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Abstract—Multiantenna receivers are often deployed in cogni-
tive radio systems for accurate spectrum sensing. However, correla-
tion among signals received by multiple antennas in these receivers
is often ignored which yields unrealistic results. In this paper, the
effect of this correlation is accurately quantified by deriving an-
alytical expressions for the average probability of detection. Al-
ternative simpler expressions are also derived. These are done for
selection combining (SC) and switch and stay combining (SSC)
diversity techniques in dual arbitrarily correlated Nakagami-m
fading channels. Then, it is repeated for triple exponentially and
identically correlated Nakagami-m fading channels with SC di-
versity technique. Analysis results show that the interbranch cor-
relation impacts the detector performance significantly, especially
in deep fading scenarios. Also, SC outperforms SSC as expected.
However, the difference between them becomes very small in low
fading and highly correlated scenarios, which indicates that the
simpler SSC scheme can as well be deployed in such situations.

Index Terms—Cognitive radio networks, spectrum sensing,
inter-branch correlation, diversity combining, selection combin-
ing, switch and stay combining.

I. INTRODUCTION

PROTECTING the primary users from detrimental interfer-
ence from the secondary user signals is crucial in cognitive

radio systems. Accurate spectrum sensing is essential for this.
Simple schemes such as Energy Detectors (ED) are widely used
for this purpose that detect weak signals in noisy channels as
long as the noise power is known [1]. Accurate spectrum sensing
suffers from few issues, multipath fading and shadowing being
the leading causes. Multi antenna receivers, with appropriate
diversity combining schemes, are designed to overcome these
issues. Ideally, wireless channels seen by the multiple anten-
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nas shall be independent to obtain the best results from these
diversity receivers [2]. However, often this is not the case es-
pecially, when antennas are increasingly placed closer to each
other as the mobile units get smaller and more demanding.
Therefore, ignoring inter-branch correlation yields inaccurate,
especially overly optimistic, results. The effects of multipath
fading and correlation among antenna branches heavily depend
on the type of the diversity combining technique employed. It
is well known that Maximal Ratio Combining scheme (MRC)
is the optimal scheme which is also the most complex linear
diversity scheme. Equal Gain Combining (EGC) diversity tech-
nique is a close competitor. Both the MRC and EGC techniques
require all or some knowledge of the Channel State Informa-
tion (CSI) [3]–[5]. Furthermore, in these schemes each diversity
branch must be equipped with a single receiver that increases
the system complexity. Recently simpler combining schemes
such as Switch and Stay Combining (SSC) and Selection Com-
bining (SC) are getting popular due to their simplicity. These
are especially useful in cognitive radio networks. With the SC
scheme, the receiver simply selects the antenna with the high-
est received signal power and ignores other antennas. Hence,
signal combiners, phase shifters or variable gain controllers are
not required [3], [6]. The SSC diversity technique is the least
complex system where no real combiner is required. The SSC
selects a particular antenna branch until its SNR drops below
a predetermined threshold [3]. Both SC and SSC schemes are
required to measure only the amplitude on each branch (in order
to select the highest one). Hence, they can be employed for both
coherent and non-coherent modulation schemes [3]. Different
diversity combining techniques have been studied in the litera-
ture. In [7], averaging the probability of detection over fading
channels with Rayleigh, Nakagami-m and Rician distributions
are studied, and closed-form expressions for detector parame-
ters were derived for Nakagami-m channels with integer values
of m. In [8], [9], alternative analytic approaches to that in [1]
and [7] were given. Furthermore, in [8], independent and iden-
tically distributed (i.i.d.) dual and L number of Rayleigh fading
branches were considered with SSC and SC diversities. Cor-
responding average probability of detection expressions (PD )
were also derived for both techniques. In [10], [11], closed-form
expressions for PD were derived for i.i.d. diversity branches in
Nakagami-m fading channels employing SC technique. In [12],
closed-form expressions of PD for i.i.d dual Nakagami-m
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fading branches with SSC were derived for real and integer m
values. In our previous work [6], we have done an investigation
on the probability of detection for SC diversity with correlated
Nakagami-m fading branches. A review of prior works reveals
that correlated fading branches with SSC diversity is not studied
in the literature. However, because of the simplicity, the SSC
is particularly valuable for mobile stations that have limited
resource and power. This paper aims to fulfill that requirement.

In this paper, we extend our previous investigations by con-
sidering SC and SSC diversity combining techniques with iden-
tically correlated branches in Rayleigh and Nakagami-m fading
channels.

Our contribution falls into two folds. First
� We consider SC and SSC schemes with dual arbitrarily

correlated branches in Rayleigh and Nakagami-m fading
channels.

� Then, we extend study of SC diversity to triple exponen-
tially correlated branches.

� Corresponding novel expressions for average probability
of detection are derived for each case.

� Alternative and more general and simpler expressions are
also derived for each case.

� For SSC diversity, we derive an expression which can be
solved numerically to calculate the optimal SNR threshold
value in order to optimize the detector performance.

� All our derived expressions do converge rapidly.
Secondly, to gain better insight
� We do a performance comparison between the two com-

bining diversity techniques.
� Analysis results show that the inter-branch correlation af-

fects the detector performance significantly, especially in
deep fading scenarios.

� SC outperforms SSC as expected however; the difference
between them becomes very small in low fading scenario
with highly correlation among antennas. This indicates
that the simpler SSC scheme can be substituted for the SC
scheme in these situations.

The rest of the paper is organized as follows. Section II de-
scribes the system model. In Section III, we study the perfor-
mance of SC scheme. In Section IV, we study the performance
of SSC scheme. Section V describes simulation and analysis
results. Section VI concludes the paper.

II. SYSTEM MODEL

We follow a binary hypothesis testing on the received signal to
declare the presence or absence of the primary user. For this, we
employ ED that is widely used in cognitive spectrum sensing.
Note that no priori information about the detected signal is
needed for ED [13], [14].

Let x(t) be the received observations data

x (t) = h s (t) + n (t) , (1)

where, h is the complex channel gain amplitude coefficient,
assumed to be constant during the sensing time, s(t) is the
signal to be detected and, n(t) is the AWGN noise. This noise is

a low-pass Gaussian process with zero mean and varianceN0W
where, N0 and W denote Power Spectral Density (PSD) of the
Gaussian noise and the signal bandwidth, respectively.

Two hypotheses are defined for the decision statistics. Namely
H0 andH1, for the absence and the presence of the primary user
signal respectively, as follows:

x (t) =

{
n (t) under H0

h s (t) + n (t) under H1.
(2)

The decision statistics is squared and integrated over time T at
the ED. The output is written as

y � 2
N0

∫ T

0
|x|2 (t) dt. (3)

The Probability Density Function (PDF) of the decision statistics
y is given by [8] and [9]

pY (y) =

⎧⎪⎨
⎪⎩

1
2u Γ(u)

yu−1 e−
y
2 , under H0

1
2

(
y

2 γ

) u −1
2
e−

2 γ + y
2 Iu−1

(√
2 γ y

)
, under H1

(4)

where γ denotes the signal-to-noise-ratio, Γ(.) is the the Gamma
function and, Iν (.) is the νth order modified Bessel function of
the first kind. The parameter u depends on the time-bandwidth
product. In (4), it is clear that the decision statistics has a central
chi-square distribution with 2u degrees of freedom χ2

2u in the
absence of the primary user signal, i.e., the received samples are
noise only. However, it has a non-central chi-square distribution
χ2

2u (ψ) with 2u degrees of freedom and non-centrality param-
eter ψ = 2γ in the presence of the primary user signal [8] and
[9].

Let us define λ as the decision threshold. Then the probability
of false alarm (PF ) and the probability of detection (PD ) of the
ED can be written as

PF = Pr (y > λ | H0) , (5)

PD = Pr (y > λ | H1) . (6)

where Pr (.) denotes the Cumulative Distribution Function
(CDF). Consequently, the probability of false alarm and proba-
bility of detection in AWGN channel are given as [8], [9]

PF =
Γ
(
u, λ

2

)
Γ(u)

, (7)

PD = Qu

(√
2 γ,

√
λ
)
, (8)

where Γ(., .) and Qu (., .) denote the upper incomplete Gamma
function and generalized Marcum Q-function, respectively.
These detection probabilities are conditioned upon the chan-
nel realization. Also, they represent instantaneous probability
of detection. Therefore, we need to integrate this instantaneous
probability of detection over the SNR’s PDF of the correspond-
ing fading channel (pγDiv (γ)) to obtain the average probability
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of detection PD,Div .1

PD,Div =
∫ ∞

0
Qu

(√
2 γ,

√
λ
)
pγDiv (γ) dγ. (9)

The expression in (9) will serve as a general expression for the
corresponding diversity channel.

Note that the probability of detection expression in (8)
is restricted to only integer values of u since the PDF of
the decision statistics in (4) is derived only for even num-
bers, i.e., 2u, as stated in [8]. However, when the alternative
Marcum-Q function is employed, u could be half-odd integer
(u ∈ {0.5, 1, 1.5, 2, 2.5, 3, . . .}, i.e., not restricted to integer val-
ues) [15]. Furthermore, the fading parameter m in Nakagami
channels might also be not restricted to integer values depending
on the mathematical method employed to solve the integral in
(9). This highlights the advantage of the alternative expressions
which we derive later using alternative Marcum-Q function.

III. SC DIVERSITY WITH CORRELATED NAKAGAMI-m
FADING CHANNELS

In this section, we will derive the average probability of detec-
tion for dual and triple Nakagami-m correlated fading branches
with SC diversity.

Selection Combining is a low complexity diversity technique,
as it chooses the highest SNR’s branch using the relationship

r = max {rl , l = 1, 2, . . . L} . (10)

Therefore it processes one branch a time. Consequently, no
phase knowledge is required.

The PDF of a univariate r-Nakagami-m variable is given
by [16]

fr (r) =
2

Γ(m)

(m
Ω

)m
r2m−1e−

m
Ω r 2

, r ≥ 0 (11)

where, Γ(.) denotes the Gamma function, Ω = E[r2]/m = r̄ 2

m
is the mean value of the variable r, and m (m ≥ 1/2) is the
inverse normalized variance of r2, which describes the fading
severity.

We define the instantaneous SNR per symbol per channel
γl as γl = r2

l
Es

N0
; l ∈ [1, 2, . . . L]; Es is the energy per symbol

and,N0 is the PSD of the Gaussian noise. The average SNR per
branch is γ̄l = r̄2

l
E s

N 0
where, r̄2

l = E[r2
l ] is the expectation of the

channel envelop.

A. SC With Dual Arbitrarily Correlated Branches

Using [17, eq. (20)] and, by assuming identical diversity
branches and by changing variables with some mathematical
simplification, the PDF of the output SNR for a dual SC com-
biner under correlated Nakagami-m fading channels can be

1False alarm probability is not a function of SNR as no signal is transmitted,
therefore it will remain unchanged as in (7).

obtained as

pγ SC (γ) =
2

Γ(m)

(
m

γ̄

)m
γm−1 exp

(−mγ

γ̄

)

×
[
1 −Qm

(√
2 a ρ γ,

√
2 a γ

)]
, γ ≥ 0

(12)

where, ρ denote the correlation coefficient between the two
fading envelopes, and a = m

γ̄ (1−ρ) . Please see Appendix A for
detailed derivation.

By substituting (12) into (9), the average probability of de-
tection for dual correlated SC’s diversity branches (PD,SC,2) is
obtained as

PD,SC,2 =
2

Γ(m)

(
m

γ̄

)m
[IA − IB ], (13)

where

IA =
∫ ∞

0
Qu

(√
2γ,

√
λ
)
γm−1 exp

(
−mγ

γ̄

)
dγ, (14)

and

IB =
∫ ∞

0
Qu

(√
2γ,

√
λ
)
Qm

(√
2aργ,

√
2aγ
)

× γm−1e−
m γ
γ̄ dγ. (15)

Note this lengthy expression consists of two integrals, IA and
IB . We solve them separately. Please see Appendix B.

Hence, the average probability of detection for dual SC re-
ceiver under correlated identical Nakagami-m fading branches
(restricted to integer u and m values) is

PD,SC,2 =
2

Γ(m)

(
m

γ̄

)m [ 1
2m−1

{
G1 +

η

2

u−1∑
n=1

1
n!

(
λ

2

)n

×
1
F1

(
m;n+ 1;

λγ̄

2 (m+ γ̄)

)}

−
∞∑
n=0

∞∑
i=0

i+m−1∑
k=0

Γ
(
u+ n, λ

2

)
Γ(u+ n) n!

× ai+k ρi (i+ k +m+ n− 1)!
ci+k+m+n i! k!

]
, (16)

where c = (1 + a (ρ+ 1) + m
γ̄ ) and G1 for integer m values is

G1 =
2m−1 (m− 1)!(

m
γ̄

)2m

(
γ̄

m+ γ̄

)
e−

λ
2

m
m + γ̄

×
[(

m+ γ̄

γ̄

)(
m

m+ γ̄

)m−1

Lm−1

(
− λ γ̄

2 (m+ γ̄)

)

+
m−2∑
n=0

(
m

m+ γ̄

)n
Ln

(
− λ γ̄

2 (m+ γ̄)

)]
. (17)

Here Ln (.) denotes Laguerre polynomial of n-degree [18], and

1
F1(., .; .) denotes the Confluent Hypergeometric function. This
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TABLE I
TERMS REQUIRED FOR FIVE DIGITS ACCURACY

is defined in [19, eq. (15.1.1)] as

1
F1 (a1, b1;x) =

Γ(b1)
Γ(a1)

∞∑
i=0

Γ(a1 + i)xi

Γ(b1 + i) i!
. (18)

Note (16) reduces to dual correlated Rayleigh fading branches
for m = 1. It’s worthwhile to mention that for i.i.d. diversity
branches, (16) reduces to [9, eq. (7)], [8, eq. (20)] multiplied
by 2 (not exceeding unity)). The latter expression was derived
for the average probability of detection in flat fading. Hence we
have improved the detection performance and derived (16) to
serve as a proof.

B. Alternative Expression for PD ,SC,2

Despite the fact that Qu (
√

2 γ,
√

λ) portion of the second
integral IB in (13) is evaluated for u values not-restricted to
integer, (16) is still restricted to integer values. This is because,
the first integral IA in (13) is only valid for integer u and m
values. In this section, we derive a more general and simpler
alternative expression for (16) that is not restricted to integer u
values. Please see Appendix C for the derivation.

PD ,SC,2 = 1 − 2

(
m

γ̄

)m
e−

λ
2

×
[

1
dm

∞∑
n=u

(
λ

2

)n 1
Γ(n+ 1) 1

F1

(
m; 1 + n;

λ

2 d

)

− 1
Γ(m)

∞∑
n=u

∞∑
i=0

i+m−1∑
k=0

(
λ

2

)n Γ(m+i+k)ai+kρi

Γ(n+ 1)cm+i+k i! k!

×
1
F1

(
m+ i+ k; 1 + n;

λ

2 c

)]
. (19)

For m = 1, (19) reduces to the average probability of detec-
tion with dual correlated Rayleigh fading branches and, with
ρ = 0 to i.i.d dual Rayleigh fading branches given in ([8, eq.
(30)]).

Fortunately, the error resulting from truncating the infinite
series in (19) is upper bounded by the Confluent Hypergeometric
function defined in (18). Since this function is monotonically
decreasing with i, k andn for given values ofm, λ and γ̄ [20], the
number of terms (Nn and Ni) that required five digit accuracy
could be calculated. These numbers are shown in Table I for
different values of ρ and m.

It’s worthwhile to mention that several solutions for inte-
grals involving the Marcum Q-function are available in literature

[21]–[25]. However, our case of study in (15) solves a differ-
ent and more complicated integral which involves a product
of two Marcum Q-functions. These solutions are introduced in
(57), (69) in Appendices B and C, respectively. To the best of
knowledge, we believe that this solution is new in literature.

Finally, we’d like to mention that the solutions introduced
in expressions (16) and (19) present a clear advantage over the
numerical integration approach showed in (13) since a numer-
ical integration is rather long and often gives approximated re-
sult. Furthermore, although expressions in (16) and (19) involve
nested infinite series, they are either upper bounded by a mono-
tonically decreasing confluent hypergeometric function or by
an upper incomplete gamma function. Note that the latter could
also be represented by a monotonically decreasing confluent hy-
pergeometric function using [28, eq. (1.6)]. Consequently, these
infinite series terms converge rapidly as we discussed earlier in
Table I.

C. SC With Triple Correlated Branches

In this section, we consider triple correlated diversity
branches. We start from PDF of the fading envelope for trivariate
Nakagami-m channels given in [26, eq. (8)]. Then, by changing
variable and by assuming identical branches (γ̄ = γ̄1 = γ̄2 =
γ̄3, and the same fading parameter m), the PDF of the out-
put SNR for triple SC exponentially correlated Nakagami-m
branches can be derived. This is shown below

pγ SC,3 (γ) =

∣∣Σ−1
∣∣m

Γ(m)

∞∑
i=0

∞∑
j=0

|p1,2 |2 i |p2,3 |2 j
pi+m1,1 pi+j+m2,2 pj+m3,3

× [Θ1 + Θ2 + Θ3]
Γ(m+ i) Γ(m+ j) i! j!

, (20)

where Σ−1 is the inverse of the correlation matrix, pi1,j1(i1, j1 =
1, 2, 3) being its entries and Θ1,Θ2 and Θ3 are

Θ1 =
(
p1,1 m

γ̄

)i+m
γi+m−1 e−

p 1, 1 m

γ̄ γ

× γ

(
i+ j +m,

p2,2 m

γ̄
γ

)
γ

(
j +m,

p3,3 m

γ̄
γ

)
,

(21)

Θ2 =
(
p2,2 m

γ̄

)i+j+m
γi+j+m−1 e−

p 2, 2 m

γ̄ γ

× γ

(
i+m,

p1,1 m

γ̄
γ

)
γ

(
j +m,

p3,3 m

γ̄
γ

)
, (22)

Θ3 =
(
p3,3 m

γ̄

)j+m
γj+m−1 e−

p 3, 3 m

γ̄ γ

× γ

(
i+m,

p1,1 m

γ̄
γ

)
γ

(
i+ j +m,

p2,2 m

γ̄
γ

)
,

(23)

respectively. Here γ (a, x) denotes the lower incomplete gamma
function with γ(a, x) =

∫ x
0 e−t ta−1 dt ([18, eq. (8.350/1)]).

In exponentially correlated model, the diversity antennas are
equispaced. Therefore, the correlation matrix can be written as
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Σi1,j1 ≡ ρ|i1−j1| [27]. Hence, the inverse correlation matrix Σ−1

is tridiagonal and can be written as

Σ−1 =
1

ρ2 − 1

⎡
⎢⎣
−1 ρ 0

ρ −(ρ2 + 1) ρ

0 ρ −1

⎤
⎥⎦ , (24)

where ρ denotes the correlation coefficient.
We have made an assumption of identical average SNRs in

all three branches above. This assumption is reasonable if the
diversity channels are closely spaced and, their gains as well as
noise powers are equal [3].

The average probability of detection for triple SC diversity
Nakagami-m correlated branches with integer u is derived as
below. See Appendix D for details.

PD ,SC,3 =

∣∣Σ−1
∣∣m

Γ(m)
e−

λ
2

∞∑
n=0

n+u−1∑
k=0

∞∑
i=0

∞∑
j=0

[(
λ

2

)k ( γ̄
m

)n

× |p1,2 |2 i |p2,3 |2 j
pi+m1,1 pi+j+m2,2 pj+m3,3 Γ(m+ i)Γ(m+ j)

× pi+m1,1 pi+j+m2,2 pj+m3,3 Γ(2i+ 2j + 3m+ n)(
p11 + p2,2 + p3,3 + γ̄

m

)(2i+2j+3m+n)
i!j!k!n!

× (Ξ1 + Ξ2 + Ξ3)

]
. (28)

Here, Ξ1,Ξ2 and Ξ3 are as given in (25), (26) and
(27) shown at the bottom of this page, respectively, and
F 2(α3;β3, β

′
3; γ3, γ

′
3;x, y) denotes the Hypergeometric func-

tion of two variables defined in [18, eq. (9.180.2)]. Note,
for m = 1, (28) reduces to triple correlated Rayleigh fading
branches.

D. General Expression for Triple Branches

In this section, we will derive a general and simpler alternative
expression to (28), where both u and m are not restricted to
integer values. See Appendix E for details.

The average probability of detection for triple SC Nakagami-
m correlated branches for not restricted u or m integer values

is:

PD ,SC,3 =

∣∣Σ−1
∣∣m

Γ(m)

∞∑
n=0

∞∑
i=0

∞∑
j=0

( γ̄
m

)n Γ
(
u+ n, λ

2

)
Γ(u+ n)

× |p1,2 |2 i |p2,3 |2 j Γ(2i+ 2j + 3m+ n)
Γ(m+ i) Γ(m+ j) i! j!n!

× (Ξ1 + Ξ2 + Ξ3)(
p11 + p2,2 + p3,3 + γ̄

m

)2i+2j+3m+n . (29)

where Ξ1,Ξ2 and Ξ3 are given in (25), (26) and (27), re-
spectively. As before, for m = 1, (29) reduces to triple cor-
related Rayleigh fading branches. It’s worthwhile to men-
tion that the Hypergeometric function of two variables
F 2(α3;β3, β

′
3; γ3, γ

′
3;x, y) appears in (28) and (29) con-

verges only for |x| + |y| < 1 [18], where |.| denotes ab-
solute. Fortunately, this is the case in our above derived
equations.

IV. DUAL CORRELATED NAKAGAMI-m CHANNELS

WITH SSC DIVERSITY

The SSC receiver selects a particular diversity branch until its
SNR drops below a predetermined threshold value. Hence SSC’s
technique is similar to its counterpart SC but. Nevertheless, the
SSC receive does not need to continuously monitor the SNR
of each branch. Therefore, the SSC is considered as the least
complex2 diversity combining technique [3].

Starting from [3, p. 437, eq. (9.334)], the SNR’s PDF for a
dual and identical correlated Nakagami-m fading channels with
SSC combiner is

pγ SSC (γ) =

⎧⎪⎨
⎪⎩
A (γ) γ ≤ γT

A (γ)+
(
m

γ̄

)m
γm−1

Γ(m)
exp
(
−mγ
γ̄

)
γ > γT ,

(30)

2Other diversity combining techniques such EGC and MRC process more
than one branch and require the channel state knowledge of some or all the
branches [3].

Ξ1 =

F 2

(
2i+ 2j + 3m+ n; 1, 1; i+ j +m+ 1, j +m+ 1;

p2,2

p11 + p2,2 + p3,3 + γ̄
m

,
p3,3

p11 + p2,2 + p3,3 + γ̄
m

)

(i+ j +m) (j +m)
(25)

Ξ2 =

F 2

(
2i+ 2j + 3m+ n; 1, 1; i+m+ 1, j +m+ 1;

p1,1

p11 + p2,2 + p3,3 + γ̄
m

,
p3,3

p11 + p2,2 + p3,3 + γ̄
m

)

(i+m) (j +m)
(26)

Ξ3 =

F 2

(
2i+ 2j + 3m+ n; 1, 1; i+m+ 1, i+ j +m+ 1;

p1,1

p11 + p2,2 + p3,3 + γ̄
m

,
p2,2

p11 + p2,2 + p3,3 + γ̄
m

)

(i+m) (i+ j +m)
(27)
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where γT denotes a predetermined switching threshold and
A(γ) is given in [3, p. 437, eq. (9.335)] as

A (γ) =
(
m

γ̄

)m
γm−1

Γ(m)
exp

(
−mγ

γ̄

)

×
[
1 −Qm

(√
2 a ρ γ,

√
2 a γT

)]
, (31)

where a = m
γ̄ (1−ρ) and Qm (., .) denotes generalized Marcum

Q-function.
The average probability of detection for dual correlated

Nakagami-m fading branches with SSC diversity (PD,SSC,2) is
obtained by substituting (30) into (9) and then using the defini-
tion

∫∞
a f dx =

∫∞
0 f dx− ∫ a0 f dx, which yields

PD,SSC,2 =
1

Γ(m)

(
m

γ̄

)m
[IA − IB − IC ] (32)

with

IA = 2
∫ ∞

0
Qu

(√
2 γ,

√
λ
)
γm−1 exp

(
−mγ

γ̄

)
dγ, (33)

IB =
∫ ∞

0
Qu

(√
2 γ,

√
λ
)
Qm

(√
2 a ρ γ,

√
2 a γT

)

× γm−1 exp
(
−mγ

γ̄

)
dγ, (34)

and

IC =
∫ γ T

0
Qu

(√
2 γ,

√
λ
)
γm−1 exp

(
−mγ

γ̄

)
dγ. (35)

Before deriving an expression for the probability of detection
PD,SSC,2, it is worthy to investigate (32) for the following two
special cases of threshold values.

Case I: γT = 0
IfγT = 0, we haveQm (

√
2 a ρ γ,

√
2 a γT ) = 1 and the third

term IC vanishes, consequently (32) reduces to single branch
detection as

PD,SSC,2 =
1

Γ(m)

(
m

γ̄

)m ∫ ∞

0
Qu

(√
2 γ,

√
λ
)

× γm−1 exp
(
−mγ

γ̄

)
dγ. (36)

Case II: γT → ∞
If γT → ∞, we have Qm (

√
2 a ρ γ,

√
2 a γT ) = 0, conse-

quently IB vanishes and only IC is subtracted from IA . This
results in single branch detection as in (36). Therefore, care
must be taken to choose a sensible threshold value. Otherwise,
the diversity technique might become useless.

The average probability of detection for dual correlated SSC
receiver with Nakagami-m fading branches where u and m are

restricted to integer values is given in

PD,SSC,2 =
1

Γ(m)

(
m

γ̄

)m
e−

λ
2

[
2

∞∑
j=0

j+u−1∑
k=0

(
λ

2

)k

× (j +m− 1)!
j! k!

(
γ̄

γ̄ +m

)j+m

−
∞∑
n=0

n+u−1∑
q=0

∞∑
i=0

i+m−1∑
k=0

(
λ

2

)q

× ai+k ρi (m+ n+ i− 1)!(
a ρ+ m

γ̄ + 1
)m+n+i

i! k!n! q!
e−a γ T γkT

−
∞∑
n=0

n+u−1∑
q=0

(
λ

2

)q 1
n! q!

(
γ̄

γ̄ +m

)m+n

× γ

(
m+ n, γT

(
γ̄ +m

γ̄

))]
. (37)

Please see Appendix F for detailed derivation.
Note that form = 1, (37) reduces to dual Rayleigh correlated

fading branches, and forρ = 0 it reduces to dual i.i.d. Nakagami-
m fading branches detection.

A. Alternative Solution

The expressionPD,SSC,2 in (37) involves many infinite series
representations. Some of their upper bounds (number of terms)
are dependent on the preceded one. As an example the upper
bound of the second sum (

∑j+u−1
k=0 (.)) depends on the number

of terms (N) needed for convergence of the previous series.
Fortunately, it will not be very difficult to find the number of
terms for convergence (with five digit accuracy). However, time
for numerical implementation will be rather long. Therefore, we
will derive an alternative more general and simpler expression
PD,SSC,2 with less number of infinite series representations.

The average probability of detection where u is not restricted
while (m ≥ 1) is restricted to integer values is given in

PD ,SSC,2 =
1

Γ(m)

(
m

γ̄

)m [
4

∞∑
j=0

Γ
(
u+ j, λ

2

)
Γ(m+ j)

Γ(u+ j)
(

1 + m
γ̄

)m+j
j!

−
∞∑
n=0

∞∑
i=0

i+m−1∑
k=0

Γ
(
u+ n, λ

2

)
Γ(m+ n+ i) γkT e

−aγ T ai+k ρi

Γ(u+ n)
(
m
γ + aρ+ 1

)m+n+i
n! i! k!

−
∞∑
p=0

Γ
(
u+ p, λ

2

)
Γ(u+ p) p!

(
γ̄ +m

γ̄

)−(m+p)

× γ

(
m+ p, γT

(
γ̄ +m

γ̄

))]
. (38)

See Appendix G for the derivation.
Note, for m = 1, (38) reduces to that of a dual SSC receiver

with Rayleigh correlated fading branches. For, ρ = 0 it reduces
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to the PDF of the dual i.i.d. Nakagami-m fading branches de-
tection.

Interestingly, the three terms in (38) contain the upper in-
complete gamma function in addition to the lower incomplete
gamma function in the last term. In fact, we can represent both
these functions by the monotonically decreasing confluent hy-
pergeometric function using [19, eq. (6.5.12)] and [28, eq. (1.6)]
for lower and upper incomplete gamma functions, respectively.
Consequently the infinite series terms in (38) converges rapidly.

B. Optimal Threshold (γ∗T )

Optimal threshold γ∗T is defined as the value of the SNR
that maximizes the probability of detection. We maximize the
probability of detection by selecting an appropriate SNR for
SSC switching. Probability of false alarm is fixed since it’s
a function of the decision threshold λ and not a function of
SNR, as shown in (7). Constant False Alarm Rate (CFAR) is
a well-known technique that is often employed in cognitive
spectrum sensing. In this technique and using (7), a decision
threshold is calculated for fixed probability of false alarm. Then
the corresponding probability of detection is calculated using
(8) for optimal SNR. We have derived an expression for this
optimal threshold given in (39) at the bottom of this page. This
is done by differentiating PD,SSC,2 in (32) with respect to γT
and solving ∂

∂γ ∗
T
PD,SSC,2 = 0 for γ∗T . See Appendix H for

details. Using Matlab, we can obtain the optimal threshold by
evaluating (39) numerically for ∂

∂γ ∗
T
PD,SSC,2 = 0.

V. SIMULATION AND ANALYSIS RESULTS

The energy detector employed in spectrum sensing is mainly
characterized by the probability of false alarm PF and prob-
ability of detection PD . In this section we study the impact
of the correlation among antenna diversity branches on PD
(equivalently probability of miss detection PDm = 1 − PD ) as
a performance metric using the derived expressions in previous
sections. To this end, we produce Complementary Receiver Op-
erating Characteristic (CROC) graphs (PDm versus PF ) for SC
and SSC diversity techniques in Nakagami-m fading channel.

First, we plot the probability of miss detection with the cor-
responding threshold λ for u = 2, γ̄ = 20 dB, m ∈ (1, 4) and,
ρ ∈ (0 − 0.8) for different values of PF using (7). Through
Monte Carlo simulation, we obtain the CROC curves for SC
and SSC. We then compare the simulation results with the ana-
lytical curves obtained from derived expressions.

In Fig. 1, we plot the CROC graphs forL = 2,m = 1, γ̄ = 20
dB and ρ = 0.8. Results are obtained for SC and SSC us-
ing both the derived expressions (analytical) and by Monte

Fig. 1. Analytic (solid) versus simulation (dashed) results for SC and SSC
derived expressions with L = 2, m = 1, γ̄ = 20 dB, and ρ = 0.8.

Carlo simulation. For SC diversity, both these curves are al-
most in a perfect match. However, reader may observe a very
small difference between analytical and simulation curves for
SSC diversity. This is due to the inaccuracy arising from
rounding off the infinite series and calculating the optimal
threshold .

In Fig. 2, we plot the CROC graphs for SC with γ̄ = 20 dB,
m ∈ (1, 4) and, ρ ∈ (0 − 0.8). For each value of fading severity
m, one can clearly notice the degradation in the probability of
detection due to the correlation among diversity branches. For
instance, let us consider the casem = 1 and constantPF = 0.01
as in Fig. 2(a). The corresponding PDm for ρ = 0.8 is almost
four times its value for ρ = 0 (no correlation). Similar result
could be observed in Fig. 2(b), however, the increment ratio is
now much more larger. However, as m increases (low fading
environment), correlation effect is compensated for, resulting
in higher probability of detection (equivalently, low probability
of miss detection). Thus, the rate of correlation compensation
due to good channel is higher than the correlation impact on
probability of detection.

For easy and better comparison between SC and SSC and
their performance in combating the correlation, we plot CROC
graphs in Fig. 3 for γ̄ = 20 dB, m ∈ (1, 4) and, ρ ∈ (0, 0.8).
As before, one can notice the impact of the correlation between
fading branches on the probability of detection. This impact is

∂

∂γ∗T
PD,SSC,2 =

1
Γ(m)

(
m

γ̄

)m [√
2a γ∗T e

−aγ ∗
T

∞∑
k=0

am+2k−1ρk

Γ(m+ k)2m+k k!
γ∗T

k

{
G

′
1 +

1
2

u−1∑
n=1

(
λ

2

)n Γ (m+ k)(
a+1

2

)m+k
n!

×
1
F1

(
m+ k;n+ 1;

λ

2 (a+ 1)

)}
− Qu

(√
2 γ∗T ,

√
λ
)
γ∗T

m−1 exp
(
−mγ∗T

γ̄

)]
(39)
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Fig. 2. SC dual correlated Nakagami-m branches with γ̄ = 20 dB for different ρ values.

Fig. 3. SC/SSC dual correlated Nakagami-m branches comparison with γ̄ = 20 dB for ρ = 0 (solid) and 0.8 (dashed).

compensated by good channel. Furthermore, results in Fig. 3
show that SC outperforms SSC. This is a well proven fact in the
literature. In fact, performance difference is more pronounced
for uncorrelated (ρ = 0) and high m values. However, we may
notice that as the correlation increases between the branches,
the performance of both SC and SSC schemes becomes more
comparable. This is especially true for high m values.

Fig. 4 shows probability of miss detection versus correlation
for γ̄ = 20 dB, m ∈ (1, 4) and, PF = 0.01 for both SC and
SSC diversity techniques. Another interesting behaviour that
could be observed from this figure. As m increases (equiva-
lently, fading decreases), less significant deterioration in proba-
bility of detection is observed due to correlation. In other words,
the loss in diversity gain due to correlation gets lower as m
increases.

To gain better insight about this behaviour, let us discuss it
with more details. Fig. 4(a) shows clearly this interesting be-
haviour. The curve for m = 1 in Fig. 4(a) has an average high
positive slope. Consequently, the probability of detection de-
grades rapidly as correlation increases. As m increases, corre-
sponding curves get flattened (slope decreases). Consequently,
probability of detection degrades slowly as correlation increases.
This can be attributed to the fact that already the PD values are
high due to low fading. On the other hand, for small m-values
(deep fading), correlation significantly deteriorates the proba-
bility of detection which is already poor. A similar behaviour
could be observed in the SSC shown in Fig. 4(b). Therefore,
we conclude the following. In a deep fading scenario, the inter-
branch correlation is a crucial factor and its effects must be
incorporated in any spectrum sensing model. By contrast, in
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Fig. 4. Probability of miss detection versus correlation with γ̄ = 20 dB, PF = 0.01 and different fading severity for SC and SSC.

a low fading environment (those having large values of m),
the effect of such correlation may be ignored without much
impact.

VI. CONCLUSION

In this work, we have investigated the impact of correlation
among diversity fading branches in multi-antenna cognitive ra-
dio spectrum sensing networks. A unified performance analysis
was presented for the probability of detection of SC and SSC di-
versity combining receivers with arbitrary and exponential cor-
relation among fading branches. Exact expressions were derived
for the probability of detection for each case. Our result show
that the correlation among diversity fading branches causes an
adverse impact on the probability of detection, which cannot
be ignored especially under severe fading conditions. Conse-
quently, an increase in the interference rate between the primary
user and secondary user is observed by three times its rate when
independent fading branches is assumed. Our investigations re-
veal that for low fading environment (large m-values), corre-
lation effect may be ignored. Furthermore, at low fading and
highly correlated environments, SSC which is simpler scheme
performs as good as SC which is a more complex scheme.

APPENDIX A
DERIVATION OF (12)

Using ([17], (20)), the PDF of SC’s output of dual identical
correlated Nakagami fading branches is

pγ SC (r) =
4mm r2m−1

Γ(m)Ωm
exp

(
−mr2

Ω

)

×
[
1 −Qm

(√
2 ρA r,

√
2Ar

)]
, (40)

where A =
√

m
Ω(1−ρ) .

Changing variables using pγ (γ) =
pr

(√
Ω γ
γ̄

)
2
(√

γ̄ γ
Ω

) [3] yields

pγ SC (γ) =
4mm

(√
Ω γ
γ̄

)2m−1

2
(√

γ̄ γ
Ω

)
Γ(m)Ωm

exp

⎛
⎜⎝−

m
(√

Ω γ
γ̄

)2

Ω

⎞
⎟⎠

×
[

1 −Qm

(√
2 ρA

√
Ω γ
γ̄
,
√

2A

√
Ω γ
γ̄

)]
,

(41)

Simplifying, (41) becomes

pγ SC (γ) =

(√
Ω
γ̄ γ

)
2mm

(√
Ω γ
γ̄

)2m−1

Γ(m)Ωm
exp

(
−mγ

γ̄

)

×
[

1 −Qm

(√
2ρA

√
Ωγ
γ̄
,
√

2A

√
Ωγ
γ̄

)]
,

(42)

Substituting A =
√

m
Ω(1−ρ) and simplifying, yields

pγ SC (γ) =
Ω1/2+m−1/2

γ̄1/2γ1/2

2mm γm−1/2

Γ(m)γ̄m−1/2Ωm
exp

(
−mγ

γ̄

)

×
[

1 −Qm

(√
2ρ
√

m

Ω(1 − ρ)

√
Ωγ
γ̄
,

√
2
√

m

Ω(1 − ρ)

√
Ω γ
γ̄

)]
, (43)
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Simplifying

pγ SC (γ) =
2mm

Γ(m)γ̄m
γ1−m exp

(
−mγ

γ̄

)

×
[

1 −Qm

(√
2mρ

γ̄(1 − ρ)
γ,

√
2m

γ̄(1 − ρ)
γ

)]

(44)

Simplifying and rearranging, this concludes the derivation.

APPENDIX B
EXPRESSION FOR DUAL SC

In this appendix, we derive the expression in (16).
1) Evaluating IA in (14): Introducing changing variable

x =
√

2 γ , we can derive

IA =
1

2m−1

∫ ∞

0
Qu

(
x,

√
λ
)
x2m−1 exp

(
−mx2

2 γ̄

)
dx︸ ︷︷ ︸

I

.

(45)

Using [29, eq. (29)], we write

∫ ∞

0
Qu (αx, β) xq e−

p 2 x 2

2 dx ≡ Gu

= Gu−1 +
Γ
(
q+1

2

) (
β 2

2

)u−1
e−

β 2

2

2 (u− 1)!
(
p2+α2

2

) q + 1
2

×
1
F1

(
q + 1

2
;u;

β2

2
α2

p2 + α2

)
, q > −1, (46)

we can solve I by evaluating Gu recursively for q > −1 and
restricted u integer values as

Gu = Gu−1 +Au−1 Fu

= Gu−2 +Au−2 Fu−2 +Au−1 Fu−1

...

= G1 +
u−1∑
n=1

An Fn+1. (47)

where An and Fn are given as

An =
1

2 (n!)
(
p2 + α2

2

) q + 1
2

Γ
(
q + 1

2

) (
β2

2

)n
e−

β 2

2 , (48)

Fn =
1
F1

(
q + 1

2
;n;

β2

2
α2

p2 + α2

)
, (49)

and
1
F1(., .; .) as defined previously in (18). Hence, we solve

(45) to obtain

IA =
1

2m−1

[
G1 +

η

2

u−1∑
n=1

1
n!

(
λ

2

)n

×
1
F1

(
m;n+ 1;

λ γ̄

2 (m+ γ̄)

)]
, (50)

where η = Γ(m) ( 2 γ̄
m+ γ̄ )m e−

λ
2 andG1 can be obtained by evalu-

ating the following integral containing the first order of Marcum
Q-function Q(., .) for integer m values as

G1 =
∫ ∞

0
Q
(
x,

√
λ
)
x2m−1 e−

m x 2

2 γ̄ dx. (51)

Using [29, eq. (25)], we evaluate G1 for integer m values as in
(17).

2) Evaluating IB in (15): Using the alternative canonical
Marcum Q-function representations for Qu (

√
2 γ,

√
λ) given

in [15] for not restricted to integer values of u as

Qu

(√
2 γ,

√
λ
)

=
∞∑
n=0

γn e−γ Γ
(
u+ n, λ

2

)
Γ(u+ n) n!

, (52)

and the alternative representation given in [3, eq. (4.74)] for
restricted m integer values as

Qm (α1, β1) =
∞∑
i=0

exp
(
−α

2
1

2

) (α2
1

2

)i
i!

×
i+m−1∑
k=0

exp
(
−β

2
1

2

) ( β 2
1

2

)k
k!

, (53)

therefore, Qm (
√

2 a ρ γ,
√

2 a γ) could be written as

Qm

(√
2aργ,

√
2 aγ

)
=

∞∑
i=0

i+m−1∑
k=0

ai+kρi

i!k!
e−aγ (ρ+1)γi+k .

(54)

Then by substituting (52) and (54) into (15) with some simpli-
fication we derive

IB =
∞∑
n=0

∞∑
i=0

i+m−1∑
k=0

Γ
(
u+ n, λ

2

)
Γ(u+ n) n!

ai+k ρi

i! k!

×
∫ ∞

0
γi+k+m+n−1e−γ cdγ︸ ︷︷ ︸

I

, (55)

where c = 1 + a (ρ+ 1) + m
γ̄ . Now the next task is solving

the integral I in (55). For this we use [18, eq. (3.351/3)] and
satisfying the condition therein,∫ ∞

0
xp1 e−μ1 x dx = p1!μ1

−p1−1 [Reμ1 > 0] . (56)
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Hence (55) becomes

IB =
∞∑
n=0

∞∑
i=0

i+m−1∑
k=0

Γ
(
u+ n, λ

2

)
Γ(u+ n)

(i+ k +m+ n− 1)!ai+kρi

ci+k+m+nn! i! k!

(57)

Substituting (50) and (57) into (13), this concludes the deriva-
tion.

APPENDIX C
ALTERNATIVE EXPRESSION FOR DUAL SC

In this Appendix, we derive (19). Using the alternative ex-
pression for Marcum Q-function given in [3, eq. (4.63)], where
u is not restricted to integer values, we can writeQu (

√
2 γ,

√
λ)

as

Qu

(√
2γ,

√
λ
)

= 1 − e−
2γ + λ

2

∞∑
n=u

( √
λ√

2γ

)n

In

(√
2λγ

)
.

(58)

Then substituting (12) in (9) and using the definition of the PDF
as ∫ ∞

0
pγ (γ) dγ = 1, (59)

with simplification, we can derive

PD ,SC,2 = 1 − [IA − IB ], (60)

where

IA =
2

Γ(m)

(
m

γ̄

)m ∫ ∞

0
γm−1e−

2 γ + λ

2

∞∑
n=u

( √
λ√

2 γ

)n

× In

(√
2 λ γ

)
exp

(−mγ

γ̄

)
dγ, (61)

and

IB =
2

Γ(m)

(
m

γ̄

)m ∫ ∞

0
γm−1e−

2γ + λ

2

∞∑
n=u

( √
λ√

2γ

)n

× In

(√
2λγ

)
exp

(−mγ
γ̄

)

×Qm

(√
2aργ,

√
2aγ
)

dγ, γ ≥ 0. (62)

3) Evaluating IA in (61): Simplifying and rearranging
(61), we derive

IA =
2

Γ(m)

(
m

γ̄

)m
e−

λ
2

∞∑
n=u

(
λ

2

) n
2

×
∫ ∞

0
γm− n

2 −1 e−γ (1+ m
γ̄ )In

(√
2 λ γ

)
dγ. (63)

Using [18, eq. (6.643/2)] given as

∫ ∞

0
xμ−

1
2 e−α x I2 ν

(
2β

√
x
)

dx

=
Γ
(
μ+ ν + 1

2

)
Γ(2 ν + 1)

β−1 e
β 2

2α α−μ M−μ,ν

(
β2

α

)
,

[
Re

(
μ+ ν +

1
2

)
> 0

]
, (64)

where Mμ,ν (.) denotes Whittaker function given by [18]

Mμ,ν (z) = zν+ 1
2 e−

z
2

1
F1

(
ν − μ+

1
2
; 1 + 2 ν; z

)
, (65)

with some simplification and rearranging, the solution of (63)
can be derived as

IA =
2
dm

(
m

γ̄

)m
e−

λ
2

∞∑
n=u

(
λ

2

)n 1
Γ(n+ 1)

×
1
F1

(
m; 1 + n;

λ

2 d

)
, (66)

where d = γ̄+m
γ̄ .

4) Evaluating IB in (62): Simplifying and rearranging
(62), we derive

IB =
2

Γ(m)

(
m

γ̄

)m
e−

λ
2

∞∑
n=u

(
λ

2

) n
2
∫ ∞

0
γm− n

2 −1 e−d γ

× In

(√
2 λ γ

)
Qm

(√
2 a ρ γ,

√
2 a γ

)
dγ. (67)

Using (54) with simplification and rearranging, we write (67) as

IB =
2

Γ(m)

(
m

γ̄

)m
e−

λ
2

∞∑
n=u

∞∑
i=0

i+m−1∑
k=0

(
λ

2

) n
2 ai+kρi

i!k!

×
∫ ∞

0
γm− n

2 +i+k−1e−γ cdγ, (68)

where c = 1 + a (ρ+ 1) + m
γ̄ . Similarly, implementing same

procedures as (66), the solution of (68) can be given as

IB =
2

Γ(m)

(
m

γ̄

)m
e−

λ
2

∞∑
n=u

∞∑
i=0

i+m−1∑
k=0

(
λ

2

)n
ai+k ρi

i! k!

× Γ(m+ i+ k)
Γ(n+ 1) cm+i+k 1

F1

(
m+ i+ k; 1 + n;

λ

2 c

)
.

(69)

Substituting (66) and (69) into (60), this concludes the deriva-
tion.
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APPENDIX D
EXPRESSION FOR TRIPLE SC

In this section, we drive (28). Using (53) and substituting (20)
into (9), we drive the average probability of detection as

PD ,SC,3 =

∣∣Σ−1
∣∣m

Γ(m)
e−

λ
2

∞∑
n=0

n+u−1∑
k=0

∞∑
i=0

∞∑
j=0

× |p1,2 |2 i |p2,3 |2 j
(

λ
2

)k
pi+m1,1 pi+j+m2,2 pj+m3,3 Γ(m+i) Γ(m+ j) i! j! k!n!

×
∫ ∞

0
γn e−γ [Θ1 + Θ2 + Θ3] dγ︸ ︷︷ ︸

IA

. (70)

Substituting (21), (22) and (23) into (70), the integral part IA in
(70) becomes

IA =
(
p1,1 m

γ̄

)i+m
Ia1 +

(
p2,2 m

γ̄

)i+j+m
Ia2

+
(
p3,3 m

γ̄

)j+m
Ia3, (71)

where

Ia1 =
∫ ∞

0
γi+m+n−1e−γ(

p 11m
γ̄ +1) (72)

× γ

(
i+ j +m,

p2,2 m

γ̄
γ

)
γ

(
j +m,

p3,3 m

γ̄
γ

)
dγ.

Ia2 =
∫ ∞

0
γi+j+m+n−1e−γ(

p 2, 2 m

γ̄ +1) (73)

× γ

(
i+m,

p1,1 m

γ̄
γ

)
γ

(
j +m,

p3,3 m

γ̄
γ

)
dγ.

Ia3 =
∫ ∞

0
γj+m+n−1e−γ(

p 3, 3 m

γ̄ +1)

× γ

(
i+m,

p1,1 m

γ̄
γ

)
γ

(
i+ j +m,

p2,2 m

γ̄
γ

)
dγ.

(74)

Each integral in (71) could be written as

I =
∫ ∞

0
xae−bxγ (d1, c1x) γ (d2, c2x) dx. (75)

Using [30, eq. (10)], we write (71) as

IA =
( γ̄
m

)n pi+m1,1 pi+j+m2,2 pj+m3,3 Γ(2i+ 2j + 3m+ n)(
p11 + p2,2 + p3,3 + γ̄

m

)(2i+2j+3m+n)

× (Ξ1 + Ξ2 + Ξ3) , (76)

where Ξ1, Ξ2 and Ξ3 are in (25), (26) and (27), respectively.
Substituting (76) into (70), this concludes the derivations.

APPENDIX E
GENERAL EXPRESSION FOR TRIPLE SC

In this section, we derive the expression in (29). Using (52)
and substituting (20) into (9) we derive

PD ,SC,3 =

∣∣Σ−1
∣∣m

Γ(m)

∞∑
n=0

∞∑
i=0

∞∑
j=0

Γ
(
u+ n, λ

2

)
Γ(u+ n)

× |p1,2 |2 i |p2,3 |2 j
pi+m1,1 pi+j+m2,2 pj+m3,3 Γ(m+ i) Γ(m+ j) i! j!n!

×
∫ ∞

0
γn e−γ [Θ1 + Θ2 + Θ3] dγ︸ ︷︷ ︸

IA

. (77)

Following same procedures in (71)–(76), then substituting (76)
into (77), this concludes the derivation.

APPENDIX F
EXPRESSION FOR DUAL SSC

In this section, we will derive the expression in (37) by eval-
uating PD,SSC,2 in (32) as follows.

5) Integral IA in (33): Using Marcum Q-function alter-
native representation (53), we rewrite (33) as

IA = 2 e−
λ
2

∞∑
j=0

j+u−1∑
k=0

(
λ

2

)k 1
j! k!

×
∫ ∞

0
γj+m−1 exp

{
−γ(1 +

m

γ̄
)
}

dγ. (78)

Using (56) and satisfying the condition therein, we solve (78)
as

IA = 2 e−
λ
2

∞∑
j=0

j+u−1∑
k=0

(
λ

2

)k (j +m− 1)!
j! k!

(
γ̄

γ̄ +m

)j+m
.

(79)

6) Integral IB in (34): Following the same procedures as
in (78), we rewrite (34) as

IB = e−
λ
2

∞∑
n=0

j+u−1∑
q=0

∞∑
i=0

i+m−1∑
k=0

(
λ

2

)q
ai+k ρi

i! k!n! q!
e−a γ T γkT

×
∫ ∞

0
γm+n+i−1 exp

{
−γ
(
a ρ+

m

γ̄
+ 1

)}
dγ.

(80)

Similarly as we did in (79), we solve (80) as

xIB = e−
λ
2

∞∑
n=0

j+u−1∑
q=0

∞∑
i=0

i+m−1∑
k=0

(
λ

2

)q
ai+k ρi

i! k!n! q!

× (m+ n+ i− 1)!(
a ρ+ m

γ̄ + 1
)m+n+i e

−a γ T γkT . (81)
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7) Integral IC in (35): Using (53), we rewrite (35) as

IC = e−
λ
2

∞∑
n=0

n+u−1∑
q=0

1
n! q!

(
λ

2

)k

×
∫ γ T

0
γm+n−1 exp

{
−γ
(
m

γ̄
+ 1

)}
dγ. (82)

Using [18, eq. (3.351/1)], where∫ z

0
xne−μ xdx =

n!
μn+1

− e−μz
n∑
k=0

n!
k!

zk

μn−k+1

= μ−n−1γ(n+ 1, μz),

[z > 0,Reμ > 0, n = 0, 1, 2, · · ·] ,
(83)

we derive (82) as

IC = e−
λ
2

∞∑
n=0

n+u−1∑
q=0

1
n! q!

(
λ

2

)q (
γ̄

γ̄ +m

)m+n

× γ

(
m+ n, γT

(
γ̄ +m

γ̄

))
. (84)

Substituting (79), (80) and (84) into (32), this concludes the
derivation.

APPENDIX G
ALTERNATIVE EXPRESSION FOR DUAL SSC

In this section, we will derive the expression in (38) by eval-
uating PD,SSC,2 in (32) for alternative expression as follows.

8) Integral IA in (33): Let x =
√

2 γ , we rewrite (33) as

IA =
4

2−m

∫ ∞

0
Qu

(
x,

√
λ
)
xm−1 exp

(
−mx2

2γ̄

)
dx. (85)

Using [31, eq. (8)], we solve (85) as

IA = 4
∞∑
j=0

Γ(m+ j)Γ
(
u+ j, λ

2

)
Γ(u+ j)

(
1 + m

γ̄

)m+j
j!
. (86)

9) Integral IB in (34): Using (52) and (53) for Qu

(
√

2 γ,
√

λ) and Qm (
√

2 a ρ γ,
√

2 a γT ), we rewrite (34) as

IB =
∞∑
n=0

∞∑
i=0

i+m−1∑
k=0

Γ
(
u+ n, λ

2

)
Γ(u+ n) n!

ai+k ρi

i! k!
γkT e

−a γ T

×
∫ ∞

0
γm+n+i−1 e−γ (m

γ̄ +a ρ+1) dγ. (87)

Using (56) , we solve (87) as

IB =
∞∑
n=0

∞∑
i=0

i+m−1∑
k=0

Γ
(
u+ n, λ

2

)
Γ(m+ n+ i)

Γ (u+ n)
(
m
γ + aρ+ 1

)m+n+i
n! i! k!

× ai+kρiγkT e
−aγ T . (88)

10) Integral IC in (35): Using (52), we rewrite (35) as

IC =
∞∑
p=0

Γ
(
u+ p, λ

2

)
Γ(u+ p) p!

∫ γ T

0
γm+p−1 e−γ(

γ̄ + m
γ̄ ) dγ. (89)

Using (83), we solve (89) for m integer values as

IC =
∞∑
p=0

Γ
(
u+ p, λ

2

)
Γ(u+ p) p!

(
γ̄ +m

γ̄

)−(m+p)

× γ

(
m+ p, γT

(
γ̄ +m

γ̄

))
. (90)

Substituting (86), (88) and (90) into (32), this concludes the
derivation.

APPENDIX H
EXPRESSION FOR OPTIMAL THRESHOLD

In this section, we will derive the expression in (39).
Employing Leibniz’s rule [19, eq. (3.3.7)] with the aid of

following identity given in [29, eq. (9)] as

∂

∂β
Qu (α, β) = −β

(
β

α

)u−1

exp
(
−α

2 + β2

2

)
Iu−1 (αβ),

(91)

we rewrite (32) as

∂

∂γ∗T
PD,SSC,2 =

1
Γ(m)

(
m

γ̄

)m [
ρ

1−m
2

√
2a γ∗T

1−m
2 e−aγ

∗
T

×
∫ ∞

0
Qu

(√
2 γ,

√
λ
)
γ

m −1
2 e−aγ Im−1

(
2a
√
ργ∗T γ

)
dγ︸ ︷︷ ︸

I

− Qu

(√
2 γ∗T ,

√
λ
)
γ∗T

m−1 exp
(
−mγ∗T

γ̄

)]
. (92)

To solve the integral I in (92), we perform changing variable
along with the aid of the series expansion of the modified Bessel
function given in [18, eq. (8.445)] as

Iν (z) =
∞∑
k=0

1
Γ(ν + k + 1) k!

(z
2

)ν+2 k
. (93)

Then, we drive (92) as

∂

∂γ∗T
PD,SSC,2 =

1
Γ(m)

(
m

γ̄

)m [
ρ

1−m
2
√

2a γ∗T e
−aγ ∗

T

×
∞∑
k=0

1
Γ(m+ k)2m+k k!

(a
√
ρ)m+2k−1 γ∗T

k

×
∫ ∞

0
Qu

(
x,

√
λ
)
x2(m+k)−1e−

a
2 x

2
dx︸ ︷︷ ︸

I

−Qu

(√
2 γ∗T ,

√
λ
)
γ∗T

m−1 exp
(
−mγ∗T

γ̄

)]
.

(94)
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Using [29, eq. (29)] by following same procedures as in (50),
we can solve the integral I in (94) as

IA = G
′
1 +

1
2

u−1∑
n=1

(
λ

2

)n Γ (m+ k)(
a+1

2

)m+k
n!

×
1
F1

(
m+ k;n+ 1;

λ

2 (a+ 1)

)
, (95)

where G
′
1 can be obtained by evaluating the following inte-

gral containing the first order of Marcum Q-function Q(., .) for
integer m values as

G
′
1 =

∫ ∞

0
Q
(
x,

√
λ
)
x2(m+k)−1 e−

a
2 x

2
dx. (96)

Using [29, eq. (25)], we evaluate G
′
1 for integer m values as

G
′
1 =

2m+k−1 (m+ k − 1)!
a2(m+k)

(
1

a+ 1

)
e−

λ
2

a
a + 1

×
[
(1 + a)

(
a

1 + a

)m+k−1

Lm+k−1

(
− λ

2 (1 + a)

)

+
m+k−2∑
n=0

(
a

a+ 1

)n
Ln

(
− λ

2 (a+ 1)

)]
, (97)

where Ln (.) denotes Laguerre polynomial of n-degree [18].
Substituting (95) into (94), this concludes the derivation.
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