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Stochastic Modeling of Impulse Responses in
Reverberating Environments

Andrea Cozza

Abstract—Propagation of waves within media supporting re- to propagation paths subject to a few specular reflections,
verberation is usually regarded as a direct extension of the gbserved in the early-time response and b) random con-
case of multi-path propagation, where a set of independent i tions resulting from recursive multiple reflectionada

paths, equivalent to plane-wave contributions, can be draw . . . .
between a transmitter and a receiver. This paper adopts an scattering events, usually referred to as a diffuse fieldaiyr t

alternative approach, based on modal theory, in order to deive appearing later in time. These two groups require different
models of the stochastic behavior of impulse responses (IRs modeling approaches, as highlighted in [3] and references

measured within such media. IRs can be represented as statiary  therein. This paper will not address deterministic contitms,
Gaussian random processes whose amplitude is modulated byrather focusing on diffuse multi-path contributions, wlos

a decay function that converges to an exponential only if the ic feat I tured b f sh
time constants of each mode are similar, otherwise displayg Macroscopic features are usually captured by means of shape

a decay rate slowing with time as the modal time constants factors, such as their power-delay profile (PDP), i.e., the
become more diverse. The asymptotic convergence to a Gaumsi time-dependent average instantaneous power of IRs olaserve
process is controlled by the number of available modes, whiic  through a medium.

modal theory predicts to increase linearly with the bandwidh, A large variety of PDP models is available in the litera-
but quadratically with the frequency. Modal theory implies that . . .

groups of typically more than eight propagation paths must ture. A classmgl example is _Saleh—VaIenzueIa multiplester

be coherently related in order to give rise to reverberation Model [4], which can describe the general case of clusters
As a result, fewer degrees of freedom may be available than of delayed contributions, each decaying in time according
expected from the number of propagation paths involved, ths to an exponential function. PDPs can then be thought of
leading to a slower convergence to Gaussian propagation mets. 55 moqulating random processes that describe the noese-lik
The stochastic model introduced is further applied in orderto . T

understand how far IRs can locally fluctuate away from their behavior of individual IRs. Thes&_e fam?'o'f” pr_oce_sses have bee
root-mean-square amplitude profiles. All theoretical predctions found to broadly follow a Gaussian distribution in many ase

are supported by experimental results. [5]-8]-

Index Terms—Multipath propagation, modal theory, reverber- The main handicap of this kind of macroscopic models is
ation, indoor propagation, statistical electromagnetics random their inability to provide physical insight into the condits

processes, time-domain analysis, impulse responses. that ensure their validity. But the fact that exponentiatales
be systematically observed in certain practical settimggn
. INTRODUCTION involving time constants larger than the time-of-flight ael

Partially or fully closed environments often provide th&'€eded to cross the environment, is a direct hint at thelityabi
setting where waves evolve, in particular for wireless camm{© support reverberation [9], [10]. A reverberant response
nications. Examples are indoor and dense urban envirosmeffiables the use of modal descriptions, as the one proposed
hangars, industrial plants, mines, in-vehicle commuiveat " this paper, which is here shown to formally prove that an
etc. All of them share a common feature, namely the fagkponential decay can, under certain conditions, be a good
that waves undergo a large number of scattering events o@@pProximation for PDPs. _ _
reflective boundaries (e.g., walls), leading to radiatedrgyn ~ Moreover, the approximate Gaussian behavior of IRs has
being distributed along multiple directions, thus geriagat Mostly been based on empirical data or by adopting asyneptoti
multiple propagation paths between a transmitter and a F@SC”F’“O_”S such as Raylelgh or Rice diffusion. These two
ceiver. Depending on the geometry of the environment, af§ymptotic models are often invoked as soon as a propagation
the relative positions of transmitters and receivers, e+ Medium is expected to support a large number of propagation
of-flight of each separate path may vary significantly, givinPaths which, once as;umed to be s_tat|st|.cally independent,
rise to time-spread versions of originally transmittednsig naturally lead to diffusive conditions, implying that IRarc
[1, 2. be described as Gaussian random processes. The problem is,

Impulse responses (IRs) in reverberant media display tke conditions under which these approximations hold are
separate contributions: a) deterministic contributioekated Seldom discussed, with no quantitative approach to steichas

convergence, apart assuming the availability of a largelrarm
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results are further developed in Secs. IV to VI, where local
or instantaneous fluctuations in random realizations ofdies
studied. Sec. VIl presents a thorough experimental vadidat

of these models and the related predictions, in partictiar t

the number of modes appear to be the dominant factor behind
the convergence to a Gaussian random process. Most graphs
issued from theoretical models are only shown in Sec. VII,
where they serve as theoretical references for experienta
results.

240 MHz
—— 15 MHz

Il. PROPAGATION MODELS AND EXPECTEDDOF

0 0.5 1 Tl/i 2 25 3 Transfer functions in complex media can be described by
’ means of tap delay-line models [4], [7], [21], [22]

Figure 1: Two IRs measured at 2 GHz in a reverberation cham- N jwr
ber (see Sec. VII), for two different bandwidths. Notice the H(w) = Z an€ "0, @)
marked difference in the fluctuations dynamics even though n=1

the two IRs share the same root-mean-square (rms) envel¥pi@ 7 the delay associated to theh contribution,a, its
(marked as dashed lines). complex amplitude and the angular frequency. Depending

on the way these parameters are chosen [23], in particular
their eventual frequency dependence, (1) can represenea se

reverberant environments. Its main appeal is physicaginsi Of distinct echoes, a continuous spread, i.e., reverlerati
and the ability to yield quantitative predictions from a tan ©f & series of clustered contributions. In all of these cases
parameters, such as the volume of the propagation mediGfh contribution in (1) is interpreted as a distinct patngl
and the frequency range over which it is used. which a portion of the transmitted energy propagates. le cas

Our derivations focus on the case of a single-cluster PDtB’ese multiple paths were different enough to be regarded as

which comes with a mathematical description simple enou%ﬁhsncally independent, asymptotic models such asetiios

as to yield insightful understanding of the physical pheanm ice and Rayleigh qhannels could be invoked. More reali;tic
behind their complex behavior. The description introduired MCdels can be considered, where groups of paths are partiall

this paper can be extended to more general cases, in ordefqg€lated together, while intergroup correlation is relga as

account for multiple clusters, but would make physical ri-nteneg“_g'ple' butin prac_:ﬂce are not used _due to impossbdit
pretation less straightforward. Moreover, multiple refeses predicting or measuring partial correlation.

suggest that PDPs observed in reverberating environmept¥/hen each individual contribution to (1) is interpreted as a
are mostly characterized by a single decaying exponemtial(|0¢@lly) plane wave propagating along a given path [244, th

indoor environments [5], [10], urban settings [7], [11],nc0 positionr of the receiver/observer can be introduced in (1)

mercial airplanes [12], [13], at the interior of vehiclesi[2 N '

[18], industrial sites [8], [19], as well in metallic duct&(]. H(w;r) =P, > Dpbn(w)e *n7 (2)
Finally, laboratory facilities emulating wireless comnza: n=1

tions in realistic media are based on the use of reverberatigherep,. is the polarization of the receivek,, = k k., gives
chambers [17], which typically display only a single clustethe direction along which theth plane wave approaches the
of delayed power contributions. receiver, with a complex weightt, (w), and a polarizatiotp,;

The proposed model of IRs as non-stationary random pr; = w/c, is the wave-number for a speed of light. The
cesses is subsequently used in order to predict how stronglgeiver is assumed to be isotropic, for the sake of siniplici
individual IRs sharing the same PDP can differ on a local Although this family of models is completely general, it
scale; Fig. 1 illustrates this issue for two IRs measuretiiwit comes with an unanswered question: shobldbe regarded
the same medium. Several statistical metrics are useda®a measure of the number of DoF available for transmitting
this effect, such as their peak instantaneous power and #ignals? In order to answer this question, one should assess
probability of occurrence of undetectable contributioA. how independent are thes®¥ contributions, but they are
theoretical predictions are fully supported by experiraéntusually regarded as independent, to the best of our knowledg
data measured in a reverberation chamber. e.g., [25] considers a ray-tracing propagation model assym

The paper starts by arguing on the fundamental differencesch path to be independent.
between multi-path and modal descriptions in Sec. Il, and in Such an assumption is reasonable for configurations where
particular the number of DoF that could be expected in the tvgcatterers such as walls and buildings act as guiding stest
cases. A modal description is then adopted in Sec. I, migvii.e., where energy propagates about a main direction. Bseth
that IRs in reverberating media behave as non-stationagsumptions break down when dealing with closed environ-
random processes that can be asymptotically factorizedeas ents, where waves may propagate back and forth several
product of a Gaussian stationary process and the IRs emjeldjpnes, giving rise to standing-wave patterns that undeifly d
which can be approximated by a decaying exponential. Théssion and reverberation. In this case subgroups of pattst mu



(b) where v is the modal weight for the&th mode resonating
at wy with a quality factor@y, according to the frequency
response

Yi(w) = [w? — Wil —j/Qu)] ()

The {~;} are a function of the source of radiation, but are
given once its nature and position are fixed. In fact, theinac

Figure 2: Modal versus plane-wave representations in @dlos\/aIue is not important when adopting a stochastic framework

environment: (a) plane-wave contributions in a periodicto as discussed later. . . L
mode (standing wave), generated and self-sustained sequer?qs' (1) a_md (.4) are mutually compapbl_e SINce, as intuyive
tially leading to a global coherent pattern and (b) the stthje ziggﬁztee(;jilnr]cdliflg. iiﬁ)e’ vevg\(iZsmiosal distributigr{r) can be
perception of an observer (gray spot), experiencing on al loc P kP T

level what appear to be four independently impinging plane M N _
waves. H(w;r) =p, - > yete(w) Y bgpe e, (6)
k=1 p=1

The main difference is that modal theory states that thegplan
be organized in closed coherent patterns [26, Ch. 3], esliheci wave coefficientsb,, } only depend on the environment and
in presence of planar surfaces, a signature of integrable waot on the source/transmitter and the receiver charatiostis
billiards [27]. This physical fact is important since it ifigs  Therefore, even thougl_;—, N} plane waves are propagat-
that groups of waves impinging on the receiver are not actingy, only the{~;} can modify the way these plane waves are
as separate entities. These ideas are schematicallyalest excited, and this only through sub-groups pertaining tcheac
in Fig. 2. As a result, the number of propagation paths shoultbde.
not be regarded as a measure of the DoF available in thes&he perception of the number of available DoF is therefore
media; one should rather consider the number of patterns,satongly affected. In particular, from (3) is can be expddteat
modes, allowed by the geometry and materials involved in @fcreasingf. should lead to a faster convergence to Rayleigh
environment. diffusion than a comparable increase in the bandwigih a

There is no simple way of assessing beforehand the prediction that cannot be derived from a classical multhpa
lationship between the number of resonant modes and médel as (2). This prediction is put to test in Sec. VII.
propagation paths, apart for very simple geometries. Bliyic
the number of paths ranges one order of magnitude above [1l. M ODAL-BASED MODEL FORA(t)
the number of standing-wave patterns. It is thus clear that;, arse transforming (5), the time-domain response of a

regarding paths as DoF may lead to overestimate the proQgiyie mode resonating at the angular frequengycan be

bility of experiencing asymptotic conditions (e.g., d&fan) |, iten as

in reverberating media. De(t) = et ™ sin(wit)u(t), @)
The average number of modes supported by a closed struc- _ _

ture obeys a universal law requiring little prior informatj With 7 = 2Q/wy the time constant related to the quality

first derived by H. Weyl, which relates space to frequency, Bgctor Qi of the resonance and(t) Heaviside step function.

exploiting the fact that for a given volume only certain patts  Introducing the coefficient§ay, }

(or modes) can self-sustain, and only around a few selected P — el 8

frequencies. As reported in [28], ar = Py - ex(r) = ®

(4) can be written as

8 B
M ~ =2V 2By = Skaf—T, ©) A
€ ¢ h(t) = u(t) Z ey sin(wrt + @r), 9)
where M is the average number of modes resonating within a k=1

bandwidthBr centered at the frequendy, for a structure of where the observer’s position has been dropped for the sake
volume V; \ is the wavelength associated fp, for a speed of brevity.
of light ¢, while V stands for the volume expressed in cubic The {v;} can typically be assumed to be independent and
wavelengths. Eq. (3) holds as long Bg is greater than the identically distributed [33], in particular for the case evk
coherence bandwidtB. of the medium, otherwis@/ should no line-of-sight (LoS) contribution is present, as assurimed
rather be estimated as the number of modes overlappirfig atall results and discussions reported in the rest of this pape
[29], [30], a case not considered in this paper. This same property is inherited by tHe,}. More general
The modal-theory alternative to (2) is a discrete sum &tenarios can be reinstated by adding a LoS contribution to a
modesex(r) [31, Sec. 13.1] [32, Ch. 10], proper to thepurely non-LoS case, as done, e.g., in [7], a case not treated
medium’s geometry and boundary conditions in this paper.
" As a result of these assumptions, all the sir:;ﬁ?nctions
N s display independent random phase-shift angles, Wih} ~
H{wir)=p, ;%ek(ﬂm(w)’ @ Z (0,2m), i.e., uniformly distributed over all possible angles.



Moreover, the random nature of the frequendies} also act | \ Ng
as sources of randomness in the phase terms [27]. It canthel ggl\ & \ v N
fore be shown that under these assumpti¢ng)) = 0,V ¢, \j’ \\\ o
0.5}
where(-) stands for the ensemble average of a random proce. \
or variable. 504 \\ \
The IR model here sought is given by the product of the | 0.3}
square root of the PDP, i.e., the IR enveldpé¢t), and a zero-  ~ 02l &
average random process(t), o1 N
h(t) = ho(t)w(t), (10) 0 ‘
0 1 2 3 4 5 6 7
where the IR envelopg,(t) is expected to take the shape t/7
ho(t) = Aoe™"/u(t), (11) Figure 3: Contour plot of the drift function(t, ¢).

where 7 is a time constant typically associated to dissipa-
tion/leakage phenomena within a propagation environment.
An exponential-decay law can be derived on the basis of a
first-order dissipation model, for very narrow-band coiotis (t,s) = 1+ 5 e (ﬁ s ) + YT /7 o2t/TRS (_ﬂ)

under Rayleigh diffusion [34], [35]. This property is here 2s| | T1l+s |s] 1+s
demonstrated to be just a special case of our model, derived (18)
under more general conditions. with Ei(-) the exponential integrah(t, ¢) measures how much
From (9), the PDP oh(t) is found as the IR envelopé:,(t) differs from the pure exponential decay
. appearing on the right-hand side of (16). E¢F > 1, n(¢, ¢)
R2(8) = (2(8)) = <Ze_2t/7"ai in? (wit + cpk)> can be approximated as
k=1

+1)2 2c t (c—1)2 2c t
2(4 o) = (c L v
m(t:c) dct/T KPITT det /T KPITTTE]

: (19)
proving an exponential drift of the late-time PDP from the
(12) purely exponential decayxp(—2t/7), as soon as > 0. For
this reasom(¢, ¢) will be referred to as the drift function.
Summarizing the above results, (13) yields

+ <Z e 2o/ Ta 0, sin(wpt + @) sin(wet + ©q)
P#q

Because of the assumptions on the modal weighits, the
second average in (12) is vanishing with respect to the first

one. Assuming a weak dependence between the {3gts ho(t) = Ape™t/Tn(t, ¢)u(t) (20)
{wi} and {7} and invariant probability laws with respect to ’ ’
with
h2(t) = <672t/ﬁc> (a2) M/2. (13) Ay = ma/MJ2, (21)

The first average only involves the modal time constants andm?2 = (a3 ). Eq. (20) confirms the validity of an exponen-
tial envelope, as postulated in (11), onlysift,c) ~ 1,V ¢, c.
<e*2t/7k> = /dT pr(z)e 2/, (14) The drift function is mapped in Fig. 3, where it appears that
n(t,c) is not necessarily close to one. Fo 7 a shallow
wherep, () is the probability density function of;.. For the region finds#(¢,c) ~ 1, but for later instants: should not
sake of simplicity, ther;, are here assumed to be uniformlybe larger than 20 % for this condition to hold. Stated in other
distributed around their average covering a total spaBA7, terms, an exponential envelope should not be taken for ggant
for which and is in itself an indirect proof of weak dispersion in the
/s L[ _at/r(14s) distribution of the random{r;}. The prediction of a drift
<e ’“> = (20) / ds e 5 (15)  function n(t,c) > 1 is confirmed in Sec. VILI.

o The squared envelop®(t) is meant to describe the way
with ¢ = AT/?‘. Relevant discussions about the behavior @nergy evolves (On average) in the response of a revenh@rati
{Qx}, and therefore{7;,} can be found in [36], [37]. While medjum when driven by an excitation pulse. While this kind
these results would differ when choosing other distrimgio of model is useful in order to characterize the power-delay
the main goal of (15) is to assess how sensitive is the drifpread of a channel, it does not provide detailed informatio

from a pure exponential decay in case of divefsg}. about the potential differences in the IRs sharing the same
Solving (15) yields power-delay profile.
_ o= More insight can be obtained by analyzing the statistical
2t/7\ _ 2t/7, 2

<e > =e T (o), (18)  properties ofw(t) = h(t)/ho(t). From (9), (13) and (21)

wheren(t, ¢) is given by M
t) =+/2/M B sin(wit + ©n (22)
Pt,) = glt, ) — glt,—0) an VM) Busind )



where 8, = ai/m,. The statistical properties ab(t) can The IR h(t) is first approximated as a discrete time-series,
be derived by noticing that the summation in (22) can bdgy sampling it att = nT., with T, the coherence time

interpreted as a 2D random walk, since discussed later in this section. The samplés = h(nT.)}
M are required to be independent; being modeled as Gaussian
Z*Bk sin(wgt + ¢r) = Im {s(t)}, (23) random variables, this condition is equivalent to reqgrin
1 uncorrelated data. The probability law éff;, can now be
where expressed as
M
s(t) = Zﬁkejfk (24) Fur, () = P(M), < x) = P(|hy| < 2,V n), 27)
k=1

] i ) which, for independen{h,, }, translates into
having seté;, = wit + . Since {pr} ~ Z(0,27), i.e.,

uniformly distributed, also{¢x} ~ % (0,27), V t,wg. The >

summation in (23) can 0r{1ov3 be re(cognized as a random P(Mn <) = H P(lhn| < 2),

walk in the complex plane, with random steps along random n=0

directions {{;}. This class of random processes is knowas eachl|h,| < =z at the same time, i.e., representing

to present a probability distribution with circular symmyet P(M; < x) as a joint probability. This kind of probability

i.e., only dependent on the norm eft). The central-limit law is reminiscent of an extreme-value law [40], where the

theorem iimplies that(¢) can be approximated as a Gaussiamaximum value observed in a set df iid random variables

process; hences(t) is fully characterized by its first two is considered. The fundamental difference here is that the

moments. In practice, only the varianeg of s(t) needs to samples are not identically distributed, because of thaylag

be computed, as the isotropy &ft) leads straightforwardly to envelopeh, ().

an average equal to zero. It can be shown that= M,V ¢, Sincew(t) is asymptotically a Gaussian process, (10) has

i.e., s(t) is stationary, while the isotropy of(t) results into the {h,,} also behaving as Gaussian random variables, with

<1m {s(t)}2 = <|3(t)|2>/2, Convergence to this kind of standard deviations,, ~ exp(—nT./7). The drift function

process is consistent with observations in real-life saesgas 7(Z, ¢) is here neglected since the peak-valu¢hgf)| is likely

presented, e.g., in [8], [12], [22] and indirectly in [11]hare o occur fort/7 < 2, wherer(t,c) ~ 1.

a zero excess kurtosis was observed. A uniform phase-shiffor a Gaussiarh,, its modulus|h,| follows by defini-

angle distribution was confirmed in [6], [38]. tion a half-normal distribution. Therefor&®(|h,| < z) =
Taking into account these properties in (22), the first twerflexp(nT./7)/v/2)], so that (27) results into

moments ofw(t) become

W) = 0 (25) Fug, (@) = [ erf (we"™/7/V2) | (29)
n=0

<w2 (t)> = 1, (26) . X
) ) ) whereerf is the error function.

vt >0, i.e.,w(t) is a stationary process and follows a standard o the standard deviation of late-time samples decreases
normal probability law. Since these conclusions are based guyonentially, it is clear that their contribution to theafe
the central-limit theorem, they can be expected to hold §§jye A7, can be expected to be negligible. It is therefore
long asM >> 1, while the individual contributions for eachyggsiple to truncate the product in (29) & samples, where
mode/resonance needs to be weakly correlated. i can be chosen such that the probability of having > A,

The modal description from which (22) was derived imgg negligibleVn > K, e.g., lower than 5 % This condition

plies that the) modes available act as independent degregSmet when the standard deviation/of /A, is smaller than
of freedom that will eventually havev(¢) converging to a 1/2, i.e.,exp(—KT,/7) < 1/2, hence

Gaussian processy should therefore be expected to drive
this convergence. Experiments presented in Sec. VII-Caupp K < (7/T.)In2. (30)

this prediction and prove that even fbf > 1 local deviations . ) )
from Gaussianity are observed. As a result, the only < KT, is considered, i.ez/7 < In2,

which falls in the region wherg(t, ¢) ~ 1, thus justifying the
IV. PEAK-VALUE ATTAINED BY AN IR use of an exponential decay in the present derivation.

Fig. 4 shows a few examples of probability distribution for
the overshoot factoi/;,, obtained by numerically computing
he derivative of (29) with respect to. These results indicate

at an IR can exceed by non-negligible margin its rms
envelopeh,(t) as7/T. increases.

A few quantiles of (29) are shown in Fig. 5 versiis/7.
k_The mode of (29) as a function @f./7, truncated according

(28)

The factorization ofh(¢) as in (10) makes it possible to
assess how strongly single realizations/dt) can deviate
from their envelopé,(t), on a local scale. Several metrics ar
considered in the following sections, starting with thelabil-
ity distribution of the peak valudf, = max; |h(t)|/A,. This
is of practical importance, e.g., in assessing the proinaloi
observing overshooting events, leading to increased fmea
average power ratios [15], but also for electromagnetiaodes | _ . _ o

This probability should not be confused with that of haviregettime

try in cf';\vities [39] and assess the intensity of electronetign samples producing the highest peak value, which is excelgdismaller,
stress in EMC tests. because of the exponential decay



which, thanks to Parseval and Wiener theorems, can be ex-
pressed as

T, = [2 / a swau)} B / dwSi). (@)

where S, (w) is the power spectral density af(t). Fourier
transforming (34),

Pwm, (CU)

Figure 4: Probability density functions ofM;, =
max; |h(t)|/A,, as predicted by (29). Three values o
T./7 are considered, as displayed on top of each curve.

pver the excitation bandwidt®r and zero outside it, from
which
T.=1/4Br. (38)

4.

V. DYNAMIC RANGE OF FLUCTUATIONS

The fact that the peak value &ft) can significantly stray
away from the IR envelopk,(t) does not come as a surprise,
since typical IRs in closed media are characterized by wide
fluctuations. While their Gaussian nature explains thegrnn
sity, it is interesting to understand the dynamical rangased
by |h(t)], i.e., to measure how strongly the amplitudehdf)
can swing between two close observations. This information
0.5 = =) ', would allow to understand whether IR locally exceedingrthei
envelope should be expected to rapidly fluctuate to muchrdowe
amplitudes in a short time span, thus appearing as a sequence

Figure 5: Quantiles o/, as functions ofT, /7, with their of rapid pulsed bursts rather than a continuous decayimhg tai

associated probabilities superimposed over each curve. ThWe therefore focus on the ratig = |h(t + At)/h(t)| =
red dashed curve represents the modé/af lw(t + At)/w(t)|exp(—At/7) and compute how it is dis-
tributed, assuming that the two random variables involved i

it are weakly correlated, i.eAt > T.. The probability density

to (30), can be approximated, within an error of less thanfdnction of the ratioR = |w(t + At)/w(t)| can be obtained
percent point, as as

Quantiles

T.)7

pae) = [ ds ()5 Fnes). (@9)

L B , . where Fjyy () is the cumulative distribution of the modulus
with a = 0.626 andb = 0.741 obtained by least-square f|tt|ng.0f w(t),¥ t. Since|w(t)| follows a half-normal distribution

In the same way, (31) approximates the average when . . o
0.749 andb — 0.678. law, with unitary standard deviation,

m(T./T) =~ alnb(?/Tc) (31)

The condition needed for independdit, }, i.e., uncorre- _ /Ood B
lated{w,, }, can be inferred from the auto-correlation function Pr(®) 0 5(=8) P ($)pw (75)
of w(t) 2 /OO 2\ .2
=— ds (—s)e(t+e7)s"/2 (40)
Ru(7) = (w(tyu(t +7)) (32) = A
2 1
which, following (22), can be shown to be T r1+a2 x>0
Ry, (7) = {cos(w,T)) . (33) from which
At/7 At/7
Approximating the resonant frequenci¢g,} = {w,/27} pz(r) = >/ Tpp (xe g ) (41)
as ;Jmf(()jrmly distributed over the excitation bandwidty The distributions (40) and (41) correspond to Cauchy distri
centered ory. butions, whose average and standard deviation are not define
Ry (1) = cos(2r fr) sine(rBrr) (34) known to model random variables with large stochastic dis-
“ ¢ ’ persion. For the sake of simplicity we will hereafter assume
which is consistent with the results presented in [11]. At < 7, leading toZ ~ R. o _ _
The coherence time can then be assessed as the equivBecause of the strong stochastic dispersio# ofonfidence
lent time support of the time-coherence functipp(r) = intervals are more useful metrics to quantify its dynamige
R, (7)/R(0), The cumulative distribution associatedgig(x) is

7.~ [Car o), (35) Fae) = 2 tan ™ (a) (42)



and the quantilg(p) for a probabilityp is which is well approximated by
17 — 185, + 53
9v2r In So ’

obtained using the third-order Taylor expansioredf(x) for
x ~ 0, before computing the integral. Results in Fig. 14 imply

q(p) = F*(p) = tan gp, (43) Ln(so) ~ — s <1,  (46)

so that the confidence interval for a significance leuel
is [¢(a/2),q(1 — «/2)]. It can be shown that (43) yields

q(2/2)q(1 — /2) = 1, V o, as illustrated in Fig. 12, in that even for small values o, there is a hi ili
/ - ) gh probability of
Sec. VII-C. This result means that the probability of obgagv receiving no contribution, and that IRs should be expeated t

ratios smaller than /C' is equal to that of having them Iargerbe highly fragmented.

tcf;a:]ntg ' f\cl)vlroer(e;gb> %r'nla?ﬂ;egnvggfdns,thsemg' gggeriﬂloer:z It could therefore be expected that the total detectable
W y very farg ! ' vicev gnergy be significantly smaller than what the PDP indicates.

vt > T, while the enyelope(zo(t) repr_esents thg rnedlanThis point can be clarified by computing the instantaneous
of the IRs. These considerations are important in the ca

of receivers with finite sensitivity, as discussed in thetneﬁg\l\/er detected on average
section. (Pa(t) = (RO | O] > s04,)  (@7)

VI. UNDETECTABLE CONTRIBUTIONS conditioned to detectable contributions, which can beiobth

as
Let a receiver/probe have a finite sensitivity, defined 5 0o
as a fraction ofA,. This value could be set, e.g., by the (Py(t)) = \/jhgl(t)/ dh h2e—h?/2h5() (48)
level of background noise below which contributions are 5040

regarded as lost. Therefore, only those contributions shah 2 —s2 /22 (1) 5 S0
|h(t)| > s,A, will be regarded as detected. Taking the PDP as  — —Soho(t)e™ /Tt + hi(t)erfe :

; A i V2h,(t)

an estimate of the received instantaneous power, this tondi
is typically translated into a condition for the receivectilect The fraction of energy detected on average with respecteto th
information only over a time interval up td, = —7Ins,. €Nergy associated to the PDP is then defined as
E.g., in [2] a 30 dB dynamic is reported, i.€,/7 = 3.45. 1 T,
But because of the strong dynamic of random fluctuations LEg(so,) = @mi/ dt (Pa(?)) (49)

. . L . . . . ‘g PDP(SO) 0
discussed in Sec. V, there is a risk of experiencing sigmifica
reduction in instantaneous power with respect to what couidth
be expected from the PDP. Lo 27

On the other hand, the existence of overshooting events, Eppp(so) :/o dt hg(t) = T(l —55), (50)
as discussed in Sec. IV, would make one think that the toéﬂdlelding
received energy could be a strongly fluctuating function a ,
might even be higher than that expected from the PDP. 2 5067 %/2 — 52/ \Je So

In order to elucidate these questions, we compute the Lr(s0) = \/; 1_ g2 +erfe (ﬁ)’ (51)
probability of receiving undetectable contributions, rttey ’

2=

which can be approximated as

from (10),
~1_ g2 <
Po(t) =P(h(1)] < Ags,) = P(lu(t)] < exp(t/T)so) o Debo=lmsevzfre s Sl (2
ot (exp(t/%)so/\/i) ’ (44)  Fig. 14 in Sec. VII-C proves thali;;(s,) stays remarkably
close to one, even whet) increases to relatively high values.

having assumed(t, ¢) ~ 1 in order to obtain closed-form re- This outcome implies that even thougtY) is substantially af-
sults. The probability of not receiving significant contrilons  fected by undetectable contributions, its overall enesgyeiry
at T, is P,(T,) = erf (1/v/2) ~ 0.68, and is independent Weakly affecte_d on average, which makes sense only if the
from s,. The results presented in Fig. 13 in Sec. VII-C shofjetected contributions compensate for the missing eneogy f
that there is a non-negligible probability of not receivingn0se gone undetected, i.e., by means of frequent oveisigoot
any detectable contribution even in early-time observatio €vents. This explanation is indeed consistent with theltesu
depending on the value taken by. Sec. V, where it was shown that very weak contributions can
Eq. (44) allows estimating the fraction of tindey (s, ), over be followed by large ones that have the potential to comgensa
the intervalt < T, during which no detectable contributiondOr missing contributions.

are received on average
VIl. EXPERIMENTAL VALIDATION

T,
Ln(so) = i/ dtP,(t) Previous theoretical results were validated against exper
o OT imental data measured in a reverberation chamber (RC),
1 ° _ ; . . i
_ _/ dt erf (et/'rso/ﬁ) (45) ac_cordln_g to_ the s_etup and pro_tocpl described in Sec. VII-A.
Ts Jo This choice is motivated by their wide-spread use as standar

1 —Ins, test facilities capable of emulating a large number of digna
/0 dy erf (eySo/\/i)v transmission settings for strongly multi-path environtsen

—1Ins,



The frequency step was chosen in order to limit the inewitabl
effects of time-domain aliasing, since the time constarthef
RC was expected in the range of microseconds.

To make sure that the transfer functions were independent,
the probe positions were chosen to be at least a quarter
of wavelength away from each other [43], and uniformly
distributed over the hemispherical surface allowed by the
scanner. This resulted in a total of 244 positions at 0.5 GHz
and 888 at 2 GHz.

IRs were then retrieved by means of inverse discrete Fourier
transforms, by having first applied a tapering function te th
frequency-domain data. Tchebychev window is an effective
choice to reduce the level of side lobes, with a time-domain

) ] . N counterparp(t), whose sampled representation is [44]
Figure 6: The hemispherical positioner (a) and the electro- 1
cos (N cos™" (Beosmk/N))

optical probe (b) used in the experimental validation. p(k) = .
cosh (N cosh™ B)

with 3 = cosh (N~ cosh™'10%), and N the number of
behavior even when taking different implementations (ehaEJrequenC)l/ sarr(ljplesf spinnllng the band\_/w&h fththelRlR of b
factors, volume, etc.) enables reproducible results. nter_est. n order for the late-time region of t € IRS to be
Sec. VII-B first proceeds to the validation of the nonl-mta'mefj byp(t) over at least _60 dB of dynamics, we set
stationary random model introduced in Sec. Ill. Convergen¢, 4, in order to ensure a side-lobe level below _89 dB.
oreover, forp(t) to have a support way smaller than

to asymptotic results is shown to improve with the number . ) .
. . . . > .
modes available, as argued in Sec. Il. Substantial driésifr 7 ~ 10 MHz, in order not to alter the early-time region

an exponential decay are found to be accurately describedor;)}he IRs.
the proposed model. Local deviationswft) from a Gaussian g podal description and convergence

distribution are highlighted. In spite of these deviatioesults i . ,
The rms envelopé:,(t) was first estimated from experi-

in Sec. VII-C prove that the asymptotic models derived in X .
Secs. IV to VI for random fluctuations in IRs are remarkabl ental data, as defln(_ad n (12), am_ﬂt) - h(t)/ho(t) was
en tested for Gaussianity and stationarity.

accurate and can therefore be used as predictive tools. ; .
P According to Fig. 3,h,(t) can be expected to be well

approximated by an exponential decay only {¢f < 2, an

A. Test setup interval covering the first 17 dB i, (t), wheren(t,c) ~ 1

The experiments were carried out in a metallic RC, a cubo@en for large dispersions of the modal, }. The two parame-
of about6 x 3.5 x 2.5 m®. The RC was equipped with a Z-ters A, and7 can then be retrieved by means of a least-square
folded metallic stirrer which, though not operated durihg t regression on this portion of data, leading to the dashexdifin
experiments, was fundamental for breaking symmetriesinvithFig. 7(a), obtained foBr = 20 MHz. The same& = 2.17 us
the RC. was found for 0.5 and 2 GHz. Higher fluctuations for 0.5 GHz

A monocone antenna, impedance matched to ensureara due to the more limited number of IRs available at that
return loss higher than 15 dB between 0.4 and 3 GHz actizdquency.
as transmitter. It was placed behind the stirrer, in order toFig. 7(a) confirms thak, (¢) drifts away from an exponential
minimize line-of-sight contributions in received signal$iese function fort/7 2 2. This trend is better observed in Fig. 7(b),
were measured over a large number of positions, thanks to thieere n(¢) estimated from experimental data is shown. As
hemispherical scanner shown in Fig. 6(a). This robot has theplained in Sec. Ill this drift is expected in case of disjam
ability to ensure a very low level of perturbation at freqcies in the modal time constan{sy }. Once the exponential param-
below 3 GHz, with a level of coherence higher than 70 %tersA, and7 are known, it is possible to infer the value of
when one of its arms moves [42]. The received signals wefre= A7 /7 by fitting (17) to the experimental data. The results
obtained by means of an EFS-105 probe manufactured ibyFig. 7(b) support the explanation of dispersion in the adod
Enprobe, a linearly polarized electro-optical probe witdt fl {7}, as the time evolution of(¢) is accurately predicted from
wide-band receiving characteristics, shown in Fig. 6(bgteD a single parameter, i.ec, The fact that a weaker dispersion
were collected around two frequencies, at 0.5 and 2 GHz, fisrobserved at higher frequency makes physical sense, since
which (3) predicts a 16-fold increase in the number of Dot 2 GHz a wavelength of 15 cm is likelier to generate
for a given bandwidthB . more uniform losses over the RC metallic surface than at

For each position of the receiving probe the transfer fumcti lower frequency, where modal distributions may presentemor
between the monocone antenna and the probe was measdieerse dissipation patterns [36]. It can be concluded #mat
using a vector network analyzer from Rohde & Schwarexponential PDP should not be taken for granted, and a non-
model ZVB8, acquiring 5000 frequency samples uniformlirivial result in its own right, since it provides insight the
distributed over a 250 MHz bandwidth, around 0.5 and 2 GHgtatistics of modal time constants.

: (53)

[16], [17], [41]. The fact that they present a similar stidisl
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Figure 8: Empirical probability distributions of the prasav(t) for By = 20 MHz and: (a) f. = 0.5 GHz and (b)f. = 2
GHz. Broad stationarity is observed even for late-time ditebe compared with local deviations highlighted in Fig.The
results forf. = 0.5 GHz are more ragged because of the more limited number dagzatiahs available.
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Figure 9: Deviation between empirical and theoretical gjilesg, for the normalized IRw(t), for By = 20 MHz and: (a)
fe =0.5 GHz and (b)f. = 2 GHz. The deviationy(t) — ¢, is color-coded and represents local departures from Ganigsi

The realizations of the process(t) were then computed sensitive to differences in the number of samples, as it is
according to (10), expected from theory to be stationary abdsed on cumulative empirical distributions. These result
following a standard Gaussian probability law. The staiitly confirm thatw(t) at 2 GHz follows more closely a Gaussian
can be qualitatively assessed in Fig. 8, where empiricdigro distribution for the central quantiles, roughly coverin@ 7
bility distributions, shown as functions of time, do not oga % of all results (central white region), whereas at 0.5 GHz
significantly in range and amplitude, over the entire timarsp deviations occur systematically even for the central partf
considered. A steadier behavior was found at 2 GHz, wherahe distribution.
at 0.5 GHz the results are less uniform in time. Although The hypothesis, formulated in Sec. Il, that these deviation
the reduced number of samples at 0.5 GHz could be invokegle due to a limited number of modes, can be tested ex
local variations are more likely due to a limited number oferimentally by considering the rms error on the quantiles,
DoF, as discussed below. It should be stressed tha{tf computed across time, and correlating it with the number
were not taken into account at 0.5 GHz, stationarity woulsf modes expected for a given frequency and bandwidth.
not be observed, as the drift from an exponential IR envelopecalling (3), passing from 0.5 to 2 GHz should lead to a
is higher than a factor 2 far/7 > 5. 16-fold increase in the number of DoF, for a fix&}, here

Local drifts from Gaussianity can be assessed quantitativéet to 15 MHz. The same outcome should be observézy-if
by computing the quantileg(t) of the empirical distributions were increased by a factor 16 while keepifig= 0.5 GHz.
and comparing them with those expected for a standdrd). 10 confirms that very similar results are obtained as1soo
Gaussian random variable, here namgdThe results in Fig. as the same number of DoF are expected, be itffor 0.5
9 show the absolute error between the two, coded in color, @Gslz andBr = 240 MHz, or for f. = 2.0 GHz andBr = 15
a function ofg, and time. E.g.¢(t) — g, = 1 means that the MHz. At the same time, a clear trend is visible in Fig. 10,
portion of distribution associated wit), occur further away, where the rms quantile error steadily decreases as the mumbe
i.e., the distribution has heavier tails, while negativeidéons of modes increases, as required by the central-limit theore
imply a contraction. This representation is intrinsical®ss Two reference curves, in thicker solid lines, represent the
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Figure 7: Validation results for the evolution of the IR elof®  Figure 10: Comparison of the rms deviation between empirica
(i.e., the square root of the PDP) ff¥ = 20 MHz, andf. = and theoretical quantiles faw(t), as a function ofg,, for

0.5 and 2 GHz, comparing experimental results (gray curvegiferent choices of the excitation bandwidth and freqyenc
and theory introduced in Sec. Il (black curves), for : (2 thThe number of modes available for each configuration is
envelope and (b) the deviation functigfy, c). Optimal fitting  shown close to each curve. The two thicker curves represent
of theoretical results to experimental data yield an esened the rms quantile deviation expected for ideally Gaussian-
c = 0.34 (for f. = 0.5 GHz) ande = 0.060 (for f. = 2 distributed populations, of sizes identical to those of th&
GHz), corresponding to a relative standard deviation 0f%8.9 GHz and 2 GHz datasets.

and 1.7 % in the modal time constarts }.

for rich multi-path propagation. The random proces§)

rms_error in the empirical quantiles obtained from Montgisplays a statistical behavior close to a stationary Eece-
Carlo simulations involving ideal Gaussian samples, foo tWyerlain by a standard Gaussian distribution. The total rermb
populations sizes corresponding to the 0.5 and 2 GHz datas@y of DoF expected from (3) appear to drive the convergence
respectively. These results are used as references in wrdefate, even when arriving at the sanié by choosing two
assess whether the finite (and different) size in the 0.5 aggferent combinations of frequency and bandwidth. In fact
2 GHz datasets could explain the deviations from theoretiGiperfect convergence to a Gaussian process would hardly be
Gaussian quantiles. Fig. 10 shows that for the case wherg @pected if the number of paths were taken as a measure of
very large number of modes is expected, the quantile rfie available DoF: at approximatively eight paths per mode,
error is similar to the one found for Gaussian samples, thggout 1400 paths would be regarded as certain to lead to
indicating convergence. This case occurs for= 2 GHz and  Rayleigh conditions forf. = 0.5 GHz and By = 15 MHz.
Br = 240 MHz, for a population of 888 samples. On the otheyoreover, there is no obvious way of predicting the stronger
hand, as soon aBr = 15 MHz, a significant deviation in the jnfluence of frequency ove¥/ from a multi-path presentation,
empirical quantiles appears, even though the same populatys opposed to Weyl's formula (3).
size is unchanged. This trend worsens for = 0.5 GHz,
where an even smaller number of modes is expected. These )
results provide supporting evidence that it is not the size &+ Fluctuations from the PDP
the datasets that explain the deviations in the quantiles, b The first fluctuation metric tested dealt with the probailit
rather the changing number of DoF available, here congidemistribution of the overshoot factdi},, introduced in Sec. IV,
to be the resonant modes. which measures how strongly an IR can exceed the peak of

It can be concluded that the predictions of the mod#ie IR envelope, i.e.4,. In case the excitation pulse has a
description discussed in Sec. lll are robustly supported fnequency-dependent Fourier spectriftfw), its effects on the
experimental data on several grounds. The rms envelope doekerence tim&. must be taken into account by switching
indeed drift away from the exponential profile usually expdc from a definition based on the autocorrelation function of
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f.=10.5 GHz match, even though the processes are not perfectly Gaussian
Br =15 MHz, (see Sec. VII-B). More ragged results ffir = 0.5 GHz and
Bt = 15 MHz are observed because of a limited amount of

p(x)

0 : : ) DoF and samples, as already pointed out in Sec. VII-B.
0 L 2 s 4 5 The dynamic range of fluctuations was studied for adjacent
fo=2.0 GHz . .
1t By — 15 MHz samples, forAt = T,, as given in (54). Results are shown
=05l in Fig. 12, for By = 15 MHz, under the shape of bounds of
0 ‘ ‘ ‘ confidence intervals associated to a given significancegsrob
0 1 2 3 4 5  bility «, which represents the probability of observing samples

Je=0.5 GHz falling outside the confidence interval. A close agreement

—~ 1r — / . : .
Br =240 MHz between experimental data and (42) is founddar 2%, with
=05 larger errors as decreases, i.e., in the tails of the probability
% 1 > 3 " 5 distribution. As expected from (3), at 0.5 GHz Fig. 12 digsla
f.=2.0 GHz larger errors, as the number of DoF hits a minimum. The
© Br = 240 MHz expectation that the probability of observing a given rétiof
%05 samples is equal to that fay/C is confirmed in these results,
o0 T 5 3 n s justifying the strong fluctuations observed in Fig. 1.

2 = max |h(t)]/A, The likelihood of recording weak contributions at a time
was assessed in Fig. 13, only for data around 0.5 GHz, where

Figure 11: Empirical probability distributions of the peadue deviation from Gaussianity is more likely. The probability
observed in IR realizations, for two values of the excitatioof not detecting contributions is a function of the relative
bandwidth and frequency. Theoretical results predicte(l@y Ssensitivitys,, introduced in Sec. VI, here taking four different

are superposed for validation. Onfy has an impact on the values, from—40 to —10 dB. Fig. 13 compares the empirical
probability distribution, as expected from theory. probabilities obtained from experimental results and ¢hos

predicted by (44) which agree over a wide time range. The
local deviations observed in Fig. 13(a) By = 15 MHz are
Theory reminiscent of those found in Fig. 9; passing By = 240
© O g'ZSHZ MHz reduces these phenomena, as convergence to asymptotic
‘ behavior is more robust. It can be noticed how taking into
account the existence of a drift from a purely exponential
decay leads to much more accurate resultssfox. —20 dB.
Another measure of the fact that IRs can be highly frag-
mented is offered by the metriE (s,), defined in (45) as

=
o
~

N

Juny
o

Confidence-interval bounds

10 the average fraction of time during whidh(¢)|/4, < so.
> ) ) Empirical results in Fig. 14 derived from data at 2 GHz are
10 10 10 I : .
a indistinguishable from those predicted by (46), while & O.

GHz a systematic drift is due to having assumgd) ~ 1.
Figure 12: Bounds of the interval of confidence of the dynamity (s,) takes values typically well above 20 %, getting close
range spanned blyu(t+1.)/w(t)|, for a varying significance to 50 % ass, — —10dB. This large variation suggests that
level . Empirical results were obtained fd8; = 15 MHz on a local level IRs have a high probability of displaying
and two central frequencies, spanning all time samples upundetectable contributions, a phenomenon that averages ou
TT. when observed over time on a larger scale.
The fragmentation of IRs leaves room for expecting an

average energy recorded over time that could differ from

the IR, to one using the cross-correlation function betwegp}, 4 expected from their PDP. The metgs(s,), which
the received signal and the test pulse. In this way (38) jSeasures a potential average difference, is shown in Fig. 14

generalized as ) Lg(s,) appears to be remarkably stable even whgns —10
T. = 1/4r"Br, (54) dB, i.e., when the receiver is only able to reliably record
with contributions from the early-time responseif). In the worst

9 case considered,g(s,) is reduced by 4 % with respect to the
K — [2/dw p(w)] /BT/dw |p(w)|2, (55) case of infinite sensitivity.

These results confirm that IRs must come as bursts of
yielding x = 1.74 for a Tchebychev window with -80 dB energy spaced by very weak contributions, as dictated by non
side-lobe level, as in (53). negligible values of v (s, ). Since these bursts compensate for

According to theory presented in Sec. IV, only the bandhe energy that would be expected to be smoothly spread as
width should have an impact od;. Fig. 11 shows the according to the PDP, their instantaneous power must exceed
empirical distributions obtained from experimental ddta, the one expected for the PDP, consistently with the preaticti
gether with the theoretical distribution (29). The resualtsely of an overshoot factod/;, > 1, as well as with an expected



Figure 13: Empirical probability of receiving undetecebbn-

tributions, for four relative detection thresholds, observed

at 0.5 GHz, for : (a)Byr = 15 MHz and (b) By = 240 MHz.
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A modal approach suggests that the actual number of DoF
is given by the number of resonant modes available, which
is expected to be highly frequency dependent, a non-trivial
prediction when adopting multi-path models. Experimental
results confirmed that convergence to a Rayleigh propagatio
model accelerates at higher frequencies, and is fastertipan
increasing the bandwidth involved.

The prediction that the IR envelopes (and their PDPs) are
only approximatively exponential was also confirmed. Tgkin
these deviations into account, envelope-normalized IR we
confirmed to behave as stationary random processes, even in
their late-time response. Local discrepancies from Gaunssi
processes have been highlighted, and confirmed to reduce as
the number of resonant modes increases.

Metrics have been introduced to model the fluctuations of
IRs from their envelope. Models derived showed that IRs can
locally exceed their rms envelope by a factor easily largant
three, whose evolution is roughly bound byB+7, with 7 the
average time constant of the medium response. The dynamic
range, probability of missing contributions for finite-séivity
receivers and average detected energy were also studied and
fully validated against experimental results.

These results provide insights into the way IRs are con-
trolled by a few physical parameters in a reverberant medium
and are expected to increase awareness about the extents of

Local deviations in (a) are due to the limited number of Dofndomness in IRs. Future work will test these predictioftis w
available and are consistent with those presented in Fig._d@‘.ta collected in real-llfe_reverberan_t enqunments,hsas
Theoretical predictions for a purely exponential IR enpelo indoor structures. Ide_ally, it Would_be interesting to ussults

are shown as thin dashed curves, while solid thick curves tkom datasets described in published papers and compared

into account the correction(t, ¢) introduced in (17).
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Figure 14: Comparison between empirical and theoretical
results for the average fraction of undetected contrimstio

Ln(s,) and the average fraction of detected enefgy(s,),

for Br = 15 MHz. Results for 0.5 and 2 GHz are shown

using the same symbols as in Fig. 12.

dynamical range where strong and weak contributions occur

with the same probability.

VIIl. CONCLUSIONS

them in a meta-analysis approach.
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