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A Supervised-Learning Detector for Multihop
Distributed Reception Systems

Seonho Kim and Song-Nam Hong

Abstract—We consider a multihop distributed uplink reception
system in which K users transmit independent messages to
one data center of Nr ≥ K receive antennas, with the aid of
multihop intermediate relays. In particular, each antenna of the
data center is equipped with one-bit analog-to-digital converts
(ADCs) for the sake of power-efficiency. In this system, it is
extremely challenging to develop a low-complexity detector due
to the non-linearity of an end-to-end channel transfer function
(created by relays’ operations and one-bit ADCs). Furthermore,
there is no efficient way to estimate such complex function
with a limited number of training data. Motivated by this, we
propose a supervised-learning (SL) detector by introducing a
novel Bernoulli-like model in which training data is directly used
to design a detector rather than estimating a channel transfer
function. It is shown that the proposed SL detector outperforms
the existing SL detectors based on Gaussian model for one-
bit quantized (binary observation) systems. Furthermore, we
significantly reduce the complexity of the proposed SL detector
using the fast kNN algorithm. Simulation results demonstrate
that the proposed SL detector can yield an attractive performance
with a significantly lower complexity.

Index Terms—Multihop distributed reception system, data
detection, classification, one-bit ADC.

I. INTRODUCTION

A distributed uplink reception system is a special case of a
multi-source single-destination multihop relay network where
multiple sources send independent messages to one destination
of a large number of antennas with the help of multihop
intermediate relays. In this system, numerous information-
theoretical approaches have been proposed in [1]–[4], with
the assumption that the destination perfectly knows all channel
transfer functions (or at least end-to-end channel transfer func-
tion). A quantized-remap-and-forward (QMF) (extended in [2]
where it is referred to as noisy network coding (NNC)) was
presented in [1], which achieves the best-known performance.
However, it is not practical as joint typical detector at the
destination is prohibitive and the assumption of perfect channel
state information is unrealistic. A more practical approach
based on lattice code, named compute-and-forward (CoF),
was presented in [5]–[7], which can significantly decrease
the detection complexity, by converting the non-linear end-
to-end channel transfer function into a linear one. However,
its performance is not satisfactory for multihop relay networks
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with realistic channels (e.g., Rayleigh fading), due to a severe
non-integer penalty [6]. Therefore, it is still an open problem to
develop a practical detection and channel estimation methods
for a multihop communication system.

In a distributed uplink reception system, the use of a large
number of receive antennas at data center is necessary to
support multiple sources simultaneously. Unfortunately, it can
highly increase the hardware cost and the radio-frequency (RF)
circuit consumption [8]. Especially, a high-resolution analog-
to-digital converter (ADC) is most problematic as the power
consumption of an ADC is scaled exponentially with the num-
ber of quantization bits and linearly with the baseband band-
width [9], [10]. To overcome this, the use of low-resolution
ADCs (e.g., 1 ∼ 3 bits) has received increasing attention for
a large-scale multiple-input-multiple-output (MIMO) system
[11]–[14]. The one-bit ADC is particularly attractive as it
does not need an automatic gain controller [15]. In this sense,
we consider a multihop distributed uplink reception system
in which each receive antenna of the data center is equipped
with one-bit ADCs. For this system, an end-to-end channel
transfer function between K users and the data center is highly
non-linear. Thus, it is extremely challenging to estimate such
function with a limited number of one-bit quantized pilot
signals. This motivates us to consider a data-driven supervised-
learning (SL) detector in which the pilot signals (or training
data) are exploited to directly learn a MIMO detector rather
than estimating a complicated non-linear channel transfer
function.

Very recently, SL detectors have been developed in [11]
for MIMO systems with one-bit ADCs. It is remarkable
that these methods are developed by assuming that data is
generated from a Gaussian distribution. Although it is widely
used, this model might not be suitable for binary data (e.g.,
one-bit quantized observations). In this paper, we propose a
novel Bernoulli-like model which can be more suitable for
binary random outputs. It is verified by showing that the
proposed SL detector outperforms the existing SL detectors
in [11]. Despite its superior performance, the complexity of
the proposed SL detector (also, the existing SL detectors in
[11]) is problematic as a search-space grows exponentially
with the number of users K. This is the major drawback to be
used in practice. We address this problem by presenting a low-
complexity SL (LSL) detector using the fast kNN algorithm.
The fast kNN algorithm, which can find a closest point in
Hamming space fastly using an efficient data structure, enables
to efficiently remove unnecessary elements in the search-
space according to a given current observation. Thus, the LSL
detector can perform over the significantly reduced search-
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space. Simulation results demonstrate that the proposed LSL
detector can yield an attractive performance with a practically
manageable complexity.

This paper is organized as follows. In Section II, we describe
a multihop distributed uplink reception system. In Section
III, we briefly review the various existing SL detectors. In
Section IV, we propose a novel SL detector based on a
Bernoulli-like model. In Section V, we significantly reduce the
complexity of the proposed SL detector by efficiently using the
fast kNN algorithm. Section VI provides the simulation results
to verify the superiority of the proposed SL detector. Finally,
conclusion is provided in Section VII.

II. SYSTEM MODEL

We consider a multihop distributed uplink reception system
where K sources transmit independent messages to one data
center with the help of intermediate relays. In particular, the
data center is equipped with Nr ≥ K receive antennas with
one-bit ADCs. Let wk ∈ {0, ..,m− 1} denote the source k’s
message for k ∈ {1, ...K}, each of which contains the logm
information bits. We also denote m-ary constellation set by
S = {s0, ..., sm−1} with power constraint 1

m

∑m−1
i=0 |si|2 =

Pt. Let sign(·) : R → {−1, 1} represent the one-bit ADC
quantizer function with sign(u) = 1 if u ≥ 0 and sign(u) =
−1, otherwise. Then, the transmitted symbol of the source
k, x̃k, is obtained by a modulation function f : W → S
as x̃k = f(wk) ∈ S. Then, by converting a complex-valued
scalar into an equivalent real-valued vector, the data center
observes

r = sign(Φ(x̃) + z̃) ∈ {−1, 1}N , (1)

where N = 2Nr and Φ(·) represents a complex non-linear
function (called end-to-end channel transfer function). Also,
z̃ = [z̃1, . . . , z̃N ] ∈ RN denotes the noise vector whose ele-
ments are independent and identically distributed as circularly
symmetric complex gaussian random variables with zero-mean
and variance σ2

z , i.e., z̃i ∼ CN (0, σ2
z).

It is remarkable that Φ(·) can capture all the intermediate
relays’ operations and all the local wireless channels in the
network. Although the proposed method in this paper can
be applied to any relay’s operation and local channel model,
we assume that in our simulations, each relay with a sin-
gle antenna performs an amplify-and-forward (AF) and each
local channel is assumed as Rayleigh fading. Also, for the
simplicity, it is assumed that each relay has the same power
constraint with the sources as Pt and all the additive noises at
the receivers in the network are circularly symmetric complex
gaussian random variables with zero-mean and variance σ2

z .
We define the signal-to-noise ratios (SNRs) as SNR = Pt/σ

2
z .

The proposed communication framework consists of train-
ing and data transmission phases (see Fig. 1). Note that during
these phases, a wireless channel is assumed to be fixed.
• Training phase: In this phase, K sources transmits

“known” sequences (i.e., pilot signals) so that the
data center can learn a non-linear function Φ(·). With
machine-learning perspective, the data center collects the
data and the corresponding labels. LetM = {0, . . . ,m−
1}K denote the set of all possible messages of the K

Pilots … Pilots Data Data Data Data…

Pilot Signal Transmissions Data Transmissions

Training phase
(estimate	𝜇̂, 𝜖̂ + hierarchical clustering trees)

Fig. 1. Illustration of the training and data transmission phases within a
coherence time.

sources. For each class c ∈ M, the K sources transmit
T pilot signals x̃ci for i = 1, ..., T . From (1), the data
center can collect the labelled data set

D =
{
r̃ci ∈ {−1, 1}N : c ∈M, i = 1, ..., T

}
. (2)

• Data transmission phase: Given the D and a new
observation r, the data center detects the class of r (i.e.,
users’ messages ŵ = (ŵ1, ..., ŵK)) as

ΨD(r) = c ∈M, (3)

which is what we will propose in this paper.

III. SL DETECTORS FOR BINARY DATA

In machine-learning perspective, the above detection prob-
lem (a.k.a., the supervised-learning problem) can be catego-
rized into two approaches [16] as non-parametric and para-
metric learnings. A non-parametric learning does not require
a priori knowledge on data set D (e.g., a distribution of data)
such as k-nearest neighbor (kNN), decision tree, and support
vector machine (SVM). Whereas, in parametric learnings as
logistic regression, naive bayes, and neural networks, data is
assumed to be generated from a probabilistic model with some
parameters (e.g., Gaussian model). Then, they are optimized
from the given data set D. Therefore, it is very important
to choose a proper probabilistic model based on a priori
knowledge (or domain knowledge) on the data set D.

We briefly review the existing (parametric or non-
parametric) SL detectors. It is noticeable that they can be
immediately applied to a distributed reception system since
the SL detector do not rely on system models.
• Non-parametric learning: In [11], empirical maximum-

likelihood detector (eMLD) and minimum mean distance
detector (MMD) have been presented. The eMLD can be
viewed as kNN classifier where the k nearest data points
from a new observation (or received signal) are identified
and then, the majority voting is performed to find a class
(e.g., users’ messages). Also, the MMD is the special case
of eMLD with k = 1 for the purpose of low-complexity.

• Parametric learning: In this approach, it is most impor-
tant to seek a proper probabilistic model for a given data
set D. As in [11], [16], a Gaussian model is widely used
where the data r ∈ D is assumed to be generated from the
probability distribution P (r|c,θc) = N (µc,Σc). Here,
c ∈ M denotes the class (or message) of the K sources
and θc represents the parameter vector for the class c.
Using the given D = {r̃ct : t = 1, ..., T}, we can optimize
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θc = (µ̂c, Σ̂c) via maximum likelihood (ML) estimation
as

µ̂c =
1

T

T∑
t=1

r̃ct (4)

Σ̂c =
1

T

T∑
t=1

(r̃ct − µ̂c)(r̃
c
t − µ̂c)

T, (5)

where µ̂c and Σ̂c represent the mean and the covari-
ance of the training data associated with the class c,
respectively. When the training data is not sufficient,
the covariance matrix tends to be rank-deficient and ill-
conditioned. This problem can be resolved by shrinkage
estimator [17]. Given the θ̂c = (µ̂c, Σ̂c), the optimal ML
detector is derived as

ΨD(r) = argmin
c∈M

(r− µ̂c)
TΣ̂−1

c (r− µ̂c). (6)

In particular, the distance measure in the above is referred
to as Mahalanobis distance, and the inverse matrix of Σ̂c
in (5) is called a precision matrix. When Σc = I for all c,
as a special case, the resulting detector is equivalent to the
Minimum-Centered-Distance (MCD) detector proposed
in [11].

It was shown in [11] that, among the above SL detectors,
MCD and eMLD detectors show the best performances. Since
the complexity of eMLD is higher than MCD, the latter was
highly recommended. However, one can argue that Gaussian
model in (6) might not be suitable to model the distribution
of binary data r ∈ {1,−1}N . This motivates us to propose a
SL detector using a novel Bernoulli-like probabilistic model
(see Section IV).

IV. THE PROPOSED (PARAMETRIC) SL DETECTOR

We propose a novel SL detector based on a Bernoulli-
like model, where data is assumed to be generated from the
following probability distribution:

P (r|c,θc) =

N∏
i=1

ε
1{ri 6=µc,i}

c,i (1− εc,i)1{ri=µc,i} , (7)

where θc = (µc, εc) for c ∈ M, εc,i < 0.5 for all i, and
1{A} represents an indicator function with 1{A} = 1 if A is
true, and 1{A} = 0, otherwise. Given the training data for the
class c (e.g., {r̃ct : t = 1, ..., T}), the parameter vector θc is
optimized using ML estimation as

(µ̂c, ε̂c) = argmax
(µc,εc)

T∏
t=1

P (r̃ct |µc, εc). (8)

By plugging (7) into (8), the optimal parameters are obtained
by taking the solutions of

(µ̂c, ε̂c) = argmax
(µc,εc)

N∏
i=1

T∏
t=1

ε
1{r̃c

t,i
6=µc,i}

c,i (1− εc,i)
1{r̃c

t,i
=µc,i} .

For any εc,i < 0.5, we can see that the above objective function
is maximized by taking

µ̂c,i = sign

(
T∑
t=1

r̃ct,i

)
for i = 1, ..., N, (9)

independently from the choices of εc,i’s. We let

Nd =

T∑
t=1

1{r̃ck,i 6=µ̂c,i} and Ns =

T∑
t=1

1{r̃ck,i=µ̂c,i}. (10)

Then, we can find an optimal εc,i independently from the other
εc,j’s with i 6= j by taking the solution of argmaxεc,i ε

Nd
c,i (1−

εc,i)
Ns . Taking

∂(ε
Nd
c,i (1−εc,i)Ns )

∂εc,i
= 0, the optimal εc,i is

obtained as

ε̂c,j =
1

T

T∑
t=1

1{µ̂c,j 6=r̃cj,i}. (11)

With the parameter vector θ̂c = (µ̂c, ε̂c) in (9) and (11),
the optimal ML estimator (i.e., the proposed SL detector) is
derived as

ΨD(r) = argmin
c∈M

(r− µ̂c)
Tdiag [− log ε̂c,i] (r− µ̂c), (12)

where diag[di] denotes the diagonal matrix with the i-th
diagonal element di and its dimension is easily obtained from
the context.

V. THE PROPOSED LSL DETECTOR

In the proposed SL detector in (12), the computational
complexity is expensive as the size of search-space (e.g.,
|M| = mK) grows exponentially with K. To address this
problem, we present a low-complexity SL (LSL) detector
which is performed over the reduced search-space. The major
contribution of this section is to build the reduced search-space
by efficiently removing unnecessary candidates from the M
according to a current observation r.

The proposed method to yield the reduced search-space can
be outlined as follows (see Fig 1):

Training phase: From the training data D = {rct : t =
1, ..., T, c ∈M}, the parameters for the proposed SL detector
are obtained from (9) and (11) as Û = {µ̂c : c ∈ M} and
Ê = {ε̂c : c ∈ M}. Then, Û is decomposed using k-medoids
clustering in [18], yielding a hierarchical clustering tree (see
Algorithm 1). This algorithm starts with all the elements in D
and decomposes them into J clusters, where J is a parameter
of the algorithm and called branching factor. The clusters
are constructed by selecting J elements randomly as cluster
centroids and then by assigning other elements to one of the
clusters with the closest centroid. The algorithm is repeated
recursively until the number of elements in each cluster is
below the maximum leaf size J , where in this case, that node
becomes a leaf node. In addition, Algorithm 1 is performed
over W times to construct the W trees having possibly
different decomposition structures, denoted by {T1, . . . , TW }.
The use of the multiple trees can improve the quality of the
resulting reduced search space.

Data transmission phase: Given a current observation r,
the search algorithm begins with traversing multiple trees in
parallel. Note that W multiple trees share a single priority
queue (Q) where the nodes in the priority queue are arranged
in the shortest Hamming distance order, with respect to the
current observation r. Then, it can efficiently produce the
reduced search-space S(r) ⊆ M which only contains the
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nearest µ̂c’s to the r. The detailed procedures are given in
Algorithm 2. Then, the proposed SL detector is performed as

ΨD(r) = argmin
c∈S(r)

(r− µ̂c)
Tdiag [− log ε̂c,i] (r− µ̂c). (13)

Algorithm 1 Hierarchical clustering tree h(Û , J)

Input: Û = {µ̂1, ..., µ̂|M|}
Output: hierarchical clustering tree T
Parameter: J (maximum leaf size and branching factor)

if |Û | < J then
create leaf node with the elements in Û

else
P ← select J elements randomly from Û (centroids)
C ← cluster the elements in Û with the centroids P
for do each cluster Ci ∈ C = {C1, ..., CJ}

create non-leaf node with centroid Pi
recursively apply the algorithm h(Ci, J) (with the

updated Ci)
end for

end if

From now on, we will analyze the computational complexity
of the proposed LSL detector which consists of construction
and search complexities. Note that the construction complexity
is taken only once during each coherence time and thus, it can
be negligible when the coherence time is sufficiently large
(i.e., a channel is slowly changed). Recall that N denotes the
observation dimensionality (e.g., N = 2Nr) and mK denote
the number of all possible messages of K users.

Construction complexity: On the construction of k-
medoids hierarchical trees, the complexity of distance-
computation is equal to O(mKN) with respect to a node
selected as cluster centroid. Given the branch factor J , it
constructs J distinctive clusters at each tree level and thus, the
corresponding complexity is equal to O(mKNJ). Assuming
that W multiple trees have balanced structures, the height of
the tree will be K logJ m. Then, the overall complexity for
the forest construction is equal to O(mKNJWK logJ m).

Search complexity: First, it starts with traversing the
forest {T1, . . . , TW } simultaneously. Each node computes the
distances with the J child nodes to find the closest node
at each level. This computation repeats until it reaches to
a leaf node at level K logJ m for each tree Ti. The cor-
responding complexity is O(WJNK logJ m). According to
the Algorithm 2, it stops after examining Lmax elements.
Except the first step, the remaining steps start with a node
popped out from priority queue, which is likely to be located
at a level between root and leaf. Assuming that every search
returns J elements in a reached leaf node and the starting
point is the root, the corresponding complexity is equal to
O(WJNK logJ m + (Lmax − WJ)NK logJ m). Note that
this complexity is an upper bound and an actual complexity
becomes lower both when leaf nodes of the trees return
duplicate codes simultaneously and when trees would have
skewed structures. Also, the search complexity for priority
queue is negligible compared to the tree search complexity.

Algorithm 2 Searching parallel hierarchical clustering trees
Input: hierarchical clustering trees {Ti : i = 1, ...,W} and a
new observation r
Output: S(r) (reduced search space associated with r)
Parameter: Lmax (the desired size of a reduced search space,
e.g., |S(r)| = Lmax)

1: `← 0 (` = number of points µ̂c searched)
2: Q ← empty priority queue
3: R ← empty priority queue
4: for each tree Ti do
5: call TraverseTree(Ti, Q, R)
6: end for
7: while |Q| 6= 0 and ` < Lmax do
8: j ← top index of Q
9: call TraverseTree(j,Q,R)

10: end while
11: return K top points from R

1: procedure TRAVERSETREE(j,Q,R)
2: if node j is a leaf node then
3: S ∆

= {all the elements in the leaf node j}
4: R = R∪ S and `← `+ |S|
5: else
6: C ← child nodes of node j
7: i← closest node of C to the r
8: Cp ← C \ {i}
9: add all nodes in Cp to Q

10: call TraverseTree(i, Q, R)
11: end if
12: end procedure

In sum up, the overall complexity can be well-approximated
as

O(NLmax(K logJ m+ 1)), (14)

where NLmax accounts for the detection complexity in (13).
It is noticeable that the complexity of the proposed low-
complexity SL detector grows linear with K while the other
SL detectors grow exponentially with K. The approximated
complexity in (14) will be used in Section VI to compute the
complexity of the proposed LSL detector.

VI. NUMERICAL RESULTS

We evaluate the average bit-error-rate (BER) performances
of the proposed SL detector over the existing SL detectors
in [11]. Also, it is shown that the proposed low-complexity
SL detector achieves the original performance with much
lower complexity. For the simulations, QPSK modulation and
Rayleigh fading are assumed. When a training overhead is
small (e.g., T is small), an empirical error-probability (e.g.,
εc,i) can be underestimated as zero although it is indeed not.
Since this can cause severe error-floor problem, we assign a
minimum value of ε̂c,i as 10−3.

Fig. 2 shows the BER performances of the proposed SL
detector and the existing one in [11]. Here, the number of
training for each c is set by 15 (e.g., T = 15). We considered
the two hop distributed reception network for the following
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0 2 4 6 8 10 12 14 16 18 20
SNR [dB]

10-5

10-4

10-3

10-2

10-1

BE
R

The proposed SL detector (# of relays=128)
The SL detector [11] (# of relays=128)
The proposed SL detector (# of relays=64)
The SL detector [11] (# of relays=64)

Fig. 2. K = 8, Nr = 64, and T = 15. Performance comparisons of the
proposed SL detector and the existing SL detectors.

two scenarios: i) 64 intermediate relays; ii) 128 intermediate
relays. From Fig. 2, we can observe that the proposed SL
detector outperforms the existing SL detector, which implies
that the proposed Bernoulli-like model is more suitable to
binary data than Gaussian model.

Fig. 3 shows the BER performances of the proposed low-
complexity detector according to Lmax in Algorithm 2. Also,
we set J = 32 in Algorithm 1. In this simulation, the
benefit of low-complexity detector stands out, since it can
achieve the optimal performance perfectly with only 6% of
original complexity. Thus, it is expected that the use of
low-complexity technique is more beneficial for a large-scale
distributed reception system (e.g., a large K).

VII. CONCLUSION

We proposed a supervised-learning (SL) detector by in-
troducing a novel Bernoulli-like model as data probability
distribution. Differently from a widely used Gaussian model, it
can exploit the structure of binary data (e.g., one-bit quantized
observation). We further developed the low-complexity SL
detector with the aid of the fast kNN algorithm. Simulation re-
sults demonstrated that the proposed low-complexity detector
almost achieves the original performance with a significantly
lower complexity. Therefore, the proposed detector would be
a good practical candidate for multihop distributed reception
systems. We would like to emphasize that the proposed SL
detector can be straightforwardly applied to any multihop
relay network with a single destination. On going work, we
are investigating to generalize the Bernoulli-like model by
capturing the correlation of elements in an observed data. Also,
it is an interesting future work to extend the proposed SL
detector for the multihop communication systems with low-
resolution ADCs (e.g., 2∼ 3-bit ADCs).
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