADAS) being one of the most
important of these developments. ADAS technologies assist
drivers according to the changes in the environment based on
sensing the vehicles surroundings [1]. ADAS can reduce the
effect of error in human judgment in emergency situations to
improve driving safety and performance by making optimal
decisions to enhance the autonomous interaction with the
environment. Autonomous Cruise Control (ACC) is a topic
of interest among several types of ADAS, spurring many
scientific studies in the field. ACC is an advanced version of
the cruise control system that has the ability to automatically
accelerate or decelerate, without any additional input from
the driver, when the preceding vehicle is speeding up or
slowing down. This system is beneficial in many ways, as it
can improve traffic flow, reduce the possibility of accidents
and provide a comfortable driving setting through a semi-
autonomous driving experience. [4].

In order to maintain a safe inter-vehicular distance, the most
commonly developed ACC system utilizes linear controllers.
Authors of [5], in their study of adaptive cruise control-based
concept, developed a single-lane ACC with intelligent ramp
metering by enabling vehicles to move in short inter-vehicular
distances to increase highway capacity. In [6], a more complex
ACC system was created with the ability to adapt itself to
differing driving/road conditions. The researchers applied an
algorithm to automatically detect traffic conditions based on
surrounding information, which then subsequently changed the
parameters of the ACC system in accordance with each traffic
situation. In [7], authors developed a PID-based ACC aiming
to perform and behave as a human driver would. Other authors
employed linear methods in their design [8], [9], resulting in
low-complexity tracking performance. These methods could
provide a satisfactory tracking performance with low com-
plexity. Also, PID controllers offer tuning parameters that can
be easily adjusted to match different situations and systems.

To improve the benefits of ACC systems, it is possible
to consider fuel efficiency in its design. Considering future
prediction of traffic motion and environment of the vehicle
could be very useful in this direction [10], [11]. Utilizing ACC
to improve fuel efficiency of the vehicles has been widely
investigated in previous research. In [12], the authors devel-
oped an Ecological ACC (Eco-ACC) system based on Model
Predictive Control. They assumed a stationary condition (zero
acceleration) on surrounding vehicles in order to perform their
finite horizon optimization. Their result shows that utilizing
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future prediction of the preceding vehicles trajectory yields
better fuel economy. In [10], a smooth acceleration degrada-
tion in the prediction horizon was employed to predict the
preceding vehicles trajectory and a jamming wave prediction
was presented to prevent jamming waves while maintaining a
safe inter-vehicular distance. The authors used MPC to address
this problem and showed that their method improves traffic
flow and driver comfort, as well as fuel efficiency. In [13],[11]
a higher energy efficiency has been achieved via exploiting
nonlinear MPC in designing Eco-ACC for Plug-in Hybrid
Electric Vehicles (PHEV).

The majority of studies in this area to date assume that
radar measurements are reliable with little to no imperfection
or uncertainty. However, this assumption is not realistic as
radar and Lidar performance are highly dependent on weather
conditions and weather elements, such as snow, rain, or fog,
which can substantially reduce their accuracy [14], [15]. The
sensors precision is also contingent on the number of objects
within range and the type of background [16]. In order to
maintain its stability and performance, a reliable ACC must
be resilient to data uncertainty and modeling error. With wind
and road disturbances as their main consideration, the authors
in [17], developed an H2/H∞ control method-based model-
based controller, which lead to improved tracking performance
demonstrated in simulations. In [18], the authors assumed a
linear model for their vehicle with disturbances on the states to
develop a robust ACC system. This led to improved tracking
performance, but also resulted in higher computational effort
through the utilization of min-max robust MPC method, which
makes this method not suitable for real-time applications.
Another version of robust MPC is tube-based MPC (T-MPC),
which works based on a tube resulted from bounded uncer-
tainties in the system [19], [20]. In order to ensure the tight
bondage of the real states inside the demarcated restraints, T-
MPC maintains the nominal system inside a tighter area. The
computational demand of T-MPC is only slightly higher than
regular MPC, since the requisite tube can be calculated offline,
making it suitable for real-time applications. In [21] and [22],
the authors used T-MPC to design a semi-autonomous ground
vehicle. They considered the uncertainties and nonlinearities as
an additive disturbance, then calculated a tube for the disturbed
states. Their MPC used the resulted tube to gain robustness
against system uncertainties. In [23], the authors developed a
robust ACC controller using linear T-MPC. Their simulation
on a high-fidelity vehicle model showed that this method
can ensure robustness against delayed data, uncertainty and
modeling errors in a car following scenario.

Robust control methods can guarantee safety and stability;
however, they are usually conservative and can deteriorate
performance of the controlled system. Therefore, many re-
searchers prefer adaptive control approaches that estimate
changes in parameters and respectively adapt to them to
maintain performance and stability of the system. Moreover,
due to changing conditions and aging of the vehicle, the actual
parameters of a car might change and, therefore, an on-line
optimization algorithm with a fixed model might not be able to
find the actual optimal control decisions. To consider this mat-
ter, in [24], the authors designed a hierarchical cruise control

for connected vehicles and used a gradient-based parameter
estimation to estimate the changes in vehicle parameters.
They fed the estimated parameters to a low-level sliding-mode
controller to regulate axle torque so that the desired states
are followed. In [25], authors used a recursive least square
parameter estimator and adaptive nonlinear MPC to design a
cruise controller with fuel optimization. They used parameter
estimation to improve the control-oriented model of their MPC
and, by performing vehicle experiments, showed that their
method can achieve a 2.4% improvement in fuel economy,
compared to a production cruise controller. Similar adaptive
control approaches can be found in [26],[27],[28],[29]. Al-
though these methods can capture the changes in the model
and act accordingly, in the event of a sudden change in pa-
rameters or wrong estimation, they may loose performance and
stability. Specially, for close car following, the controller must
be able to guarantee safety of the system while improving the
performance. Therefore, a method is needed that can adapt to
changes while being robust to uncertainties, disturbances and
model errors. To combine robustness and model adaptation,
in [30] and [31] authors used a type of adaptive MPC that
they called learning-based model predictive control. In their
method, a linear controller generates optimal inputs based on
a learned linear model, while a separate model checks if the
constraints will be satisfied. Nonlinear learning based MPC
was used in [32] and [33] for path tracking control of a mobile
robot in outdoor and off-road environment. They used a simple
known model and a Gaussian process disturbance model that
can be learned based on trial experience. Their experimental
results on different robot platforms show that their controller
is able to reduce path tracking error by learning and improving
disturbance model through experience.

In this paper, an adaptive tube-based nonlinear MPC (ATN-
MPC) controller is presented that can improve the performance
of Eco-ACC by adapting to the changes in system, while
maintaining robustness against uncertainties, disturbances and
modeling errors. This method decouples performance from ro-
bustness and, therefore, is able to maintain stability and safety
while adapting to changes in the system and the environment.
First, nonlinear T-MPC method is used to design a robust
controller that can handle the uncertainties in estimation of
the drag coefficient, gravitational forces due to uncertainty in
roads grade estimation, uncertainty in the preceding vehicles
acceleration, and also delay in the data gathered from the
on-board vehicle radar. The designed controllers optimizes
vehicles motion in finite horizon to improve the consumed
energy cost of the vehicle, while handling the defined con-
straints in the pretense of uncertainty and disturbances. Then,
to capture changes in the system and enhancing the control-
oriented model, an on-line parameter estimation algorithm is
used that estimates new parameter values based on minimizing
the error between estimated and actual output of the system.
This way the on-line optimization will find the actual optimal
point based on the adapted model while constraints are handles
based on the original nominal model.

The main contribution of this paper is in combining ro-
bustness against uncertainties with parameter adaptation in the
design of controller. The TA-NMPC approach is proposed that
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Fig. 1. Schematic of Toyota power-split power-train

can robustly handle defined constraints while adapting to the
changes and improving performance of the Eco-ACC system
for PHEVs. Moreover, to be able to execute the designed op-
timal controller in real-time, a Newton/GMRES fast solver is
adapted to solve the AT-NMPC optimal control problem. The
rest of the paper is structured as follows: Section II presents
preliminary definitions; In section III, modeling procedure is
explained and a model for car-following is presented that can
be used for the design of ACC controllers, also uncertainty
bounds are defined based on the presented model as an additive
disturbance. In section IV, the controller design is explained
by taking advantage of the AT-NMPC method to achieve
robustness and high performance in ACC design. Section V is
dedicated to control evaluation. In this section, the proposed
method has been simulated on a high-fidelity vehicle model in
a car-following scenario and in a simulation environment with
injected uncertainties. Moreover, HIL experiments has been
presented in this section for the proposed controller. Finally,
conclusions are presented in Section VI.

II. PRELIMINARIES

In this paper, ⊕ and 	 indicate the Minkowski sum and the
Pontryagin’s set difference. If X and Y are sets, then: Y ⊕X =
{x+y : x ∈ X, y ∈ Y } and Y 	X = {v ∈ Rn : v⊕X ⊆ Y }.
Also, X⊕(Y⊕V ) = {x+y+v : x ∈ X, y ∈ Y, v ∈ V }, AX =
{Ax : x ∈ X}, AX +BY = {Ax+By : x ∈ X, y ∈ Y } and
⊕mi=nYi = Yn + Yn+1 + · · ·+ Ym.

III. MODELING

This section explains the models that have been used for
design and evaluation of the proposed controller. Control eval-
uation has been done on a high-fidelity model of the base-line
vehicle, which is a Toyota Plug-in Prius. It consists of complex
high-fidelity models and mappings of all the components in
the vehicle that can affect longitudinal motion and energy
consumption. The high accuracy of this model makes it a
reliable tool for evaluation of the designed controllers. For
control design, however, a simple model is needed that has low
computational demand but is descriptive enough to capture the
general behavior of the system. Here, different control-oriented
models are presented that represent longitudinal motion and
energy consumption of the vehicle.

Fig. 2. Car-following with autonomous cruise control

A. High-fidelity power-train model

Fig. 1 illustrates the power-train of a power-split Toyota
Plug-in Prius. It has an internal combustion engine and two
electric motors that combined with each other and through
planetary gears, power the vehicle. To evaluate performance of
the designed controllers, a high-fidelity model of the vehicle
is needed. Therefore, a model of the base-line vehicle was
developed in Autonomie which is a new generation of PSAT
software developed by Argon National Lab. Autonomie has a
library of vehicle models and components that can be selected
to generate a high-fidelity model of the whole vehicle. It
allows the selection of a two wheel vehicle with hybrid power-
split power-train and modification of its components and
characteristics to simulate the base-line PHEV. The procedure
taken in development of the high-fidelity model and testing
its validity has been presented in previous publications by the
authors research group [34],[35]. This model has been used for
evaluation of the proposed controllers in terms of longitudinal
motion control and trip energy cost.

B. Car following control-oriented model

To develop a model for car-following problem shown in
the Fig. 2, it is necessary to define a safe car following rule.
Among different spacing policies in literature, constant time
headway rule was chosen in this paper: d = d0 + hvh, where
d is the desired distance, d0 is the minimum distance at stand
still, vh is the host vehicle’s velocity and h is the constant
headway time. This spacing policy requires increasing distance
with respect to velocity so it takes a specific constant amount
of time for the host vehicle to reach to its preceding. Based
on the chosen gap policy, the sate equations of the system can
be written as follows:

ẋ = Ax+Bu(t− τa) +Bpap +BgFr

x =


ep
ev
vh
Tw

 , A =


0 0 1 − h

mrw
0 0 0 − 1

mrw
0 0 0 1

mrw
0 0 0 − 1

η

 ,

B =


0
0
0
Ka

η

 , Bp =


0
1
0
0

 , Bg =


−h
−1
1
0

 ,
Fr = −1

2
ρaAcCd(vh + vw)2 − (µr0 + µrvvh)mg cos(φr)

−mg sin(φr),
(1)

‘ To define a cost function based on energy economy im-
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provement, a control-oriented model for the consumed energy
is needed. Because our base-line vehicle is a PHEV, we have
to consider both fuel and electricity costs. Therefore, instead
of fuel rate and electrical current, we define the cost function
based on combined energy cost of the two sources

Ecost = −Cf
ṁf

vh
− Ce

˙SOC

vh
, (2)

where Ecost is the cost of energy, Cf and Ce are the cost
of gasoline and electricity, respectively, and SOC is the state
of charge of the battery. The energy cost has been divided
by the velocity to eliminate the effect of traveled distance. At
lower velocities, the energy cost will be assumed constant to
avoid singularities. An energy management algorithm decides
the distribution of energy between the energy sources while
the vehicle is running to keep the power-train near its optimal
working point. Therefore, it can be assumed that the engine is
always working in its optimum working point and approximate
fuel consumption with the following equation [36]:

ṁfi = α1 + α2Pe + α3P
2
e + α4vh, (3)

where ṁfi is the fuel rate, Pei is the engine power and α1, α2,
α3 and α4 are constant coefficients. To estimate the electricity
rate, we used the following equation:

˙SOC = γ1 + γ2Pm + γ3P
2
m, (4)

where Pm is the motors’ or generators’ power and γ1, γ2

and γ3 are constant coefficients. The squared electric power
has been included in the model to represent ohmic losses.
As mentioned, energy management decides the power ratio
between electricity and gasoline. Therefore, based on power
ratio, the energy cost can alternate for different total power
demands. Based on power ratio the power demand from each
source can be calculated:

PR =
Pe

Ptotal
,

Pe = PR ∗ vh ∗ u ∗m,
Pm = (1− PR) ∗ vh ∗ u ∗m,

(5)

where PR is power ratio and Ptotal is the total power demand.

C. Reduced model

The control-oriented model needs to be updated based on
the on-line measurements in the system. In this paper, adapta-
tion has been done based on a recursive Least-square method,
which requires a parametric model. The following formulation
has been used for longitudinal dynamic’s parametric model:

ah =
Rgηp
rwm

Tcom −
ρaAcCd

2m
(vh + vw)2

− g(µr0 + µrv )cos(φr)− gsin(φr),
(6)

where Rg is gear ratio, ηp is power-train efficiency, Tcom is
the commanded torque and other parameters are as defined
before. This formulation can be rearranged as follows:

svh =
Rgηp
rwm

Tcom −
ρaAcCd

2m
(vh)2

− (
ρaAcCd
m

vw + gµrv )(vh)− g(φr)

− ρaAcCd
2m

vw
2 − gµr0 .

(7)

Finally, by using stable filtering this model can be reduced to
the following model:

s

s+ λ
vh =θ1

Tcom
s+ λ

− θ2
vh

2

s+ λ
− θ3

vh
s+ λ

− θ4
φr
s+ λ

− θ5
1

s+ λ
,

(8)

where λ is the stable filter’s time constant. Therefore the
reduced parametric model is:

âh = Θ̂TΦd, (9)

where âh is the estimated acceleration and:

Θ̂ =
[
θ̂1 θ̂2 θ̂3 θ̂4 θ̂5

]T
, (10)

which Θ̂ is the vector of the estimated parameters and:

Φd =
1

s+ λ

[
Tcom −vh2 −vh φr 1

]T
, (11)

where Φd is the regressors’ vector for longitudinal dynamic
estimator. Equations 3 and 4 are already in the parametric form
of ṁf = ÂΦe and ˙SOC = Γ̂Φm with:

Φe =
[
1 Pe Pe

2 vh
]T
,

Φm =
[
1 Pm Pm

2
]T
,

Â =
[
α̂1 α̂2 α̂3 α̂4

]T
,

Γ̂ =
[
γ̂1 γ̂2 γ̂3

]T
.

(12)

The hat shows the estimated value of a parameter. Presented
models in this section will be used for control design and
evaluation in the following sections.

IV. CONTROL DESIGN

This section is devoted to the control design procedure.
First, the effective disturbances and uncertainties are ana-
lyzed and an additive disturbance term that captures them
is presented. A linear feedback controller (Kc) is designed
that stabilizes the system and bounds the effect of additive
disturbances on the system’s sates. Then, nonlinear T-MPC
design procedure is explained, which is able to handle the de-
fined constraints in the presence of bounded uncertainties and
disturbances. The final control input to the system is generated
by combining the designed linear controller with the output
of MPC. Finally, an on-line least square parameter estimator
is presented, which estimates the uncertain parameters of the
system in real-time. The estimated parameters are used inside
the MPC controller to improve its performance in case of a
change in the parameter values. This way the final system
will be robust to changes in the uncertain parameters that
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Fig. 3. AT-NMPC controller architecture

can also adapt to them to improve the control performance.
Therefore, robustness and performance will be decoupled and
achieved simultaneously. Fig. 3 illustrates the proposed Eco-
ACC architecture.

A. Disturbance set

To design a robust MPC, a bound must be established on
the states’ error caused by disturbances or a robust positive
invariant set defined below.

Definition 1: For an autonomous system x[k+1] = Ax[k]+
Bw[k] with bounded disturbance w[k] ∈ W, robust positive
invariant set Φ is the set of all x[k] ∈ Φ such that for all
w[k] ∈W and i > 0, x[k + i] ∈ Φ [37].

Suppose a nonlinear system in the following format:

x[k + 1] = Ax[k] +Bu[k] + g(x[k]) + w[k],

subject to
x[k] ∈ X,
u[k] ∈ U,
w[k] ∈Wm,

(13)

where x is the state of the system, u is input, w is an additive
disturbance, X, U and Wm are bounds on state, input and
disturbance in the system and g(x) is the nonlinear part of
the system. Now suppose that the input to the system has the
following form:

uk = −Kx[k − τd] + c0 (14)

where K is a linear stabilizing controller, c0 is the input
generated by the model predictive controller and τd is the
total delay in radar and actuation. We ignore τd in the rest of
calculations and model it as part of uncertainty in Proposition
1. By considering this input, (13) can be rewritten as

x[k + 1] = Acx[k] +Bc0 + g(x[k]) + w[k], (15)

where Ac = A−BK. On the other hand, without considering
the disturbance term, the nominal system can be written as

x̄[k + 1] = Acx̄[k] +Bc0 + g(x̄[k]), (16)

where x̄ is the nominal state. By reducing (16) from (15) and
considering state error as e = x − x̄, error dynamic can be
defined.

e[k + 1] = Acek + (g(x[k])− g(x̄[k])) + w[k] (17)

An RPI set of this system is equivalent to the maximum error
caused by the additive disturbance. To be able to find RPI set

of this system, we need to handle the error in the nonlinear
term. Authors of [22] showed that if the nonlinear term g(x) is
Lipschitz continues, ‖g(x)− g(x̄)‖2 can be bounded. If g(x)
is Lipschitz in the region x ∈ X then:

‖g(x)− g(x̄)‖2 ≤ L ‖x− x̄‖2 , ∀x1, x2 ∈ X, (18)

where the smallest L satisfying this condition is the Lipschitz
constant. Now if L(X) is the Lipschitz constant over X then
it can be obtained from (18) that

∀x, x̄ ∈ X & e ∈ E, ‖g(x)− g(x̄)‖∞
≤ L(X) max

e∈E
‖e‖2 ,

(19)

where E is a subset of X which includes the origin. This
inequality defines a boxed shaped set that bounds the error
in the nonlinear term.

Wg = {ζ ∈ Rn| ‖ζ‖∞ ≤ L(X)max
e∈E
‖e‖2}, (20)

which can be added to Wm to make W = Wg ⊕ Wm.
Basically, if a bound can be defined on the nonlinear term
in the constraints region, then we can consider it as part of
the additive disturbance. The next step is to find a bound for
Wm. To be able to use this method, all sources of uncertainty
must be combined into a single additive disturbance. On major
cause of uncertainty on this system is the delay in feedback
loop due to τd. This uncertainty can be bounded by finding
the maximum state change that can happen in the maximum
delay time. The following proposition explains the calculation
of this bound.

Proposition 1: Let x[k] ∈ X,u[k] ∈ U, ap[k] ∈ Ap, w[k] ∈
W where all of the sets X,U,Ap,W are bounded. Further-
more, assume that the radar and actuator delay is upper-
bounded by Td, i.e., 0 6 τd 6 Td. Then wτ , the uncertainty
caused by delay, will be bounded by the set:

Wτ = TdBdKc × {AX ⊕ (BU ⊕ (EAp ⊕W ))} .

Proof: : In order to prove this proposition, we use the
fact that the difference between x[k] and x[k − τd] is given
by the rate of changes of x in τd-duration multiplied by τd
(assuming that τd is small). Rigorously

x[k − τd] = x[k]− τdẋ[k].

Next, note that according to (1), the set of all possible state
change rates ∆X can be given by:

∆X = {ẋ | ẋ = Ax+Bu+Bpap + w,

∀x ∈ X,∀u ∈ U,∀ap ∈ Ap,∀w ∈W},

which, looking back at the preliminary definitions, is equiva-
lent to the following Minkowski sum:

∆X = {AX ⊕ (BU ⊕ (BpAp ⊕W ))} .

Therefore, by equation (7), the total amount of uncertainty that
delay produces in the system is given by

Wτ = TdBdKc × {AX ⊕ (BU ⊕ (BpAp ⊕W ))},

which is what we aimed to show.
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Another source of uncertainty is the acceleration of the
preceding vehicle. In (1) preceding vehicle’s acceleration ap
has been modeled as an additive disturbance. Therefore, wap
which is the uncertainty caused by ap can be bounded by
knowing a bound for maximum possible acceleration for the
preceding vehicle.

wap ∈Wa = BpAp. (21)

Unknown model parameters can also increase model uncer-
tainty. Uncertainty in vehicle mass, tire radius, drag coeffi-
cient, rolling resistance coefficients, road grade, wind speed
and power-train efficiency must be considered in control
design. If a bound for each of these uncertain parameters
is available, equation (6) can be used to find maximum
model error that the uncertain parameters can cause. Suppose
Υ =

[
m rw Cd µrv µr0 φr vw ηp

]
as the vector

of uncertain parameters in (6) with Υ as the vector their
nominal value and Υmax and Υmin as the vector of their max-
imum and minimum values. Then the following optimization
problem will find the maximum model error.

eamin
= min

Υ,vh,Tcom

ah(Υ, vh, Tcom)− ah(Υ, vh, Tcom),

eamax
= max

Υ,vh,Tcom

ah(Υ, vh, Tcom)− ah(Υ, vh, Tcom),

subject to
Υmin ≤ Υ ≤ Υmax,

0 ≤ vh ≤ vhmax
,

Tmin ≤ Tcom ≤ Tmax.

where eamin
and eamax

are the minimum and maximum error
caused by parameter uncertainty which based on them the set
of all possible acceleration errors due to parameter uncertainty
can be defined as: ea ∈ Ea and bounded additive disturbance
due to the parameter uncertainty can be calculated

wah ∈Wh = BgEa (22)

where Bg is as defined in (1). Combination of all the uncer-
tainty sources will be the bounded additive disturbance term.

W = Wg ⊕Wτ ⊕Wa ⊕Wh (23)

This disturbance set will be used for the design of the tube-
based controller. (17) can be rewritten as

e[k + 1] = Ace[k] + w[k] w ∈W. (24)

Using this stable model with a bounded additive disturbance
and Minkovski sum, the finite reachable set for the error can
be calculated.

Φn = ⊕ni=0Ac
iW (25)

where Φn is the finite reachable error set and it’s infinity limit
Φ∞ is called the robust positive invariant set [38]. In this
paper, our T-MPC is similar to [39] which use finite invariant
set instead of infinity RPI set with fixed current state.

B. Model adaptation

A model adaptation method is employed to adapt to changes
in the system and environment in order to maintain the
performance of designed controllers. In this paper, we use
a least square parameter adaption method with forgetting
factor similar to [40] with same notation. This method uses
previously presented parametric models, to estimate the value
of each effective parameter. It works based on minimizing the
squared error between the estimated and measured output of
the system by minimizing the following cost function.

J(θ̂) =
1

2

∫ t

0

e−β(t−τ)(z(τ)− θ̂T (t)φ(τ))2

m2
s(τ)

dτ

+
1

2
e−βt(θ̂(t)− θ̂0)TQ0(θ̂(t)− θ̂0),

(26)

where θ̂ is the estimated parameters vector, θ̂0 is the initial
estimated parameter, φ is the measured input signal, z is the
measured output signal, β is a forgetting factor, Q0 is a weight-
ing matrix, P is covariance matrix and m2

s is a normalizing
term that can be chosen as: m2

s = 1+αφTφ, α ≥ 0. By min-
imizing this cost function, the algorithm can find an estimation
of the parameters. The first term penalizes the estimation
error and the second term penalizes the convergence rate with
a decaying factor in order to increase estimation robustness
against disturbances. Forgetting factor gives a higher weight to
the new measurements, so that in case of change in a parameter
the algorithm can adapt to it. Based on this cost function a
recursive least square algorithm is defined as follows:

˙̂
θ(t) = P (t)ε(t)φ(t),

Ṗ (t) = βP (t)− P (t)
φ(t)φT (t)

m2
s(t)

P (t),

ε(t) =
z(t)− θ̂T (t)φ(t)

m2
s(t)

.

(27)

This algorithm updates the covariance and estimated param-
eters on-line when the vehicle is running. To prevent wrong
estimation, it is necessary to limit the estimated parameters.
Therefore, parameter projection was used to put constraints
on estimations. Moreover, to avoid the covariance matrix from
becoming very large, it is also necessary to put a constraint
on its maximum value. Assuming the desired constraint on the
parameters is defined by: S = {θ ∈ Rn|g(θ) ≤ 0}, where g is
a smooth function and R0 as an upper bound for P , projection
can be defined as follows:

θ̇ =


Pεφ if θ ∈ So or

θ ∈ δ(S) & (Pεφ)T∇g ≤ 0

Pεφ− P ∇g∇gT
∇gTP∇gPεφ otherwise

Ṗ =


βP − P φφT

m2
s
P if ‖P‖ ≤ R0 &{θ ∈ So or

θ ∈ δ(S) & (Pεφ)T∇g ≤ 0}
0 otherwise

(28)

Projection ensures that the estimation will not go out of the
constraint region and will move along the border when it
reaches to its limits. This adaptation algorithm is used estimate
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fuel consumption, electricity consumption and longitudinal
dynamics parameters based on the reduced model presented
in the modeling section. The estimated parameters will be
used in the control-oriented model of AT-NMPC so that the
optimization problem will find the updated optimal point of
the system.

C. Adaptive robust controller

Using the disturbance set and the parameter adaption
method above, it is possible now to define our adaptive robust
control problem. This controller includes a linear controller
that stabilizes the system, and an NMPC that controls the
system based on its nominal control-oriented model without
considering the uncertainty and disturbances. NMPC keeps the
nominal state of the system in a tighter region to ensure that the
actual system states will remain inside the defined constraints.
Moreover, parameter adaptation updates the control-oriented
model that is used in the definition of the cost function to
maintain system performance. Therefore, two control-oriented
models are used here, one for updating the cost function and
performing a future prediction and another one for handling
of the constraints.

min
co

{ Np∑
i=1

(
ω1e

2
p(x̂, û) + ω2e

2
v(x̂, û) + ω3û

2

+ ω4Ecost(x̂, û, PR, Â, Γ̂)
)}
,

subject to
x̄[n] = x[n], x̂[n] = x[n],

x̂[n+ i+ 1] = f̂n(x̂[n+ i], c0[n+ i]),

x̄[n+ i+ 1] = f̄n(x̄[n+ i], c0[n+ i]),

û[n+ i] = −Kcx̂[n+ i] + c0[n+ i],

x̄[n+ i+ 1] ∈ X 	 Φ[i],

c0[n+ i+ 1] ∈ U 	 (−KcΦ[i]),

(29)

where f̄ and f̂ are the nominal and estimated nonlinear longi-
tudinal dynamic model of the vehicle, Np is the prediction
horizon’s length, ω1, ω2, ω3 and ω4 are weights on each
term and other parameters are as defined before. The control
problem finds a vector c0 that minimizes the cost function in
the prediction horizon while the actual input to the system is
combination of c0 and the linear controller.

Remark 1: In this control problem, the current state of the
system is not a decision variable and x[n] has a fixed value.
Both nominal and adapted control-oriented models start from
the same initial point but perform future predictions based on
their own parameters.

Remark 2: The tighter constraints on the states ensures that
the system states would remain inside X , the defined state
constraint, for any amount of disturbance that satisfies w ∈
W. Moreover, the tighter constraints on the input reserves a
part of available actuation for the linear controller to maintain
system’s robustness.

Remark 3: Having two separate control-oriented models
ensures that constraints are always satisfied based on the

fixed nominal control-oriented model. Therefore even if the
adapted control-oriented model has low accuracy, the system’s
robustness will be maintained. This is specially important in
the case that a sudden change in model parameters occur.
Because the parameter estimator may not be able to recognize
the change in the model immediately, it is necessary to make
sure that the system will remain safe and robust while the
model is getting adjusted which is achievable by using separate
models as has been done here.

D. Fast optimizer

To implement the proposed robust Eco-ACC on a vehicle
control system, the AT-NMPC problem must be solved in
real-time. Therefore a fast solver is required that can solve
the nonlinear optimization problem with little computational
demand. To this end, in this paper, Newton/GMRES method
has been used to solve the control optimization problem. This
method is claimed to be very fast as it solves the differential
equation once at each time step [41]. In the current study, the
authors use an automatic multi-solver NMPC code generator,
called MPSee, to generate the NMPC code based on the New-
ton/GMRES algorithm which has been previously developed
and tested in the authors’ research group [42],[43]. MPSee is
a MATLAB-based mathematical program that enables users
to develop GMRES-based NMPC codes for different optimal
control problems and carry out simulations in Simulink. To
define the Newton-GMRES solver, field vector and constraints
have been defined as follows:

f(x, u) =
d

dt
(
[
p̄h v̄h T̄w p̄p v̄p āp p̂h v̂h T̂w

]T
)

=



v̄h
T̄w

mrwηp
− {

1
2ρaCaAw

m v̄2
h + gφ̄r + µvgv̄h + gµ0}

− T̄w

τa
+

u−K[ēp ēv T̄w]
τa

v̄p
āp
−σāp
v̂h

Θ1T̂w −Θ2v̂
2
h −Θ3φ̂r −Θ4v̂h −Θ5

− T̂h

τa
+

u−K[êp êv T̂h]
τa


(30)

C(x, u) = Hx[i]

 ēp[i]
ēv[i]

u[i]−K[ēp[i] ēv[i] T̄w[i]]

− hx[i]

(31)
where Hx[i] and hx[i] are used to define the polytopic
constraints in each step equivalent to X 	 Φ[i] in (29). The
two separate control-oriented models have been implemented
in here in the field vector and constraints where barred
variables show the nominal values and hatted variables are the
estimated ones. σ is the decaying factor for preceding vehicle’s
acceleration as defined in [11] .

V. CONTROL EVALUATION

This section presents the evaluation of the proposed Eco-
ACC in terms of estimation, robustness and ecological im-
provement. A high-fidelity model of the base-line vehicle,
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Fig. 4. grade and wind profile injected in the simulation environment

Fig. 5. Longitudinal dynamic parameter estimator

developed in Autonomie, is used for evaluation tests. First, the
performance of the three estimators is presented. Second, ro-
bustness of the proposed controller is tested using high-fidelity
model of the base-line vehicle. Third, ecological improvement
caused by the the proposed Eco-ACC is discussed. Finally, the
result of HIL experimet is presented that shows the real-time
capability of the proposed controller.

A. Parameter estimation

We used three least-square parameter estimators to improve
the control-oriented model of our predictive controller. The
first estimator gets velocity, road grade and propulsion or
braking torque, and then finds the parameters of the longi-
tudinal model based on (8). Fig. 5 (a-e) illustrate the result
of on-line parameter estimation for this estimator and Fig. 5
(f) shows the estimated acceleration by the estimated model
compared to the measured acceleration. It is worth noting
that the estimated parameters may not converge to their real

Fig. 6. Fuel consumption parameter estimator

Fig. 7. Electricity rate parameter estimator

value which, for adaptive control use, is acceptable as long as
the estimated output matches the real value [40]. This model
predicts the motion of the vehicle inside the prediction horizon
and adjusts to changes, so that the prediction would be more
accurate. The two other estimators are shown in Fig. 6 for fuel
consumption and in Fig. 7 for electricity. As it can be seen
both models are able to estimate the desired output closely
and adapt to changes in the parameters. The initial guess for
the estimators was chosen arbitrary, which is the reason for
initial oscillations in the parameter estimations. To improve the
estimators’ performance, forgetting factor has higher value in
the beginning and decreases gradually afterward to a lower
value. The main objective of using estimators is for making
sure that the optimizing the defined cost function would
optimized the actual system. Therefore, the result of these
estimators will be used in the cost function of the optimization
problem.
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B. Robust constraint handling

Other than on-line parameter adaptation, the proposed AT-
NMPC based Eco-ACC is able to handle bounded uncertain-
ties. To show the validity of this statement, we conducted
simulations by utilizing a high-fidelity model of the base-
line vehicle and then added a variable wind speed and road
grade to the simulation environment, as shown in Fig. 4.
During the simulation, host vehicle follows a preceding vehicle
in a drive cycle by receiving inter-vehicular distance and
velocity from the radar. To simulate the effect of delay in
the radar’s data, 400ms transport delay was injected in the
inter-vehicular distance and velocity during the simulation.
Moreover, parametric errors were considered in the control-
oriented model by 20% error in the vehicle mass, 50% error in
the drag coefficient, and ignoring the rolling resistance forces.
Then based on the method presented in section IV, disturbance
sets were calculated and used for defining the constraints of the
AT-NMPC problem. Fig. 8 shows the result of the simulation
in a standard FTP-75 drive cycle. The preceding vehicle
follows the given drive cycle and the host vehicle follows the
preceding vehicle during the simulation using a regular MPC
based ACC and proposed AT-NMPC Eco-ACC. As shown in
Fig. 8 (a) both controllers have acceptable velocity tracking
performance while following the preceding vehicle. However,
the NMPC based ACC has harsher accelerations compared to
the proposed Eco-ACC. Harsher accelerations are due the fact
that non-robust NMPC can not handle the defined constraints
due to the existed uncertainties in the system. Therefore, these
uncertainties can push the system out of the defined constraints
and NMPC has to perform harsh braking and acceleration to go
back into the constraints. However, AT-NMPC is robust against
these uncertainties and therefore it has less harsh accelerations.
Fig. 8 (c) compares the position tracking error of the two
controllers. NMPC is not able to handle the defined constraints
and it has higher position error than the defined limits. On the
other hand, AT-NMPC handles the constraint perfectly because
the effect of uncertainties has been considered in its design
based on the optimization problem in (29).

C. Ecological Improvement

The objective function of the proposed controller in defined
to minimize the cost of energy in a drive cycle. Based
on the given dynamic model of the vehicle and available
road elevation, AT-NMPC predicts the future host vehicles
trajectory and based on that calculates the expected power
demand in the prediction horizon. Then, based on the power
ratio of energy management system, it calculates the power
demand of each energy source and also energy cost during
the prediction horizon. Parameter estimators make sure that the
optimal point of the cost function is the actual optimal point of
the system. Fig. 9 compares the trip energy cost of a tracking
NMPC, ecological NMPC and the proposed AT-NMPC in
three consecutive FTP-75 drive cycles. A longer drive cycle
is chosen to minimize the effect of energy management in the
achieved results. Tracking NMPC has higher weightings on
position and velocity tracking term to increase the tracking
performance. Therefore, it mostly sacrifices energy cost for

Fig. 8. (a) velocity, (b) acceleration and (c) position error in car-following
simulation

Fig. 9. Energy consumption in three consecutive FTP-75 drive cycles

better tracking and has the highest energy cost in this driver
cycle by $2.56. The Eco-NMPC has a higher weighting on
energy cost term, which means that it sacrifices tracking, inside
the defined constraints, to have better energy cost. As such, it
has an energy cost of $2.4, which is about 6.2% lower than
tracking NMPC. However, in this case, NMPC controller is
not able to handle the defined constraints and uncertainties
push the system out of the defined constraints set. To be able
to move back into the constraints, NMPC has to do harsh
braking and accelerations, which increase the energy cost. AT-
NMPC, on the other hand, handles the defined constraints and
also minimizes a cost function that adapts to the actual vehicle
behavior. It has an energy cost of $2.29, which is about 10.5%
lower compared to tracking NMPC.
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Fig. 10. Schematic of the HIL experiment setup

D. Real-time Implementation

To further examine the performance of the proposed con-
troller, hardware-in-the-loop (HIL) experiments have been
conducted to study the potential and capability of AT-NMPC
for real-time implementation in a vehicle control system.
HIL tests take into account the computational limits and
communication issues, and their result is considered more
practical than software-in-the-loop simulations. Because phys-
ical prototyping in the early stages of development of vehicle
control systems could be very expensive, HIL experiments,
which are less expensive and also faster and safer, usually
carried out before manufacturing the prototype vehicle [44].
In this paper, dSPACE Micro-Autobox II control prototyping
hardware was used for HIL tests. This setup is one of the
widely used instruments for calibration and testing of ECUs
specifically for automotive applications. As shown in Fig.10,
the HIL setup has three main components: 1) a prototype
ECU (MicroAutoBox II), which is an independent processing
module that runs the uploaded controller; 2) a real-time
simulator (DS1006 processor board), which is responsible for
running the complex high-fidelity model of the vehicle in real-
time fashion; and 3) a personal computer (PC) that serves as
the human-machine interface and is used for programming
the real-time machine and prototype ECU, as well as for
recording the desired test signals. All the communications
between the prototype ECU and the real-time simulator are
performed through a Controller Area Network (CAN).

For HIL tests, a C code was generated of the designed
controller by using the dSPACE Real-Time Workshop code
generator and uploaded to the prototype ECU. With a sim-
ilar procedure, the high-fidelity model was uploaded to the
realtime simulator using the human-machine interface. Fig.11
illustrates the turnaround time of the controller in FTP-75 drive
cycle simulation. The turnaround time for this controller is
between 400µs and 700µs at all times for a prediction horizon
of Np = 10. The maximum inner and outer iterations set to
be less than 5 to enable real-time implementation.

VI. CONCLUSIONS

This paper proposed an adaptive tube-based nonlinear model
predictive controller for the design of autonomous cruise

Fig. 11. Turn-around time of the controller in HIL experiment

control systems. This method ensures the robust satisfaction of
the defined constraints in the presence of uncertainty, and also
improves the systems performance by adapting to the changes
in the vehicle control-oriented model. Therefore, in a way,
this method decouples performance and robustness by using
separate models one for constraint handling and another one
for defining the objective function.

In the modeling step, a nonlinear control oriented model was
presented for a vehicle that performs car-following. This model
was used for evaluation of the safe sets in the presence of
additive disturbance. Moreover, models for fuel consumption
and electricity rate were presented to estimate the cost of
energy in the prediction horizon and based on them, reduced
models for parameter estimation were generated. A high-
fidelity model of the base-line PHEV, Toyota plug-in Prius,
was used to evaluate the controller.

In the control design step, first, a linear controller was
used to stabilize the system. Then by analyzing the existed
uncertainties, they were translated into an additive disturbance
term to define a bound for maximum uncertainty. Next, design
of the three least square parameter estimators were explained
that estimate the parameters of the control-oriented model.
Then, AT-NMPC control problem was defined that uses two
separate models: one for defining the objective function and
another one for constraint handling. Using separate models
ensures that constraints are handled based on the fixed nominal
control-oriented model, while the objective function is defined
based on an adapted control-oriented model to ensure that the
optimal point of the cost function and the actual system are
equivalent. The objective function of the controller was defined
to minimize the energy cost while following a preceding
vehicle.

In the control evaluation step, simulations on high-fidelity
model were performed by injecting uncertainties and delay
into the simulation environment. Control evaluations showed
that the proposed AT-NMPC is able to handle the defined
constraints in the presence of uncertainty while improving
the trip energy cost by 10% compared to a tracking NMPC.
Finally, an HIL experiment was conducted to show the real-
time capability of the proposed controller, which showed that
AT-NMPC has low computation costs while running on a
prototype ECU.
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