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Abstract—This paper develops a stochastic geometry-based
approach for the modeling and analysis of finite millimeter
wave (mmWave) wireless networks where a random number of
transmitters and receivers are randomly located inside a finite
region. We consider a selection strategy to serve a reference
receiver by the transmitter providing the maximum average
received power among all transmitters. Considering the unique
features of mmWave communications such as directional transmit
and receive beamforming and having different channels for line-
of-sight (LOS) and non-line-of-sight (NLOS) links according to
the blockage process, we study the coverage probability and
the ergodic rate for the reference receiver that can be located
everywhere inside the network region. As key steps for the
analyses, the distribution of the distance from the reference
receiver to its serving LOS or NLOS transmitter and LOS and
NLOS association probabilities are derived. We also derive the
Laplace transform of the interferences from LOS and NLOS
transmitters. Finally, we propose upper and lower bounds on
the coverage probability that can be evaluated easier than the
exact results, and investigate the impact of different parameters
including the receiver location, the beamwidth, and the blockage
process exponent on the system performance.

Index Terms—Stochastic geometry, mmWave communications,
wireless networks, finite topologies, Poisson point process.

I. INTRODUCTION

Millimeter wave (mmWave) communications is a promis-

ing candidate technology for the next generation of wireless

networks [1]. This is mainly because mmWave frequencies

provide large bandwidth, compatibility with directional com-

munications, and possibility of dense deployments. However,

the signal propagation at mmWave frequencies suffers from

poor penetration, diffraction and scattering through blockages

[2]-[3]. On the other hand, the ever-growing randomness and

irregularity in the locations of nodes in a wireless network

has led to a growing interest in the use of stochastic geometry

and Poisson point processes (PPPs) for accurate and tractable

spatial modeling and analysis [4]-[6]. In this way, based on

the proposed models for the directionality of antennas and

blockage process in [7]-[8], most works exploit infinite homo-

geneous PPP (HPPP) [6, Def. 2.8] to model and analyze the

performance of different mmWave wireless networks over an

infinite region [9]-[14]. However, in practice wireless networks
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do not spread over an infinite region. Moreover, deployments

of mmWave wireless networks over small finite regions are

becoming mainstream, thanks to the popularity of mmWave

in short-range communications, indoor and ad hoc networks

such as WirelessHD and IEEE 802.11ad standards [15]-[17].

The modeling and performance analysis of finite wire-

less networks are more challenging and require different

approaches in comparison to infinite wireless networks, even

in microwave frequencies with no beamforming and blockage

effects [18]-[20]. The main challenge is that a finite point

process is not statistically similar from different locations, and

therefore, the system performance depends on the receiver

location [18]. Finite mmWave wireless networks have been

mostly studied based on the binomial point process (BPP)

[6, Def. 2.11], where a fixed and finite number of nodes are

distributed independently and uniformly inside a finite region.

Considering the BPP, the state-of-the-art works are focused

on wearable device-to-device applications and present perfor-

mance characterizations of a fixed link inside a finite region of

people who are considered both as interferers and blockages

[21]-[23]. Although fixed-link analysis provides useful insights

for the performance of device-to-device use-case scenarios, it

is not suitable for networks with infrastructure such as cellular

networks that can serve a receiver by a transmitter with the

highest quality performance.

In this paper, we provide a tractable model for finite

mmWave wireless networks using the finite homogeneous

Poisson point process (FHPPP) proposed in [18, Def. 1], which

is a suitable point process to model a random number of

nodes randomly located inside a finite region. We consider

a transmitter selection strategy referred to as average received

power selection, where a reference receiver is served by the

transmitter with the maximum received power averaged over

small-scale fading in the network. We derive the coverage

probability and the ergodic rate of the reference receiver

under the considered selection strategy and mmWave features

including directional transmit and receive beamforming and

different line-of-sight (LOS) and non-line-of-sight (NLOS)

link characteristics. As key steps for the coverage probability

and the ergodic rate analyses, the distribution of the distance

from the reference receiver to its serving transmitter, asso-

ciation probabilities, and the Laplace transform (LT) of the

interference are derived for both sets of LOS and NLOS

transmitters from the reference receiver. As a part of the LT

of the interference derivation, the distribution of the overall

transmit and receive gain of a link is characterized. We also

propose lower and upper bounds on the coverage probability

http://arxiv.org/abs/1807.10490v1
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that are more computationally tractable results.

We investigate the impact of different parameters of the

system model on the coverage probability and the ergodic rate.

Our analysis reveals that there exists a blockage exponent that

maximizes the coverage probability. Also, there is an optimal

distance for the location of the reference receiver from the

center of the network in terms of the coverage probability

and the ergodic rate. As another observed trend, increasing

the transmit and receive antenna beamwidths decreases the

coverage probability. Our evaluations also show that our

proposed upper bound for a small antenna beamwidth and our

proposed lower bound for a large antenna beamwidth tightly

mimic the exact results on the coverage probability.

Our work is different from the state-of-the-art literature,

e.g., [21]-[23], from two perspectives. First, different from

the BPP which models a fixed number of nodes in a region,

we consider the FHPPP [18], which is suitable for finite

regions with a random number of nodes, and comprehensively

address the modeling and analysis of finite mmWave wireless

networks using the properties of the PPP. In this regard, we

perform new analyses considering a new system model and

new assumptions. Second, we consider a transmitter selection

strategy that provides the maximum averaged received power

in the allocation of a transmitter to a receiver, as assumed also

in previous works on infinite mmWave networks [8]-[12].

The rest of the paper is organized as follows. Section

II describes the system model and the selection strategy.

Section III characterizes the link distance distributions and

the association probabilities. Section IV presents the analytical

results for the coverage probability and the ergodic rate of

finite mmwave wireless networks and derives the LT of the

interference as well as upper and lower bounds on the coverage

probability. Section V presents the numerical and simulation

results. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

In this section, we provide a mathematical model of the

system. We begin with the spatial distribution of the nodes.

Then, we describe the channel model and the transmitter

selection strategy.

A. Spatial Model

We consider a finite mmWave wireless network as shown in

Fig. 1. The locations of transmitters are modeled as an FHPPP

ΦT with intensity λT over a finite region A ⊂ R
2, which is

defined in the following.

Definition 1: The FHPPP is defined as Φ = P ∩ A,

where P is an HPPP of intensity λ and A ⊂ R
2 [18].

Receivers are also located inside A according to another

FHPPP ΦR with intensity λR that is independent of ΦT. We

assume that λR ≫ λT and the transmitters are all active and

transmit at the same power. In each of the available resource

blocks, each transmitter is assumed to serve a single receiver

that is randomly selected among its associated receivers. Then,

the intensity of active receivers in each resource block, denoted

by a point process Φ̂R, is equal to λT.

Fig. 1: An illustration of the system model for finite mmWave
wireless networks.

As the signal propagation at mmWave frequencies suffers

from poor penetration, a link is LOS or NLOS depending on

whether or not it is intersected by a blockage. In harmony with,

e.g., [8]-[14], [22], we assume that there is no correlation in

the blockage process such that a link with length r is LOS with

probability pL(r) or NLOS with probability pN(r) = 1−pL(r).
As a result from the location of a receiver, the transmitters

can be split into two independent tiers comprising a finite

non-homogeneous Poisson point process (FNPPP) ΦL with

intensity λTpL(r) for LOS transmitters and an FNPPP ΦN

with intensity λT(1− pL(r)) for NLOS transmitters, such that

ΦT = ΦL∪ΦN. We also denote the number of LOS and NLOS

transmitters by nL and nN, respectively. The FNPPP is defined

as follows.

Definition 2: We define an FNPPP Φ with the non-constant

intensity function λ(z) at a location z over A ⊂ R
2 such that

the probability that n points are in a region B ⊂ R
2 is given

by

P (Φ (B) = n) = exp (−Λ(C)) Λ(C)
n

n!
, (1)

where Λ(C) =
∫

C λ(z)dz is the intensity measure and C
denotes the intersection between A and B, i.e., C = A ∩ B.

For simplicity and in harmony with, e.g., [18]-[20], we let

A = b(xo, D), where b(xo, D) represents a disk centered

at xo with radius D. However, our theoretical results can be

extended to the case of an arbitrarily-shaped region A.

Receivers can be located everywhere in A. With no loss

of generality, we conduct the analysis for a reference receiver

located at the origin o. We further define d = ‖xo‖, which

denotes the distance from the reference receiver to the center

of A, i.e., xo.

B. Channel Model

As the LOS and NLOS propagation have different character-

istics, we consider the received power at the reference receiver

from a transmitter located at y ∈ ΦT as hyGy‖y‖−αq , q =
{L,N}, where αL and αN are the pathloss exponents for

the LOS and NLOS links, respectively. Note that the NLOS

mmWave signals typically exhibit a higher pathloss exponent,

i.e., αL < αN. Assuming independent Nakagami fading for

each link, the fading power hy can be modeled as a normalized

Gamma random variable Γ(vL,
1
vL
) if the link is LOS and

Γ(vN,
1
vN
) if the link is NLOS. Also, Gy denotes the overall
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Fig. 2: Approximated sectored-pattern antenna model.

antenna gain. Also, we consider the same closed-in reference

distance for both LOS and NLOS links to have same intercepts

[8], [24].

To compensate for high propagation losses, mmWave trans-

mitters and receivers use large antenna arrays to communicate

directionaly. We assume the approximated sectored-pattern

antenna model in Fig. 2, according to which the transmitter

gain GT and the receiver gain GR can be given by

Gq(θ) =

{

Mq |θ| < 1
2θq,

mq otherwise,
, q = {T,R} , (2)

where θ denotes the angle in polar coordinates, θq is the

beamwidth, and Mq and mq are the main-lobe and side-

lobe gain, respectively, i.e., Mq > mq . Therefore, the overall

antenna gain Gy which is equal to GT × GR can be one of

{MTMR,MTmR,mTMR,mTmR} according to directions of

the transmitter and the receiver of the link. For notational

simplicity, let us use the auxiliary variables a1 = MTMR,

a2 = MTmR, a3 = mTMR, and a4 = mTmR.

C. Selection Strategy

We assume average received power selection strategy where

a reference receiver is associated to the transmitter that

provides the maximum received power averaged over the

fading. Therefore, the candidate among the LOS transmitters

is the closest one and found as xL = arg min
x∈{ΦL|nL≥1}

‖x‖,

while among the NLOS transmitters the candidate is found as

xN = arg min
x∈{ΦN|nN≥1}

‖x‖. Finally, the serving transmitter is

selected between the LOS and NLOS candidates as

xq =







xL if nL ≥ 1 & nN = 0,
xN if nL = 0& nN ≥ 1,

argmax {‖xL‖−αL , ‖xN‖−αN} if nL ≥ 1 & nN ≥ 1.
(3)

Assuming that the main antenna beams of the serving trans-

mitter and the reference receiver are aligned for the maximum

overall antenna gain, i.e., a1,1 the signal-to-interference-and-

noise ratio (SINR) at the origin can be expressed as

SINRq =
a1hq‖xq‖−αq

σ2 + IL + IN

, q = {L,N} , (4)

where σ2 is the noise power, and IL =
∑

y∈ΦL\{xq}
Gyhy‖y‖−αL and IN =

∑

y∈ΦN\{xq}
Gyhy‖y‖−αN

are the interferences from LOS and NLOS transmitters,

respectively.

1Such alignment can be performed by sophisticated beam training protocols
[2].

III. ASSOCIATION PROBABILITY AND SERVING DISTANCE

DISTRIBUTION

This section derives the probability that a reference receiver

with distance d to the center of A is served by a given LOS or

NLOS tier of transmitters, which is termed as the association

probability. Then, we derive the distribution of the distance

from the reference receiver to its serving transmitter depending

on the association to an LOS or NLOS transmitter. These

association probabilities and distance distributions are used

later in the coverage probability and the ergodic rate analyses.

According to (3), in order to present the results, we first need

to derive the distance distributions of the reference receiver to

its closest LOS and NLOS transmitters.

The distance from the reference receiver to its closest LOS

transmitter, i.e., ‖xL‖, is larger than r if and only if at least

one transmitter exists inside A and there is no transmitter

located within intersection b(o, r) ∩A. Letting Cr denote the

intersection, we have

P (‖xL‖ > r) =
P(n(ΦL ∩ Cr) = 0 & nL ≥ 1)

P(nL ≥ 1)

(a)
=

P(n(ΦL ∩ Cr) = 0)P(n(ΦL\Cr) ≥ 1)

P(nL ≥ 1)

(b)
=

exp (−ΛL(Cr)) (1− exp (−ΛL(A\Cr)))
1− exp (−ΛL(A))

=
exp (−ΛL(Cr))− exp (−ΛL(A))

1− exp (−ΛL(A))
, (5)

where (a) follows from the fact that the numbers of points of

a PPP in disjoint regions are independent, and (b) is due to

the fact that ‖xL‖ ≤ D+d and ΛL(Cr)+ΛL(A\Cr) = ΛL(A).
Note that when the intersection is the whole of A, (5) becomes

zero.

To convert from Cartesian to polar coordinates, (5) can be

obtained according to the following cases.

Case 1: If A∩b(o, r) = b(o, r), i.e., 0 ≤ r < D− d, then

ΛL(Cr) =
∫ 2π

0

∫ r

0

λTpL(x)xdxdθ = 2πλT

∫ r

0

xpL(x)dx. (6)

Case 2: If A∩b(o, r) 6= b(o, r), i.e., D− d ≤ r < D+ d,

then

ΛL(Cr) =
∫ ϕ(r)

−ϕ(r)

∫ r

0

λTpL(x)xdxdθ

+

∫ 2π−ϕ(r)

ϕ(r)

∫ R(θ)

0

λTpL(x)xdxdθ = 2λTϕ(r)

∫ r

0

xpL(x)dx

+ λT

∫ 2π−ϕ(r)

ϕ(r)

∫ R(θ)

0

xpL(x)dxdθ, (7)

where ϕ(r) = cos−1
(

r2+d2−D2

2dr

)

and R(θ) =
√

D2 − d2sin2 (θ) + d cos (θ). Also, in Case 2, we define

Hd(r) =
1
λT
ΛL(Cr) for notational simplicity and also to make

it independent of the deployment intensity λT.
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Then, the cumulative distribution function (CDF) of ‖xL‖
is

P (‖xL‖ ≤ r) = 1− P (‖xL‖ > r) =










1−exp(−2πλT

∫

r

0
xpL(x)dx)

1−exp(−λTHd)
0 ≤ r < D − d,

1−exp(−λTHd(r))
1−exp(−λTHd)

D − d ≤ r < D + d,

1 r > D + d,

(8)

where Hd is defined as

Hd =
1

λT

ΛL(A) = Hd(D + d) =

∫ 2π

0

∫ R(θ)

0

xpL(x)dxdθ.

(9)

The probability density function (PDF) can be obtained by

taking derivation from the CDF, which leads to

fd
T,L (r) =














2πλTrpL(r) exp(−2πλT

∫

r
0
xpL(x)dx)

1−exp(−λTHd)
0 ≤ r < D − d,

λT
∂Hd(r)

∂r
exp(−λTHd(r))

1−exp(−λTHd)
D − d ≤ r < D + d,

0 r ≥ D + d.

(10)

Following a similar approach for the distance distribution

of ‖xL‖, the CDF of the distance of the reference receiver to

its closest NLOS transmitter, i.e., ‖xN‖, is given by

P (‖xN‖ ≤ r) =










1−exp(−2πλT

∫

r
0
x(1−pL(x))dx)

1−exp(−λTGd)
0 ≤ r < D − d,

1−exp(−λTGd(r))
1−exp(−λTGd)

D − d ≤ r < D + d,

1 r > D + d,

(11)

where Gd(r) is defined as

Gd(r) = 2ϕ(r)

∫ r

0

x(1 − pL(x))dx

+

∫ 2π−ϕ(r)

ϕ(r)

∫ R(θ)

0

x(1− pL(x))dxdθ, (12)

and Gd =
∫ 2π

0

∫ R(θ)

0 x(1 − pL(x))dxdθ. Then, the PDF of

‖xN‖ is found as

fd
T,N (r) =














2πλTr(1−pL(r)) exp(−2πλT

∫

r
0
x(1−pL(x))dx)

1−exp(−λTGd)
0 ≤ r < D − d,

λT
∂Gd(r)

∂r
exp(−λTGd(r))

1−exp(−λTGd)
D − d ≤ r < D + d,

0 r > D + d.

(13)

Using the PDF and the CDF of the distances of the reference

receiver to its closest LOS and NLOS transmitters, the asso-

ciation probabilities of the receiver in connection to an LOS

and NLOS transmitter are given in the following theorems.

Theorem 1: The association probability that the reference

receiver is served by an LOS transmitter in the case (D −
d)

αN
αL > D + d is

A1
T,L(d) =

∫ D−d

0

2πλTrpL(r) exp

(

−2πλT×

(

∫ r

αL
αN

0

x(1 − pL(x))dx +

∫ r

0

xpL(x)dx

))

dr

+

∫ D+d

D−d

λT

∂Hd(r)

∂r
exp

(

−2πλT×

(

∫ r
αL
αN

0

x(1 − pL(x))dx +
1

2π
Hd(r)

))

dr, (14)

and in the case (D − d)
αN
αL < D + d is given by

A2
T,L(d) =

∫ D−d

0

2πλTrpL(r) exp

(

−2πλT×

(

∫ r

αL
αN

0

x(1 − pL(x))dx +

∫ r

0

xpL(x)dx

))

dr

+

∫ (D−d)
αN
αL

D−d

λT

∂Hd(r)

∂r
exp

(

−2πλT×

(

∫ r

αL
αN

0

x(1 − pL(x))dx +
1

2π
Hd(r)

))

dr

+

∫ D+d

(D−d)
αN
αL

λT

∂Hd(r)

∂r
exp

(

−λT

(

Gd

(

r
αL
αN

)

+Hd(r)

))

dr.

(15)

Proof: See Appendix A.

Theorem 2: The association probability that the reference

receiver is served by an NLOS transmitter in the case (D −
d)

αN
αL > D + d is

A1
T,N(d) =

∫ (D−d)
αL
αN

0

2πλTr(1 − pL(r)) exp

(

−2πλT×

(

∫ r

αN
αL

0

xpL(x)dx +

∫ r

0

x(1 − pL(x))dx

))

dr

+

∫ (D+d)
αL
αN

(D−d)
αL
αN

2πλTr(1 − pL(r)) exp

(

−2πλT×
(

1

2π
Hd

(

r
αN
αL

)

+

∫ r

0

x(1 − pL(x))dx

))

dr

+

∫ D−d

(D+d)
αL
αN

2πλTr(1 − pL(r))×

exp

(

−2πλT

(

1

2π
Hd +

∫ r

0

x(1 − pL(x))dx

))

dr

+

∫ D+d

D−d

λT

∂Gd(r)

∂r
exp
(

−λT

(

Hd + Gd(r)
))

dr,

(16)
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and in the case (D − d)
αN
αL < D + d is given by

A2
T,N(d) =

∫ (D−d)
αL
αN

0

2πλTr(1 − pL(r)) exp

(

−2πλT×

(
∫ r

αN
αL

0

xpL(x)dx +

∫ r

0

x(1 − pL(x))dx

))

dr

+

∫ D−d

(D−d)
αL
αN

2πλTr(1 − pL(r)) exp

(

−2πλT×
(

1

2π
Hd

(

r
αN
αL

)

+

∫ r

0

x(1 − pL(x))dx

))

dr

+

∫ (D+d)
αL
αN

D−d

λT

∂Gd(r)

∂r
exp

(

−λT

(

Hd

(

r
αN
αL

)

+ Gd(r)
))

dr

+

∫ D+d

(D+d)
αL
αN

λT

∂Gd(r)

∂r
exp (−λT (Hd + Gd(r))) dr. (17)

Proof: The proof follows the same approach as in Ap-

pendix A, except that (8) and (13) are used instead of (11)

and (10), respectively. Thus, due to space limit, the proof is

omitted.

Using the association probabilities, the distance distributions

of the serving transmitter conditioned on the association of

the reference receiver to an LOS and NLOS transmitter are

presented in the following theorems.

Theorem 3: If a receiver is served by an LOS transmitter,

the PDF of the distance to its serving transmitter in the case

(D − d)
αN
αL > D + d is

f̂
d,1
T,L(r) =






















































2πλTrpL(r)
A1

T,L
(d)

exp

(

−2πλT

(

∫ r

αL
αN

0
x(1 − pL(x))dx

+
∫ r

0 xpL(x)dx

))

if 0 < r < D − d,

λT

A1
T,L

(d)
∂Hd(r)

∂r
exp

(

−2πλT

(

∫ r

αL
αN

0
x(1− pL(x))dx

+ 1
2πHd(r)

))

if D − d < r < D + d,

0 if r > D + d,

(18)

and in the case (D − d)
αN
αL < D + d is given by

f̂
d,2
T,L(r) =














































































2πλTrpL(r)
A2

T,L(d)
exp

(

−2πλT

(

∫ r
αL
αN

0 x(1 − pL(x))dx

+
∫ r

0 xpL(x)dx

))

if 0 < r < D − d,

λT

A2
T,L(d)

∂Hd(r)
∂r

exp

(

−2πλT

(

∫ r
αL
αN

0 x(1 − pL(x))dx

+ 1
2πHd(r)

))

if D − d < r < (D − d)
αN
αL ,

λT

A2
T,L(d)

∂Hd(r)
∂r

×
exp

(

−λT

(

Gd

(

r
αL
αN

)

+Hd(r)
))

if (D − d)
αN
αL < r < D + d,

0 if r > D + d.

(19)

Proof: See Appendix B.

Theorem 4: If a receiver is served by an NLOS transmitter,

the PDF of the distance to its serving transmitter in the case

(D − d)
αN
αL > D + d is

f̂
d,1
T,N(r) =










































































































2πλTr(1−pL(r))
A1

T,N
(d)

exp

(

−2πλT

(

∫ r
αN
αL

0
xpL(x)dx

+
∫ r

0 x(1− pL(x))dx

))

if 0 < r < (D − d)
αL
αN ,

2πλTr(1−pL(r))
A1

T,N(d)
exp

(

−2πλT

(

1
2πHd

(

r
αN
αL

)

+
∫ r

0
x(1− pL(x))dx

))

if (D − d)
αL
αN < r < (D + d)

αL
αN ,

2πλTr(1−pL(r))
A1

T,N(d)
exp

(

−2πλT

(

1
2πHd

+
∫ r

0 x(1− pL(x))dx

))

if (D + d)
αL
αN < r < D − d,

λT

A1
T,N

(d)
∂Gd(r)

∂r
×

exp (−λT (Hd + Gd(r))) if D − d < r < D + d,

0 if r > D + d,

(20)

and in the case (D − d)
αN
αL < D + d is given by

f̂
d,2
T,N(r) =



































































































2πλTr(1−pL(r))
A2

T,N(d)
exp

(

−2πλT

(

∫ r
αN
αL

0 xpL(x)dx

+
∫ r

0 x(1 − pL(x))dx

))

if 0 < r < (D − d)
αL
αN ,

2πλTr(1−pL(r))
A2

T,N(d)
exp

(

−2πλT

(

1
2πHd

(

r
αN
αL

)

+
∫ r

0
x(1 − pL(x))dx

))

if (D − d)
αL
αN < r < D − d,

λT

A2
T,N(d)

∂Gd(r)
∂r

×
exp

(

−λT

(

Hd

(

r
αN
αL

)

+ Gd(r)
))

if D − d < r < (D + d)
αL
αN ,

λT

A2
T,N(d)

∂Gd(r)
∂r

×
exp (−λT (Hd + Gd(r))) if (D + d)

αL
αN < r < D + d,

0 if r > D + d.

(21)

Proof: The proof follows the same approach as in Ap-

pendix B, except that (8) and (13) are used instead of (11)

and (10), respectively. Thus, due to space limit, the proof is

omitted.

IV. COVERAGE PROBABILITY AND ERGODIC RATE

ANALYSIS

In this section, the distance distribution results and associa-

tion probabilities in (14)-(21) are used to derive the coverage

probability and the ergodic rate for the reference receiver.

The coverage probability given the minimum required SINR

β can be computed as

P i
C(d, β) =

Ai
T,L(d)P

i
C,L(d, β) +Ai

T,N(d)P
i
C,N(d, β), i = {1, 2} , (22)
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where i = 1 denotes the case (D − d)
αN
αL > D + d and i = 2

is for (D − d)
αN
αL < D+ d. In addition, Ai

T,L(d) and Ai
T,N(d)

are the association probabilities derived in Theorems 1 and

2, respectively. Also, P i
C,L(d, β) and P i

C,N(d, β) are the condi-

tional coverage probability given that the receiver is associated

with an LOS and NLOS transmitter, respectively. Note that the

coverage probability is zero when there is no transmitter inside

A, which happens with probability 1−Ai
T,L(d) −Ai

T,N(d).
In the case of the association to an LOS transmitter, i.e.,

q = L in (3), the conditional coverage probability P i
C,L(d, β)

is found as

P i
C,L(d, β) = P

(

a1hLr
−αL

σ2 + IL + IN

> β

)

=

∫ D+d

0

P

(

a1hLr
−αL

σ2 + IL + IN

> β

)

f̂
d,i
T,L(r)dr, (23)

where f̂
d,i
T,L is given in Theorem 3, and the conditional coverage

probability given a link distance r is obtained as

P

(

a1hLr
−αL

σ2 + IL + IN

> β

)

= P

(

hL >
βrαL

a1

(

σ2 + IL + IN

)

)

(a)
≈

vL
∑

n=1

(−1)
n+1

(

vL

n

)

E

{

e
−ηLβnrαL

a1
(σ2+IL+IN)

}

(b)
=

vL
∑

n=1

(−1)
n+1

(

vL

n

)

e
− ηLβnrαL

a1
σ2

LL|L

(

ηLβnr
αL

a1
| r
)

× LN|L

(

ηLβnr
αL

a1
| r
)

, (24)

where ηL = vL(vL!)
− 1

vL , (a) follows from hL ∼ Γ(vL,
1
vL
)

and Alzer’s Lemma [25], and (b) comes from the indepen-

dency of ΦL and ΦN, the definitions of LT as LL|L(s |
r) = E

{

e−sIL | q = L & ‖xL‖ = r
}

and LN|L(s | r) =
E
{

e−sIN | q = L & ‖xL‖ = r
}

.

We can obtain LL|L(s | r) as

LL|L(s | r) =

E

{

exp

(

−s
∑

y∈ΦL\{xL}
Gyhy‖y‖−αL

)

| nL ≥ 1

}

= E

{

∏

y∈ΦL\{xL}
exp

(

−sGyhy‖y‖−αL

)

| nL ≥ 1

}

(c)
= exp

(

−λT

∫

A\b(o,r)

(

1−

Ehy,Gy

{

exp
(

−sGyhy‖y‖−αL

)}

)

pL(‖y‖)dy
)

(d)
= exp

(

−λT

∫

A\b(o,r)

(

1−

EGy







(

1 +
sGy‖y‖−αL

vL

)−vL







)

pL(‖y‖)dy
)

, (25)

where (c) follows from the probability generating functional

(PGFL) of the PPP [6, Thm. 4.9] and (d) is obtained by the

moment-generating function (MGF) of hy ∼ Γ(vL,
1
vL
).

Defining ∡y as the angle of the line crossing y and

the origin, the transmitter at y has distance d̂(y) =

√

d2 + ‖y‖2 − 2d‖y‖cos (π − ∡y) to the center of A and

is assumed to serve a receiver with distance RT(y) to y.

Therefore, according to the characterization of the random

variable Gy in Cases 1-4, with defined bk, for k = 1, . . . , 4,

in Appendix C, we have

EGy







(

1 +
sGy‖y‖−αL

vL

)−vL

| RT(y) = y







=
4
∑

k=1

bk (y, y, r)

(

1 +
sak‖y‖−αL

vL

)−vL

, (26)

and then by conditioning on the distance RT(y), the uncondi-

tional result required for (25) is found as

EGy







(

1 +
sGy‖y‖−αL

vL

)−vL







=

∫ ∞

0

EGy







(

1 +
sGy‖y‖−αL

vL

)−vL

| RT(y) = y







fRT(y)(y)dy,

(27)

where fRT(y) is the PDF of RT(y). Since the exact character-

ization of the correlations among the receivers and between

the transmitters and their served receivers in the network is

very complicated and for tractability and concreteness similar

as in uplink use-case scenarios, e.g., [26]-[29], we assume

that Φ̂R is an FHPPP. We also assume that the distances

RT for different transmitters are independent, and RT(y) is

equal to the distance of the transmitter at y to the selected

receiver over Φ̂R based on the average received power selection

strategy in Subsection II.C. In Section V, the accuracy of

the assumptions are verified through comparing simulation

and numerical results (Fig. 3). Then, by conditioning on the

association of the transmitter to an LOS or NLOS receiver,

we can characterize fRT(y) as

fRT(y) (y) =






















A1
R,L(d̂(y))f̂

d̂(y),1
R,L (y)

+A1
R,N(d̂(y))f̂

d̂(y),1
R,N (y) if (D − d̂(y))

αN
αL > D + d̂(y),

A2
R,L(d̂(y))f̂

d̂(y),2
R,L (y)

+A2
R,N(d̂(y))f̂

d̂(y),2
R,N (y) if (D − d̂(y))

αN
αL < D + d̂(y),

(28)

where Ai
R,L(d̂(y)), Ai

R,N(d̂(y)), f̂
d̂(y),i
R,L (y), and f̂

d̂(y),i
R,N (y) are

defined the same as Ai
T,L(d̂(y)), Ai

T,N(d̂(y)), f̂
d̂(y),i
T,R (y), and

f̂
d̂(y),i
T,N (y) in (14)-(21), respectively.

Then, according to (25)-(28), we can compute LL|L(s | r)
as

LL|L(s | r) = exp

(

−λT

∫

A\b(o,r)

∫ D+d

0

(

1−

4
∑

k=1

bk (y, y, r)

(

1 +
sak‖y‖−αL

vL

)−vL)

fRT(y)(y)pL(‖y‖)dydy
)

.

(29)
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In order to convert (29) from Cartesian to polar coordinates,

there are two cases:

Case 1: If A∩b(o, r) = b(o, r), i.e., 0 ≤ r < D−d, then2

LL|L(s | r) = exp

(

−λT

∫ 2π

0

∫ R(θ)

r

∫ D+d

0

(

1−

4
∑

k=1

bk (x, θ, y, r)

(

1 +
sakx

−αL

vL

)−vL
)

×fRT(x,θ)(y)pL(x)xdydxdθ

)

. (30)

Case 2: If A∩b(o, r) 6= b(o, r), i.e., D− d ≤ r < D+ d,

then

LL|L(s | r) = exp

(

−λT

∫ ϕ(r)

−ϕ(r)

∫ R(θ)

r

∫ D+d

0

(

1−

4
∑

k=1

bk (x, θ, y, r)

(

1 +
sakx

−αL

vL

)−vL
)

×fRT(x,θ)(y)pL(x)xdydxdθ

)

. (31)

Following a similar approach as for LL|L(s | r), we can obtain

LN|L(s | r) as

LN|L(s | r) =














































































exp

(

−λT

∫ 2π

0

∫ R(θ)

r

αL
αN

∫D+d

0
{(

1−
4
∑

k=1

bk (x, θ, y, r)
(

1 + sakx
−αN

vN

)−vN

)

×fRT(x,θ)(y)(1 − pL(x))xdydxdθ

})

if 0 < r < D − d,

exp

(

−λT

∫ ϕ(r)

−ϕ(r)

∫ R(θ)

r

αL
αN

∫D+d

0
{(

1−
4
∑

k=1

bk (x, θ, y, r)
(

1 + sakx
−αN

vN

)−vN

)

×fRT(x,θ)(y)(1 − pL(x))xdydxdθ

})

if D − d < r < D + d.

(32)

Here, note that interfering transmitters are outside of

b(o, r
αL
αN ) since the serving transmitter is an LOS transmitter

with distance r to the origin.

Following a similar approach as for P i
C,L(d, β), we can also

obtain P i
C,N(d, β) as

P i
C,N(d, β)≈

vN
∑

n=1

(−1)
n+1

(

vN

n

)
∫ D+d

0

e
−ηNβnrαN

a1
σ2

×

LL|N

(

ηNβnr
αN

a1
| r
)

LN|N

(

ηNβnr
αN

a1
| r
)

f̂
d,i
T,N(r)dr, (33)

2
y is a function of x and θ in polar coordinates.

where ηN = vN(vN!)
− 1

vN and f̂
d,i
T,N is given in Theorem 4. Also,

LL|N(s | r) = E
{

e−sIL | q = N & ‖xN‖ = r
}

and LN|N(s |
r) = E

{

e−sIN | q = N & ‖xN‖ = r
}

, which are given by

LL|N(s | r) =














































































exp

(

−λT

∫ 2π

0

∫ R(θ)

r

αN
αL

∫D+d

0
{(

1−
4
∑

k=1

bk (x, θ, y, r)
(

1 + sakx
−αL

vL

)−vL

)

×fRT(x,θ)(y)pL(x)xdydxdθ

})

if 0 < r < D − d,

exp

(

−λT

∫ ϕ(r)

−ϕ(r)

∫ R(θ)

r
αN
αL

∫D+d

0
{(

1−
4
∑

k=1

bk (x, θ, y, r)
(

1 + sakx
−αL

vL

)−vL

)

×fRT(x,θ)(y)pL(x)xdydxdθ

})

if D − d < r < D + d,

(34)

LN|N(s | r) =














































































exp

(

−λT

∫ 2π

0

∫ R(θ)

r

∫D+d

0
{(

1−
4
∑

k=1

bk (x, θ, y, r)
(

1 + sakx
−αN

vN

)−vN

)

×fRT(x,θ)(y)(1 − pL(x))xdydxdθ

})

if 0 < r < D − d,

exp

(

−λT

∫ ϕ(r)

−ϕ(r)

∫ R(θ)

r

∫ D+d

0
{(

1−
4
∑

k=1

bk (x, θ, y, r)
(

1 + sakx
−αN

vN

)−vN

)

×fRT(x,θ)(y)(1 − pL(x))xdydxdθ

})

if D − d < r < D + d.

(35)

While the integrals can not be reduced to closed-form, it is

easy to evaluate them numerically.

For a receiver located at the center of A, i.e., d = 0,

the coverage probability is simplified since the results are

independent of the angle of the line crossing each transmitter

to the origin, which is due to the symmetry of the spatial

model for d = 0. Also, note that in the special case of infinite

mmWave wireless networks, i.e., D → ∞, the coverage

probability analysis simplifies to the result in [9, Thm. 1].

The coverage probability for d = 0 (or D → ∞) is not a

lower or upper bound. This is because there is a tradeoff as

these specific cases have two opposing effects on the coverage

probability: i) distances (or the number) of both LOS and

NLOS interfering transmitters decrease (or increases), which

increases the interference power, and ii) the distance of the

serving LOS or NLOS transmitter decreases, which increases

the desired signal power. Also, as another effect for d = 0,

the transmitters are more likely to be LOS rather than being

NLOS, which increases both the interference power and the

desired signal power.

A lower/upper bound on the coverage probability in (22) can

be obtained when we assume that all transmitters interfere on

the reference receiver with their main/side antenna beams, i.e.,

θT = 2π. Therefore, according to Appendix C, letting j = 1
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for the lower bound and j = 2 for the upper bound, we replace

EGy

{

(

1 +
sGy‖y‖−αq

vq

)−vq
}

=



































θR

2π

(

1 +
saj‖y‖−αq

vq

)−vq
+

(

1− θR

2π

)

(

1 +
saj+1‖y‖−αq

vq

)−vq
if 0 < r < D − d,

d(y, r)
(

1 +
saj‖y‖−αq

vq

)−vq
+

(1− d(y, r))
(

1 +
saj+1‖y‖−αq

vq

)−vq
if D − d < r < D + d,

(36)

for q = {L,N} instead of (27) and its equivalent NLOS

expression into LL|L, LL|N, LN|L, and LN|N, where d(y, r) =

max

{

min{φ̂R(y)+
θR
2 ,ϕ(r)}−max{φ̂R(y)− θR

2 ,−ϕ(r)}
2ϕ(r) , 0

}

. Also,

φ̂R(y) = cos−1
(

d2+‖y‖2−d̂(y)2

2d‖y‖

)

.

The concluded lower and upper bounded coverage proba-

bilities are much easier than the coverage probability in (22)

to numerically evaluate since the bounds do not depend on the

distance of an interfering transmitter to its served receiver in

computations.

Finally, the ergodic rate of the reference receiver in band-

width W , defined as τ = WE {log(1 + SINR)}, can be

obtained from the coverage probability as, e.g., [5, Thm. 3]

τ i(d) =

∫ ∞

0

WP(log (1 + SINR) > t | i, d) dt

=
W

ln2

∫ ∞

0

P i
C(d, t)

t+ 1
dt, i = {1, 2} . (37)

V. RESULTS AND DISCUSSION

In this section, we consider a scenario of finite mmWave

wireless networks in which the transmitters and receivers

are distributed according to FHPPPs with intensity λT =
0.004m−2 and λR = 0.04 m−2 in a disk with radius D =
50 m, respectively, and evaluate the coverage probability and

the ergodic rate results derived in Section IV. We also provide

Monte Carlo simulations to validate the accuracy of the results.

While we presented the analytical results for a general function

pL(r), here we focus on pL(r) = e−µr as in the 3GPP

blockage model [8], where the blockage exponent µ is a

constant that depends on the geometry and density of the

blockage process. Also, we consider uniform planar square

antennas at the transmitters and the receivers that have the

following equations between their main-lobe gain Mq and

side-lobe gain mq with their beamwidth θq [22]:

Mq =
3

θ2q
, mq =

√
3θq − 3

√
3

2π sin
(

θq
2

)

√
3θq −

√
3

2π θ
2
q sin

(

θq
2

) , q = {T,R} . (38)

We further consider that θT = θR = θ. The values of the

parameters in Table I are used, unless otherwise stated. We

further define the normalized (relative) distance δ = d
D

.

In Fig. 3, the analytical results and Monte Carlo simulations

for the coverage probability are shown as a function of the

minimum required SINR β, considering δ = 1
5 , 3

5 , and 4
5 . It

is observed that the analytical results tightly mimic the exact

TABLE I: Parameter Values

System Parameter Value

λT 0.004 m−2

λR 0.04 m−2

σ2 -30 dB

(θT, θR) (36◦ , 36◦)

D 50 m

µ 1

15
m−1

(αL, αN) (2, 4)

(vL, vN) (3, 2)

W 200 MHz
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Fig. 3: Coverage probability as a function of the SINR threshold β
for analytical and simulation results.
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Fig. 5: Coverage probability as a function of beamwidth θ with δ =

2

5
.

Monte Carlo results for different distances of the reference

receiver from the center of the disk. Thus, the assumptions in

Section IV can well be applied for the performance analysis

of finite mmWave networks.

In the following, we study the impact of the distance of the

receiver from the center of the disk, the beamwidth, and the

blockage exponent on the coverage probability and the ergodic

rate. We also investigate the tightness of the lower and upper

bounds derived in Section IV.

Effect of receiver distance from the center: The coverage
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Fig. 7: On the tightness of the coverage probability lower and upper
bounds for δ =
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5
. EX, LB, and UB denote the exact result, the lower

bound, and the upper bound, respectively.
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Fig. 8: Spectral efficiency as a function of normalized distance δ.

probability as a function of the normalized distance δ is studied

in Fig. 4, considering β = 5 and 10 dB. It is observed that,

depending on β, there is an optimal value for the distance of

the receiver, about 0.9D, in terms of the coverage probability.

This is due to the fact that the SINR has a tradeoff since the

power of both the desired and the interfering LOS and NLOS

signals decrease as the distance of the receiver to the center

of the disk increases. Also, the transmitters are more likely to

be NLOS rather than being LOS.

Effect of beamwidth: The coverage probability as a function

of the beamwidth θ is plotted in Fig. 5, considering δ = 2
5

and β = 5 and 10 dB. As observed, increasing the beamwidth

decreases the coverage probability. This is because the main-

lobe gain of the antennas in (38) decreases which leads to

decreasing the desired power, and also, interfering transmitters

are more likely to interfere with the reference receiver with

their main antenna beams which leads to increasing the

interference power.

Effect of blockage exponent: In Fig. 6, the coverage prob-

ability is shown as a function of the blockage exponent µ

for δ = 2
5 and β = 5 and 10 dB. It is observed, depending

on β, there is an optimal value around 0.075 m−1 for the

blockage exponent. That is due to the fact that the SINR has

a tradeoff since more transmitters are NLOS as the blockage

exponent increases and then the power of both the desired and

the interfering signals decrease.

Tightness of the bounds: The tightness of the lower and

upper bounds on the coverage probability is evaluated in

Fig. 7 for δ = 2
5 and θ = 6◦ and 200◦. As observed, for

small θ, i.e., noise-limited networks [30], the upper bound

tightly approximate the exact results, while for large θ, i.e.,

interference-limited networks [30], the lower bound achieves

tight results. That is because the upper bound considers mini-

mum interference only from side antenna beams which can be

a good approximation when the beamwidth is small. On the

other hand, the lower bound considers maximum interference

which is the case when transmitters transmit at any direction

with their main antenna beams. Also, it is observed that the

gap between the lower bound and the exact result for a small θ

is much higher than the the gap between the upper bound and

the exact result for a large θ. That is due to the fact that when

the transmit beamwidth is small, there is a small probability in

alignment of the reference receiver with main antenna beams

of transmitters and the main-lobe gain is much higher than the

side-lobe gain from (38). On the other hand, according to (38),

the difference between the main-lobe gain and the side-lobe

gain is small when the beamwidth is large.

Ergodic Rate: The ergodic rate as a function of δ is shown in

Fig. 8 for αL = 1.5 and 2.5. As observed, there is an optimal

value for the distance of the receiver in terms of the ergodic

rate. This is the result of the coverage probability behavior

with the distance. Moreover, around 250 Mbits/channel use

and 100 Mbits/channel use difference in the ergodic rate at

the center and the edge of the disk is observed for αL = 1.5
and αL = 2.5, respectively, which shows that the location of

a receiver plays a key role in its service quality. Also, there

is a crossing point, whereby the ergodic rate improves as αL

increases before reaching a distance for the receiver location.

This is because there is a tradeoff since the power of both the

desired LOS signal and the interfering LOS signals decrease.

VI. CONCLUSION

In this paper, we used stochastic geometry to develop a com-

prehensive tractable framework for the modeling and analysis

of mmwave wireless networks whose nodes are confined in

a finite region. We considered a selection strategy to allocate

the transmitter with the maximum average received power to a

receiver, and accordingly, studied the coverage probability and

the ergodic rate over the region. We also proposed upper and

lower bounds that are able to tightly approximate the coverage

probability at small and large beamwidths, respectively. Our

analysis revealed that a higher antenna beamwidth degrades

the performance. In addition, according to the setup param-

eters, there is an optimal blockage exponent and an optimal
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location for the receiver in terms of the coverage probability

and the ergodic rate.

APPENDIX A

PROOF OF THEOREM 1

According to (3) and by conditioning on the existence of

an LOS or NLOS transmitter inside A, the probability that

the reference receiver is associated with an LOS transmitter is

obtained as

AT,L(d) = P(nL = 0& nN = 0)×
P
(

‖xL‖−αL > ‖xN‖−αN | nL = 0& nN = 0
)

+ P(nL = 0& nN ≥ 1)×
P
(

‖xL‖−αL > ‖xN‖−αN | nL = 0& nN ≥ 1
)

+ P(nL ≥ 1 & nN = 0)×
P
(

‖xL‖−αL > ‖xN‖−αN | nL ≥ 1 & nN = 0
)

+ P(nL ≥ 1 & nN ≥ 1)×
P
(

‖xL‖−αL > ‖xN‖−αN | nL ≥ 1 & nN ≥ 1
)

. (39)

Then, due to the following facts






P (‖xL‖−αL > ‖xN‖−αN | nL = 0& nN = 0) = 0,
P (‖xL‖−αL > ‖xN‖−αN | nL = 0& nN ≥ 1) = 0,
P (‖xL‖−αL > ‖xN‖−αN | nL ≥ 1 & nN = 0) = 1,

(40)

and

P
(

‖xL‖−αL > ‖xN‖−αN | nL ≥ 1 & nN ≥ 1
)

=

∫ ∞

0

P

(

‖xN‖ > r
αL
αN

)

× fd
T,L(r)dr, (41)

which is obtained by conditioning on the serving distance r,

and according to (10) and (11) and the facts that αN > αL

and P

(

‖xN‖ > r
αL
αN

)

has crossing points at (D − d)
αN
αL and

(D + d)
αN
αL , we have the following cases to compute (39):

Case 1: If (D−d)
αN
αL > D+d, we have the order D−d <

D + d < (D − d)
αN
αL < (D + d)

αN
αL , and then by replacing

the related values of P

(

‖xN‖ > r
αL
αN

)

and fd
T,L(r) for each

separate interval, we can write

A1
T,L(d) = (1− e−λTHd)e−λTGd × 1+

∫ D−d

0

(

e−2πλT

∫

r

αL
αN

0
x(1−pL(x))dx − e−λTGd

)

×2πλTrpL(r)e
−2πλT

∫

r

0
xpL(x)dxdr+

∫ D+d

D−d

(

e−2πλT

∫

r

αL
αN

0
x(1−pL(x))dx − e−λTGd

)

×λT

∂Hd(r)

∂r
e−λTHd(r)dr+

∫ (D−d)
αN
αL

D+d

(

e−2πλT

∫

r

αL
αN

0
x(1−pL(x))dx − e−λTGd

)

× 0dr

+

∫ (D+d)
αN
αL

(D−d)
αN
αL

(

e
−λTGd

(

r

αL
αN

)

− e−λTGd

)

× 0dr

+

∫ ∞

(D+d)
αN
αL

0× 0dr.

(42)

Case 2: If (D − d)
αN
αL < D + d, we have the order D − d <

(D − d)
αN
αL < D + d < (D + d)

αN
αL , and then by replacing

the related values of P

(

‖xN‖ > r
αL
αN

)

and fd
T,L(r) for each

separate interval, we can write

A2
T,L(d) = (1− e−λTHd)e−λTGd × 1+

∫ D−d

0

(

e−2πλT

∫

r

αL
αN

0
x(1−pL(x))dx − e−λTGd

)

× 2πλTrpL(r)e
−2πλT

∫

r
0
xpL(x)dxdr+

∫ (D−d)
αN
αL

D−d

(

e−2πλT

∫

r

αL
αN

0
x(1−pL(x))dx − e−λTGd

)

× λT

∂Hd(r)

∂r
e−λTHd(r)dr+

∫ D+d

(D−d)
αN
αL

(

e
−λTGd

(

r

αL
αN

)

− e−λTGd

)

× λT

∂Hd(r)

∂r
e−λTHd(r)dr +

∫ ∞

(D+d)
αN
αL

0× 0dr+

∫ (D+d)
αN
αL

D+d

(

e
−λTGd

(

r

αL
αN

)

− e−λTGd

)

× 0dr. (43)

With some simplifications, (42) and (43) lead to the final

results.

APPENDIX B

PROOF OF THEOREM 3

The distribution of the serving distance conditioned on the

fact that an LOS transmitter is associated to the reference

receiver can be obtained as

P
(

‖xL‖ > r | ‖xL‖−αL > ‖xN‖−αN
)

=

P (‖xL‖ > r, ‖xL‖−αL > ‖xN‖−αN)

P (‖xL‖−αL > ‖xN‖−αN)
, (44)

where P (‖xL‖−αL > ‖xN‖−αN) is the association probability

and

P
(

‖xL‖ > r, ‖xL‖−αL > ‖xN‖−αN
)

= P(nL = 0& nN = 0)×
P
(

‖xL‖ > r, ‖xL‖−αL > ‖xN‖−αN | nL = 0& nN = 0
)

+ P(nL = 0& nN ≥ 1)×
P
(

‖xL‖ > r, ‖xL‖−αL > ‖xN‖−αN | nL = 0& nN ≥ 1
)

+ P(nL ≥ 1 & nN = 0)×
P
(

‖xL‖ > r, ‖xL‖−αL > ‖xN‖−αN | nL ≥ 1 & nN = 0
)

+ P(nL ≥ 1 & nN ≥ 1)×
P
(

‖xL‖ > r, ‖xL‖−αL > ‖xN‖−αN | nL ≥ 1 & nN ≥ 1
)

.

(45)

Then, due to the following facts


































P (‖xL‖ > r, ‖xL‖−αL > ‖xN‖−αN | nL = 0& nN = 0) = 0,
P (‖xL‖ > r, ‖xL‖−αL > ‖xN‖−αN | nL = 0& nN ≥ 1) = 0,
P (‖xL‖ > r, ‖xL‖−αL > ‖xN‖−αN | nL ≥ 1 & nN = 0)

= P(‖xL‖ > r),
P (‖xL‖ > r, ‖xL‖−αL > ‖xN‖−αN | nL ≥ 1 & nN ≥ 1)

=
∫∞
r

P

(

‖xN‖ > x
αL
αN

)

fd
T,L(x)dx,

(46)
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and using Theorem 1, we have the following cases to compute

(44):

Case 1: If (D − d)
αN
αL > D + d, then

P (‖xL‖−αL > ‖xN‖−αN) = A1
T,L(d), and

P
(

‖xL‖ > r, ‖xL‖−αL > ‖xN‖−αN
)

=

∫ D−d

r

2πλTypL(y)e
−2πλT

(

∫

y

αL
αN

0
x(1−pL(x))dx+

∫

y
0

xpL(x)dx

)

dy

+

∫ D+d

D−d

λT

∂Hd(y)

∂y
e
−2πλT

(

∫

y

αL
αN

0
x(1−pL(x))dx+

1
2π Hd(y)

)

dy,

(47)

if 0 < r < D − d, and

P
(

‖xL‖ > r, ‖xL‖−αL > ‖xN‖−αN
)

=

∫ D+d

r

λT

∂Hd(y)

∂y
e
−2πλT

(

∫

y

αL
αN

0
x(1−pL(x))dx+

1
2πHd(y)

)

dy,

(48)

if D − d < r < D + d, and

P
(

‖xL‖ > r, ‖xL‖−αL > ‖xN‖−αN
)

= 0, (49)

if r > D + d.

Case 2: If (D − d)
αN
αL < D + d, then

P (‖xL‖−αL > ‖xN‖−αN) = A2
T,L(d), and

P
(

‖xL‖ > r, ‖xL‖−αL > ‖xN‖−αN
)

=

∫ D−d

r

2πλTypL(y)e
−2πλT

(

∫

y

αL
αN

0
x(1−pL(x))dx+

∫

y

0
xpL(x)dx

)

dy

+

∫ (D−d)
αN
αL

D−d

λT

∂Hd(y)

∂y
e
−2πλT

(

∫

y

αL
αN

0
x(1−pL(x))dx+

1
2πHd(y)

)

dy

+

∫ D+d

(D−d)
αN
αL

λT

∂Hd(y)

∂y
e
−λT

(

Gd

(

y
αL
αN

)

+Hd(y)

)

dy, (50)

if 0 < r < D − d, and

P
(

‖xL‖ > r, ‖xL‖−αL > ‖xN‖−αN
)

=

∫ (D−d)
αN
αL

r

λT

∂Hd(y)

∂y
e
−2πλT

(

∫

y

αL
αN

0
x(1−pL(x))dx+

1
2πHd(y)

)

dy

+

∫ D+d

(D−d)
αN
αL

λT

∂Hd(y)

∂y
e
−λT

(

Gd

(

y

αL
αN

)

+Hd(y)

)

dy, (51)

if D − d < r < (D − d)
αN
αL , and

P
(

‖xL‖ > r, ‖xL‖−αL > ‖xN‖−αN
)

=
∫ D+d

r

λT

∂Hd(y)

∂y
e
−λT

(

Gd

(

y
αL
αN

)

+Hd(y)

)

dy, (52)

if (D − d)
αN
αL < r < D + d, and

P
(

‖xL‖ > r, ‖xL‖−αL > ‖xN‖−αN
)

= 0, (53)

if r > D + d. Therefore, the PDF is obtained by taking

derivation from the CDF, which is equal to 1 − P(‖xL‖ >

r | ‖xL‖−αL > ‖xN‖−αN).

APPENDIX C

CHARACTERIZATION OF Gy

We can consider the following cases for the directions of

the reference receiver and the transmitter at y and accordingly

find the distribution of Gy.

Case 1: If 0 < RT(y) < D − d̂(y) and 0 < r < D − d,

then due to the rotation invariancy of the PPP and the fact

that b(y, RT(y)) and b(o, r) are completely inside A, the

main antenna beams of both the reception at the origin and

transmission at y can have directions with uniform distribution

over 2π. Thus, Gy takes















a1 with prob. b1(y, RT(y), r) =
θT

2π
θR

2π ,

a2 with prob. b2(y, RT(y), r) =
θT

2π

(

1− θR

2π

)

,

a3 with prob. b3(y, RT(y), r) =
(

1− θT

2π

)

θR

2π ,

a4 with prob. b4(y, RT(y), r) =
(

1− θT

2π

) (

1− θR

2π

)

.

(54)

Case 2: If D − d̂(y) < RT(y) < D + d̂(y) and

0 < r < D − d, then the main antenna beam of the

reception at the origin can have a direction with uniform

distribution over 2π. However, since receivers are outside

the disk b(y, RT(y)) which intersects with A at angle

φT(y, RT(y)) = cos−1
(

RT(y)
2+d̂(y)2−D2

2d̂(y)RT(y)

)

entangled

between the line crossing y and one of the intersection points

and the line crossing y and xo, the main antenna beam of the

transmission can have a direction with uniform distribution

over 2φT(y, RT(y)), with an angle between −φT(y, RT(y))
and φT(y, RT(y)). On the other hand, the receiver at the origin

is included in the main antenna beam when the main beam has

a direction with an angle between φ̂T(y)− θT

2 and φ̂T(y)+
θT

2 ,

where φ̂T(y) = cos−1
(

d̂(y)2+‖y‖2−d2

2d̂(y)‖y‖

)

is the angle entangled

between the line crossing y and the origin and the line crossing

y and xo. Then, dividing the possible event range of the

direction to its total range, the probability of having the origin

in the main beam of the transmission at y is c(y, RT(y), r) =

max

{

min{φ̂T(y)+
θT
2 ,φT(y,RT(y))}−max{φ̂T(y)− θT

2 ,−φT(y,RT(y))}
2φT(y,RT(y))

, 0

}

.

Please note that when min
{

φ̂T(y) +
θT

2 , φT(y, RT(y))
}

<

max
{

φ̂T(y)− θT

2 ,−φT(y, RT(y))
}

, the origin cannot be in

direction of any possible main antenna beam from y.

Thus, Gy takes























a1 with prob. b1(y, RT(y), r) = c(y, RT(y), r)
θR

2π ,

a2 with prob. b2(y, RT(y), r) = c(y, RT(y), r)
(

1− θR

2π

)

,

a3 with prob. b3(y, RT(y), r) = (1− c(y, RT(y), r))
θR

2π ,

a4 with prob. b4(y, RT(y), r) =

(1− c(y, RT(y), r))
(

1− θR

2π

)

,

(55)

Case 3: If 0 < RT(y) < D− d̂(y) and D−d < r < D+d,

then the main antenna beam of the transmission at y

can have a direction with uniform distribution over 2π.

However, since transmitters are outside the disk b(o, r)
which intersects with A at angle ϕ(r) entangled between the

line crossing the origin and one of the intersection points

and the line crossing the origin and xo, the main antenna

beam of the reception can have a direction with uniform
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distribution over 2ϕ(r), with an angle between −ϕ(r) and

ϕ(r). On the other hand, the transmitter at y is included

in the main antenna beam when the main beam has a

direction with an angle between φ̂R(y)− θR

2 and φ̂R(y) +
θR

2 ,

where φ̂R(y) = cos−1
(

d2+‖y‖2−d̂(y)2

2d‖y‖

)

is the angle entangled

between the line crossing y and the origin and the line crossing

the origin and xo. Then, dividing the possible event range of

the direction to its total range, the probability of having y

in the main beam of the reception at the origin is d(y, r) =

max

{

min{φ̂R(y)+
θR
2 ,ϕ(r)}−max{φ̂R(y)− θR

2 ,−ϕ(r)}
2ϕ(r) , 0

}

.

Please note that when min
{

φ̂R(y) +
θR

2 , ϕ(r)
}

<

max
{

φ̂R(y) − θR

2 ,−ϕ(r)
}

, y cannot be in direction of

any possible main antenna beam from the origin.

Thus, Gy takes















a1 with prob. b1(y, RT(y), r) =
θT

2πd(y, r),

a2 with prob. b2(y, RT(y), r) =
θT

2π (1− d(y, r)) ,

a3 with prob. b3(y, RT(y), r) =
(

1− θT

2π

)

d(y, r),

a4 with prob. b4(y, RT(y), r) =
(

1− θT

2π

)

(1− d(y, r)) ,
(56)

Case 4: If D − d̂(y) < RT(y) < D + d̂(y) and D − d <

r < D + d, then the main antenna beams of the transmission

and reception can have directions with uniform distribution

over 2φT(y, RT(y)) and 2ϕ(r), respectively. Thus, according

to Cases 2 and 3, Gy takes























a1 with prob. b1(y, RT(y), r) = c(y, RT(y), r)d(y, r),
a2 with prob. b2(y, RT(y), r) = c(y, RT(y), r) (1− d(y, r)) ,
a3 with prob. b3(y, RT(y), r) = (1− c(y, RT(y), r)) d(y, r),
a4 with prob. b4(y, RT(y), r) =

(1− c(y, RT(y), r)) (1− d(y, r)) .
(57)
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