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Abstract—In cellular heterogeneous networks (HetNets), a
number of distributed base stations cooperatively provide services
to multiple mobile users. This paper addresses joint base-station
activation and coordinated beamforming design for downlink
transmission in HetNets. To this end, a mixed integer program
is formulated to optimize the total power consumption of a
HetNet. A novel approach based on Benders’ decomposition is
then put forth to obtain the optimal solution for the problem
of interest with guaranteed convergence. Building on our new
formulation, a dual-subgradient algorithm is also proposed to
find an approximate solution in polynomial time. The proposed
approaches can be generalized to more general setups, including
robust beamforming designs under channel uncertainty, and
coordinated beamforming for multi-cell scenarios.

Index Terms—Cellular heterogeneous networks, coordinated
transmission, base station activation, downlink beamforming,
Benders’ decomposition, subgradient method.

I. INTRODUCTION

To meet the explosively growing demand for mobile date

services, the current cellular wireless networks are evolving

into heterogeneous networks (HetNets) consisting of many

small cells [2]–[4]. It has been shown that the HetNets with

densely deployed base stations can have great advantages over

the traditional cellular architecture comprising a few high-

power base stations (BSs) [8].

In HetNets, the coexistence of many close BS transmitters

can introduce severe mutual interference. To overcome this is-

sue, coordinated transmissions based architectures, such as the

coordinated multi-point process (CoMP), have been proposed

for next-generation cellular networks [9]–[13]. To fully exploit

their potentials, coordinated beamforming and BS cooperation

were investigated in [14]–[20]. The growing number of small

cells has also invoked the interest of investigating the energy

efficiency of HetNets. The related works on energy efficiency

of cellular networks have been investigated in [5]–[7]. Due to
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dense deployment of the small-cell BSs, the electricity cost

has become a substantial part of the operational expenditure

for cellular service providers. In addition, CO2 emissions by

cellular networks has contributed a significant portion of the

global “carbon footprint” [21]. Driven by these economic and

ecological concerns, energy-saving coordinated beamforming

schemes have been developed in [15], [19], [22]–[24].

The spectral- and energy-efficiency can be substantially

improved by the coordinated transmissions with full BS coop-

eration, at the cost of substantially increased operational and

backhaul communication overheads. To balance the benefits

and coordination overheads, a mixed-integer conic program-

ming problem was formulated to pursue joint BS activa-

tion/clustering and coordinated beamforming schemes that

minimize the total power consumption for CoMP downlink

[19]. A branch-and-cut scheme was developed to approach

globally optimal solution with a very high complexity, while

heuristic inflation and deflation procedures were put forth to

find an approximate solution in polynomial time, at the cost

of substantial performance loss. Based on a sparsity pursuit

paradigm, other sub-optimal algorithms were also developed

to address the spectral- and/or energy-efficiency for HetNets

[20], [24], [26], [27]. A common theme of these approaches is

to add a proper sparsity regularizer into the objective functions

to render the desired group sparsity structure of the resultant

coordinated beamforming vectors across the BSs.

In this paper, we develop novel approaches to pursue

efficient joint BS activation and coordinated downlink beam-

forming design with affordable complexity. To this end, a

new mixed-integer programming problem is formulated, where

the group sparsity constraints are imposed in an explicit

and quantitative manner, rather than implicitly through the

addition of sparsity regularizers as in [20], [24], [26], [27]. The

judiciously formulated mixed integer program has a separable

structure in the binary variables of BS activation indices and

the continuous variables of beamforming vectors. Relying

on the generalized Benders’ decomposition approach [31], a

master problem and an associated coordinated beamforming

design subproblem are formulated from the decomposition of

the original problem. By solving a series of relaxed master

programs and the associated convex subproblems, the pro-

posed Benders’ decomposition based approach can find the

global optimum with only a finite number of iterative com-

putation. Note that a recent paper has also used the Benders’

decomposition approach to address joint BS association and

power control for HetNets [25]. However, [25] only relied

http://arxiv.org/abs/1902.03078v1
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on the original Benders’ decomposition to consider single-

antenna BSs with limited coordination (via power control,

without coordinated beamforming among BSs). Capitalizing

on the generalized Benders’ decomposition, our approach is

able to address more sophisticated coordinated beamforming

design in multi-antenna BS scenario. In addition, based on

our novel formulation, we also develop a low-complexity

dual-subgradient based method to find an approximate (near-

optimal) solution for our problem of interest in polynomial

time.

Our contributions are summarized as follows.

1) We explicitly formulate a new mixed-integer program-

ming problem with group sparsity constraints in an

explicit form. The formulation leads to a naturally sepa-

rable structure in the binary variables and the continuous

variables, which is well suited for implementation of

Benders’ decomposition.

2) We propose a novel generalized Benders’ decomposition

method to obtain the globally optimal solution with

affordable complexity.

3) We also develop a low-complexity dual-subgradient

based method to find a near-optimal solution in poly-

nomial time.

4) We further generalize our proposed framework to robust

beamforming designs accounting for CSI errors, and to

multi-cell HetNet setups performing partial coordinated

transmissions.

We organize the remainder of this paper as follows. Section

II describes the system models. The proposed Benders’ de-

composition approach to joint BS activation and beamforming

design for coordinated transmission is proposed in Section

III. A dual-subgradient based method is further developed in

Section IV. Extensions of the proposed approaches to more

general setups are outlined in Section V. Section VI provides

simulation results to corroborate the superior performance of

the proposed schemes over the existing alternatives.

Notations: Boldface fonts denote vectors or matrices, cal-

ligraphy fonts denote sets, CL×K and RL×K denote the L-

by-K dimensional complex and real space; (·)T denotes trans-

pose, and (·)H denotes conjugate transpose; diag(P1, . . . , PL)
denotes a diagonal matrix with P1, . . . , PL as the diagonal

entries; Re(·) and Im(·) denote the real and imaginary parts

of a complex scalar; | · | denotes norm of a complex scalar, and

‖·‖ the Euclidean norm of a complex vector; 0 denotes all-zero

vectors; I denotes the identity matrix; the vector inequalities

are defined element-wise; tr(X) and rank(X) denote the trace

and rank operators for matrix X , respectively; X � 0 means

that a square matrix X is positive semi-definite.

II. SYSTEM MODELING

Consider a downlink “single-cell” HetNet scenario where a

set of distributed BSs L := {1, . . . , L} transmit to a set of

users K := {1, . . . ,K} [20], [26]; see Fig. 1. Generalization

to multi-cell HetNet will be outlined in Section IV-B. Suppose

that each BS is equipped with Nl ≥ 1 antennas, while each

user has only a single antenna. A central entity, which has the

Central Processor

Fiber

BS

BS

BS

BS

BS

BS

BS

Fig. 1. A cellular heterogeneous network.

knowledge of all the users’ data and global channel station in-

formation (CSI), coordinates the cooperative communications

among the BS within the cell, through a low-latency backhaul.

As the number of distributed BSs grows large, energy

efficiency becomes a key issue. For an actively transmitting

BS, a significant portion of power is required for backhaul

communications and signal processing, etc. On the other hand,

an inactive BS can be turned into a sleep mode to cut down the

aforementioned implementation power consumption. Denote

the implementation power with “active” mode as πl, and that

with the “sleep” mode as ρl. Typically πl is significantly larger

than ρl in practice. For convenience, we can simply assume

πl > 0 Watts and ρl = 0 Watt without affecting the intended

design [24].

Since πl is non-negligible, we may turn off some active BSs

to minimize the total power consumption. Hence, the central

controller needs to optimally determine the (sub-)set of active

BSs and the beamforming vectors for active BSs subject to

various physical constraints.

Denote by hlk ∈ CNl×1 the channel vector and by wlk ∈
CNl×1 the transmit-beamforming vector from BS l to user k,

∀l, ∀k. Define LA ⊆ L as the subset of active BSs. The signal

transmitted from an active BS to user k is then

xl =

K∑

k=1

wlksk, ∀l ∈ LA (1)

where sk is the data signal. Assume that sk is a complex

random variable with zero mean and unite variance. The

received signal at user k is then

yk =
∑

l∈LA

hH
lkwlksk +

∑

i6=k

∑

l∈LA

hH
lkwiksi + zk (2)

where
∑

l∈LA
hH
lkwlksk is the desired signal for user k,

∑

i6=k

∑

l∈LA
hH
lkwiksi is the inter-user interference, and zk

denotes the additive complex Gaussian noise with zero mean

and variance σ2
k.



3

Based on (1), we can express the signal-to-interference-plus-

noise-ratio (SINR) at user k as

SINRk =
|∑l∈LA

hH
lkwlk|2

∑

i6=k(|
∑

l∈LA
hH
lkwik|2) + σ2

k

. (3)

Let γk denote the SINR target per user, ∀k ∈ (1, . . . ,K).
The power optimization problem can be formulated as follows.

min
({wlk}, LA)

∑

l∈LA

K∑

k=1

‖wlk‖2 +
∑

l∈LA

πl (4a)

s.t.
|∑l∈LA

hH
lkwlk|2

∑

i6=k(|
∑

l∈LA
hH
lkwik|2) + σ2

k

≥ γk, ∀k, (4b)

K∑

k=1

‖wlk‖2 ≤ Pl, ∀l ∈ LA (4c)

where Pl denotes the maximum transmit-power allowed per

BS l.

III. JOINT DESIGN OF BS ACTIVATION AND

COORDINATED BEAMFORMING

Power minimization problem (4) in Sec. II is actually a

more generalized optimization problem of the one in [26].1

The problem is not convex and generally NP-hard. To obtain

an approximate solution, [20], [24], [26] relied on group

sparsity based relaxations to develop heuristic solvers; yet,

global optimum is not guaranteed. In this section, we firstly

show how the problem (4) can be reformulated into a mixed-

integer program. Building on such a reformulation, we then

develop an efficient algorithm to obtain a globally optimal

solution based on Benders’ decomposition.

A. Mixed Integer Programming Formulation

Introduce a binary vector a := [a1, . . . , aL]
T where al ∈

{0, 1}, ∀l, indicates whether the BS l is active (al = 1) or not

(al = 0). Let π := [π1, . . . , πL]
T collect the implementation

powers for the BSs. Problem (4) can be rewritten as

min
({wlk}, a)

L∑

l=1

K∑

k=1

‖wlk‖2 + aTπ (5a)

s.t.
|∑L

l=1 h
H
lkwlk|2

∑

i6=k(|
∑L

l=1 h
H
lkwik|2) + σ2

k

≥ γk, ∀k (5b)

K∑

k=1

‖wlk‖2 ≤ alPl, ∀l (5c)

al ∈ {0, 1}, ∀l. (5d)

In our judicious formulation (4), the summations in the objec-

tive function (5a) and the constraints (5b) are over all l ∈ L.

On the other hand, the beamforming weights {wlk, ∀k} are

1If each BS has the same implementation power, i.e., πl = 1/θ, ∀l, then the
second term in the objective function:

∑
l∈LA

πl ≡ 1/θ‖{‖wl·‖
2}l∈L}‖0 ,

where wl· := [wT

l1
, . . . ,wT

lK
]T . Then (4) becomes the same as the “single-

cell” version of problem (7) in [26].

forced to zero in case al = 0, i.e., ∀l /∈ LA , through the

constraint (4c).

The non-convex constraint (5b) can be reformulated into

a convex form as follows. Let hk := [hT
1k, . . . ,h

T
Lk]

T and

wk := [wT
1k, . . . ,w

T
Lk]

T . It can be easily seen that SINRs

would not be affected by adding an arbitrary phase rotation

to the beamforming vectors wk. By choosing a phase such

that hH
k wk is real and nonnegative, we can rewrite the SINR

constraints (5b) into a convex second-order cone (SOC) form

[28]:
√
∑

i6=k

|hH
k wi|2 + σ2

k ≤ 1√
γk

Re(hH
k wk), Im(hH

k wk) = 0.

(6)

Define

Bl := diag
(

0, . . . , 0
︸ ︷︷ ︸
∑

l−1

n=1
Nn

, 1, . . . , 1
︸ ︷︷ ︸

Nl

, 0, . . . , 0
︸ ︷︷ ︸

∑
L

n=l+1
Nn

)

. (7)

With W := {wk, ∀k}, the problem (5) becomes:

min
(W , a)

K∑

k=1

wH
k wk + aTπ (8a)

s.t.

√
∑

i6=k

|hH
k wi|2 + σ2

k ≤ 1√
γk

Re(hH
k wk),

Im(hH
k wk) = 0, ∀k (8b)

K∑

k=1

wH
k Blwk ≤ alPl, ∀l (8c)

al ∈ {0, 1}, ∀l (8d)

If we relax the binary variable al ∈ {0, 1} to a real variable

with 0 ≤ al ≤ 1, the problem then turns into a computationally

solvable convex SOC program (SOCP) [29]. The branch-and-

bound method can rely on solving a series of such SOCPs to

compute the global optimum for (8). However, the computa-

tional complexity with such a method can be formidably high

as the number of optimization variables grows.

B. Benders’ Decomposition

We next propose a Benders’ decomposition method to

obtain the globally optimal solution for (8) with afford-

able complexity. Define functions f1(W ) :=
∑K

k=1 w
H
k wk,

and f2(a) := aTπ. Define vector functions G1(W ) :=
{
∑K

k=1 w
H
k Blwk, ∀l} and G2(a) := {−alPl, ∀l}. Further,

let

f(W ,a) := f1(W ) + f2(a), (9)

G(W ,a) := G1(W ) +G2(a). (10)

Let W denote the set of all W satisfying (8b), and A the set

of all a satisfying (8d). We can then rewrite (8) as

min
(W , a)

f(W ,a)

s. t. G(W ,a) ≤ 0, W ∈ W , a ∈ A
(11)

Note that functions f(W ,a) and G(W ,a) in (9)–(10) are

linearly separable in a and W , Hence, a Benders’ decompo-

sition approach can be developed to solve (11). Relying on
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the concept of Benders’ partitioning, we can deal with (11)

in α-space instead of (W ,a)-space. In particular, we rewrite

(11) as:

min
a

v(a), s. t. a ∈ A ∩ V (12)

where

v(a) := min
W∈W

f(W ,a), s. t. G(W ,a) ≤ 0; (13)

V := {a : G(W ,a) ≤ 0 for some W ∈ W}. (14)

Note that the set V contains all a for which the problem in (13)

is feasible, and the set A∩V is in fact the a-space projection

of the feasible region with problem (11).

The projected problem (12) is clearly equivalent to (11). As

both the function v(a) and the set V are implicitly defined via

(13) and (14), problem (9) is hard to be directly tackled. To

solve it, we rely on a dual representation of V which is given

by the intersection of a collection of regions containing this

set. Introduce a dual variable vector λ := [λ1, . . . , λL] ∈ RL.

According to [31, Theorem 2.2], we immediately have:

Lemma 1: A point a ∈ V if and only if it satisfies the

following (an infinite number of) constraints:
[

min
W∈W

λTG(W ,a)
]

≤ 0, ∀λ ∈ Λ (15)

where the set Λ := {λ : λ ≥ 0, and 1
Tλ = 1}.

Lemma 1 in fact is a direct consequence of duality theory.

Since the functions in G(W ,a) are convex in W , the

problem (13) is convex for any given a ∈ A ∩ V . Let

µ := [µ1, . . . , µL] ∈ RL. By the strong duality between (13)

and its dual problem, we can also mimic the proof of [31,

Theorem 2.3] [29] to establish:

Lemma 2: For any a ∈ A ∩ V ,

v(a) = max
µ≥0

[

min
W∈W

(

f(W ,a) + µTG(W ,a)
)]

. (16)

Based on Lemmas 1–2, we can then turn (12) into an

equivalent form:

min
a∈A

{

max
µ≥0

[

min
W∈W

(

f(W ,a)+µTG(W ,a)
)]}

, s. t. (15).

Introduce an auxiliary variable a0 ∈ R. The problem can be

further reformulated as:

min
(a∈A, a0)

a0 (17a)

s.t. a0 ≥ min
W∈W

(

f(W ,a) + µTG(W ,a)
)

, ∀µ ≥ 0

(17b)
[

min
W∈W

λTG(W ,a)
]

≤ 0, ∀λ ∈ Λ (17c)

For convenience, we henceforth call (17) a master problem.

As there are infinitely many constraints in the problem (14),

a natural strategy to solve it is relaxation. Following Benders’

decomposition approach, we can solve a relaxed version of

(17) ignoring all but a few constraints in the initial stage. If

the returned solution cannot satisfy the ignored constraints, we

select one of the violated constraints and add it to the relaxed

problem, then solve the problem again. This continues until

an optimal solution satisfying all the constraints is found, or

a termination criterion is met.

A key step with the aforementioned approach is how to

check the (in-)feasibility of a solution for a relaxed version

of (17) with respect to the ignored constraints and, if it is

infeasible, how to select a violated constraint. Interestingly,

this can be done by solving the problem in (13).

From now on we refer to the problem in (13) for a given a as

[(13)–a]. Given that (â, â0) is an optimal solution for a relaxed

version of (17), it follows from the definition of V and Lemma

1 that â satisfies (17c) if and only if the problem [(13)–â] is

feasible. In addition, if [(13)–â] is feasible, then Lemma 2

infers that (â, â0) satisfies (17b) if and only if â0 ≥ v(â).
Indeed, the problem [(13)–â] is a convex SOCP that admits

efficient polynomial-time solver. Therefore, [(13)–â] is suit-

able for checking the feasibility of (â, â0), and any (primal-

)dual type solver can produce an index of a violated constraint

in case that (â, â0) is infeasible. By an index of a violated

constraint, we refer to a vector µ̂ ≥ 0 such that

â0 < min
W∈W

(

f(W , â) + µ̂TG(W , â)
)

(18)

if (17b) is violated, or a vector λ̂ ∈ Λ such that
[

min
W∈W

λ̂
T
G(W , â)

]

> 0 (19)

if (17c) is violated. Actually, given that [(13)–â] is infeasible,

any dual-type solver would produce a non-zero λ̃ satisfying

(19). Then we are able to obtain the required λ̂ = λ̃/‖λ̃‖,

i.e., by normalizing λ̃. Furthermore, given that [(13)–â] is

feasible and it has a finite optimal value, the dual-type solver

can provide an µ̃ for its dual problem as a byproduct. By

definition, we have

µ̃ = argmax
µ≥0

[

min
W∈W

(

f(W , â) + µTG(W , â)
)]

. (20)

If we have µ̂ ≥ 0 satisfying (18), it must hold

â0 < min
W∈W

(

f(W , â) + µ̂TG(W , â)
)

≤ min
W∈W

(

f(W , â) + µ̃TG(W , â)
)

. (21)

This implies that µ̃ is an index of a violated constraint; indeed,

it is the index for the most violated constraint. Therefore, we

can set µ̂ ≡ µ̃.

In a nutshell, we show that [(13)–â] can be used to check

the feasibility of (â, â0) for the master problem (17), and to

provide an index (λ̂ or µ̂) of a (most) violated constraint in

the case of infeasibility. This then enables development of the

Benders’ decomposition approach to solve (17).

C. Proposed Algorithm

We next propose a Benders’ decomposition algorithm to

solve the intended joint BS activation and coordinated beam-

forming design problem. Define

L∗(α,µ) := min
W∈W

{f(W ,a) + µTG(W ,a)}

= min
W∈W

{
∑

k

wH
k wk + aTπ +

∑

l

µl(
∑

k

wH
k Blwk − alPl)}

= aT (π − µP ) + C1(µ) (22)
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where µ := {µl, ∀l}, P := diag(P1, . . . , PL), and C1(µ) :=
minW∈W{∑k w

H
k wk +

∑

l µl

∑

k[w
H
k Blwk]}.

If µ̂ is an optimal dual vector for [(13)–â], it follows that

L∗(a, µ̂) = aT (π − µ̂P ) + v(â)− âT (π − µ̂P ), (23)

i.e., C1(µ̂) = v(â) − âT (π − µ̂P ), which can be really

obtained after [(13)–â] is solved.

In a similar way, let us define:

L∗(a,λ) := min
W∈W

λTG(W ,a)

= −aTλP + C2(λ) (24)

where C2(λ) := minW∈W{∑l λl

∑

k[w
H
k Blwk]}.

We now propose an efficient algorithm based on Benders’

decomposition to compute a solution (W ∗,a∗) for the prob-

lem (5) of interest:

Algorithm 1: Benders’ decomposition method

Initialize: Given an accuracy level ǫ ≥ 0 and a

vector â ∈ A, set p = q = 0, a lowerbound

LB = −∞, and a upperbound UB = ∞.

Repeat:

1) Solve [(13)–â]; do according to one of the fol-

lowing two cases:

a) Problem [(13)–â] is infeasible: In this case, â /∈
V . Obtain a λ̂ ∈ Λ satisfying (19) and compute

the function L∗(a, λ̂). Let q = q+1, and λq =
λ̂; go to Step 2).

b) Problem [(13)–â] is feasible, i.e., â ∈ V :

Denote by v(â) and W (â) the optimal value

and optimal solution for [(13)–â].

i) If v(â) ≤ LB + ǫ, terminate; output W ∗ =
W (â), and a∗ = â.

ii) Otherwise, determine the optimal multiplier

µ̂ and function L∗(a, µ̂). If v(â) < UB, update

UB = v(â), W ∗ = W (â), and a∗ = â. Let

µp = µ̂ and p = p+ 1; go to Step 2).

2) Solve the relaxed master problem:

min
(a∈A, a0)

a0

s. t. a0 ≥ L∗(a,µj), j = 1, . . . , p

L∗(a,λj) ≤ 0, j = 1, . . . , q

(25)

Denote by (â, â0) an optimal solution for (25). If

UB ≤ â0 + ǫ, terminate; output (W ∗,a∗). Other-

wise, let LB = â0; return to Step 1).

In the proposed Algorithm 1, we obtain v(â) in Step 1-

b) by solving [(13)–â] for a feasible â ∈ A ∩ V . This

provides an upperbound for the optimal value of the projected

problem (12), which is in turn also an upperbound for that

of the original problem (5). Meanwhile, since â0 obtained

in Step 2) is the optimal value of the equivalent master

problem (17) with some of its constraints removed, it certainly

provides a lowerbound for the optimal value of (4). Clearly,

the sequence of values for â0 obtained at successive executions

of Step 2) is monotonically nondecreasing, as more and more

constraints are added to the relaxed master problem (25).

Hence, the current â0 always gives the greatest lowerbound;

that is why we can set LB = â0. However, the sequence of

values for v(â) is not guaranteed to be monotonically non-

increasing. Therefore, we need to compare and store the best

known upperbound so far, i.e., the smallest v(â) found at all

previous iterations into UB in Step 1-b). Finally, when we

have v(â) ≤ LB + ǫ in Step 1-b) or UB ≤ â0 + ǫ in Step 2),

we actually have UB ≤ LB+ ǫ. For these situations, a desired

ǫ-optimal solution (W ∗,a∗) is obtained for (5).

In Step 2) of Algorithm 1, we need an appropriate algorithm

to solve (25). Rewrite the problem more explicitly:

min
(a, a0)

a0

s. t. aT (π − µjP ) ≤ a0 − C1(µj), j = 1, . . . , p

− aTλjP ≤ −C2(λj), j = 1, . . . , q

al ∈ {0, 1}, ∀l

(26)

For a fixed a0, the problem is in fact a binary integer feasi-

bility problem which can be solved by e.g., Matlab bintprog

function. By solving a series of such binary integer problems,

we can utilize a bisection search to determine the optimal â0
and the corresponding optimal â.

In fact, the brand-and-bound method is also adopted by

the binary integer program solvers (e.g., Matlab bintprog).

However, different from the original mixed integer program

(8), the number of optimized variables in (25) is greatly

reduced; thus, the complexity becomes affordable. In addition,

the number of optimized variables for the subproblem [(13)–

â] becomes smaller as well; as a result, a reduced complexity

is required in computing the optimal beamforming matrices

W (â) per iteration. This is exactly the motive power of

Benders’ partitioning method. Consequently, the proposed

Algorithm 1 can obtain the joint BS activation and coordinated

beamforming solution in an efficient manner.

D. Finite Convergence

To show the efficiency of the proposed Benders’ decompo-

sition approach, we formally establish that:

Proposition 1: For any ǫ ≥ 0, Algorithm 1 produces an ǫ-
optimal solution for (5) in a finite number of iterations.

The proof is provided in Appendix A, which mimics that

of [31, Theorem 2.4]. We include it for completeness. It is

worth noting that Proposition 1 establishes the convergence of

Algorithm 1 in a finite number of iterations even for ǫ = 0,

i.e., when an exact optimal solution is pursued.

Proposition 1 states that the proposed algorithm may need

to test all the points in the set A in the worst case. Such

a complexity is clearly not affordable. Yet, our proposed

algorithm continuously adds a most violated constraint to

the relaxed master problem (25), then optimally solves the

problem to search the next candidate â. As a result, it can

usually converge within a small number of iterations, given

that the problem (5) is feasible.

IV. A LOW-COMPLEXITY DUAL-SUBGRADIENT

ALGORITHM

Based on the formulation (8), a dual-subgradient based

solver can be also developed. To this end, introduce the
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Lagrange multiplier vector λ := [λ1, . . . , λL] associated with

the constraints (8c). The partial Lagrangian function is then

L(W ,a,λ) =
∑

k

wH
k wk+aTπ+

∑

l

λl(
∑

k

wH
k Blwk−alPl)

(27)

The Lagrange dual function is given by

D(λ) = min
W∈W, a∈A

L(W ,a,λ) (28)

and the dual problem is

max
λ≥0

D(λ). (29)

To solve dual problem (29), we can rely on the dual

subgradient ascent based iteration

λl(j + 1) = [λl(j) + s(j)gλl
(j)]+, ∀l (30)

where j denotes the iteration index and s(j) is an appropriate

stepsize. The subgradient gλ(j) := [gλ1
(j), . . . , gλL

(j)]T can

be calculated by

gλl
(j) =

∑

k

wH
k (j)Blwk(j)− al(j)Pl (31)

where W (j) := {wk(j)} and a(j) := {al(j)} are given by

W (j) ∈ arg min
W∈W

∑

k

wH
k (I +

∑

l

[λl(j)Bl])wk (32)

a(j) ∈ argmin
a∈A

∑

l

([πl − λl(j)Pl]al) (33)

The subproblem in (32) is a standard SOCP; hence, W (j)
can be computed by e.g., interior-point method in polynomial

time [29]. The subproblem in (33) is an integer linear program;

an optimal a(j) can be found as:

al(j) =

{

1, πl ≤ λl(j)Pl

0, πl > λl(j)Pl

(34)

When we adopt a constant stepsize s(j) = s, the subgra-

dient iterations (30) can converge to a neighborhood (with

its size proportional to stepsize s) of the optimal λ∗ for the

dual problem (29) from any initial λ(0). Suppose that we

adopt a sequence of non-summable and diminishing stepsizes

satisfying limj→∞ s(j) = 0 and
∑∞

j=0 s(j) = ∞. Then the

iterations (30) can asymptotically converge to the exact λ∗ as

j → ∞ [29], [36].

After the iterations (30) converge to yield λ∗, let

−→

W ∈ arg min
W∈W

∑

k

wH
k (I +

∑

l

[λ∗
l Bl])wk (35)

−→a ∈ argmin
a∈A

∑

l

([πl − λ∗
l Pl]al) (36)

Note that since the problem (8) is nonconvex, there may exist

nonzero duality gap; i.e., (
−→

W ,−→a ) may not be a feasible

solution for (8). In this case, we simply use the BS activation

vector −→a , and find the corresponding optimal beamforming

matrix
−→

W
∗

under such a BS activation situation; then output

(
−→

W
∗
,−→a ) as an approximate solution for (8). The proposed

dual-subgradient algorithm is summarized as follows:

Algorithm 2: Dual-subgradient approach

Initialize: select an initial λ(0), a stepsize s, an

accuracy level ǫ ≥ 0, and set j = 0.

Repeat:

1) Solve (32) and (33), to obtain W (j),a(j).
2) Compute the subgradient gλ(j), then update

the λ(j + 1) via (19). Check the condition
‖λ(j+1)−λ(j)‖

‖λ(j)‖ ≤ ǫ. If it is satisfied, let
−→

W = W (j)

and −→a = a(j), go to Step 3). Otherwise let

j = j + 1, go to Step 1).

3) If (
−→

W ,−→a ) is feasible for (8), output (
−→

W ,−→a ) as

the solution. Otherwise, use the BS activation vector
−→a to find the corresponding optimal beamforming

matrix
−→

W
∗

and output (
−→

W
∗
,−→a ) as the solution.

In Algorithm 2, we need to solve a standard SOCP (20)

with a worst-case complexity of O((LNlK)3.5) and compute

the solution (22) for subproblem (21) with a complexity of

O(L) per iteration. It can be also shown that the proposed

dual-subgradient iteration could converge geometrically fast

under mild condition [36]. Hence, the dual-subgradient based

Algorithm 2 has a guaranteed polynomial-time computational

complexity. This is different from the Benders’ decomposi-

tion method in Algorithm 1, which has an exponential-time

complexity in the worst case. Interestingly, simulation results

in the sequel will show that such a low-complexity dual-

subgradient method can yield a near-optimal solution with

little performance loss.

Remark 1: Table I compares the complexity with the MIP,

RMIP, as well as the proposed Benders’ and dual-subgradient

methods, where Lbd and Lds represent the number of it-

erations required by Benders’ and dual-subgradient method,

respectively. For MIP, the built-in branch-and-bound approach

requires 2L times iterations in the worst case. For RMIP,

it needs LK times iterations, leading to a high complexity

when K is large. Furthermore, the RMIP could incur a

significant performance loss (e.g., approximate 5% additional

power consumption over the optimal benchmark, as shown

in Fig. 4). The proposed Benders’ decomposition algorithm

can converge much faster than the MIP algorithm; i.e., Lbd is

usually a small number in many cases. The dual-subgradient

based algorithm has the smallest complexity as it only needs

to solve the problems (32) and (33) with a polynomial-time

complexity O(L + (LNlK)3.5) per iteration, and it could

converge geometrically fast, i.e., in a small number Lds of

iterations, to a near-optimal solution.

TABLE I
COMPUTATIONAL COMPLEXITY ANALYSIS

Algorithms The Complexity Order

MIP O(2L(LNlK)3.5)

RMIP O((LK)(LNlK)3.5)

Benders O(Lbd(2
L + (LNlK)3.5))

dual-subgradient O(Lds(L+ (LNlK)3.5))

V. GENERALIZATIONS

The proposed framework can be readily generalized to

robust beamforming designs accounting for CSI errors, and
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to multi-cell HetNet setups performing partial coordinated

transmissions.

A. Robust Beamforming

In practice, the CSI hk is typically not possible to be

precisely available at the central entity. With the help of past

channel measurements and/or good channel predictions, an

additive error model can be adopted: hk = h̃k+δk, where h̃k

is the channel estimation at the BS k. Suppose that channel

uncertainty is bounded by a region [32]–[34]:

Hk :=
{

h̃k + δk | ‖δk‖ ≤ ξk

}

, ∀k, (37)

where ξk > 0 specifies the radius of Hk, and it is also assumed

known.

Given the channel uncertainty region Hk, we define the

worst-case SINR with user k as

S̃INRk := min
hk∈Hk

|hk
Hwk|2

∑

i6=k(|hk
Hwi|2) + σ2

k

. (38)

To guarantee the quality-of-service, we require

S̃INRk ≥ γk, ∀k (39)

With constraint (5b) replaced by (39), the problem (5) is

reformulated to pursue the robust beamforming design for

coordinated downlink transmissions.

The problem (27) can be reformulated into a convex form

using the well-known semidefinite program (SDP) relaxation

technique. By the definitions of Hk, the constraint S̃INRk ≥
γk can be rewritten as:

Fk(δk) ≥ 0 for all δk such that δk
Hδk ≤ (ξk)

2, (40)

where

Fk(δk) := (h̃k+δk)
H(

wkwk
H

γk
−
∑

i6=k

wiwi
H)(h̃k+δk)−σ2

k.

Define Xk := wkwk
H , which implicitly implies Xk � 0

and rank(Xk) = 1. By applying the celebrated S-procedure

in robust optimization [35] [29, Appendix B.2], (40) can be

transformed into

Γk :=

(

Y k + τkI Y kh̃k

h̃
H

k Y H
k h̃

H

k Y kh̃k − σ2
k − τkξ

2
k

)

� 0, (41)

for a τk > 0 and

Y k :=
1

γk
Xk −

∑

i6=k

Xi. (42)

Let X = {Xk, ∀k}. Use X (instead of W ) as the optimiza-

tion variables. Introduce auxiliary variables τ := {τk, ∀k}
and drop the rank constraints rank(Xk) = 1, ∀k. We can

reformulate (5) into:

min
(X, τ , a)

K∑

k=1

tr(Xk) + aTπ (43a)

s.t. Γk � 0, Xk � 0, τk ≥ 0, ∀k (43b)

K∑

k=1

tr(BlXk) ≤ alPl, ∀l (43c)

al ∈ {0, 1}, ∀l. (43d)

Let χ := {X, τ}. For a fixed a, (43) reduces to a convex

SDP that can be solved in polynomial time. Also, we can

write linearly separate functions f(χ,a) and G(χ,a) in χ

and a, then constitute a problem in a similar form to (11). The

proposed Benders’ decomposition based and dual-subgradient

based approaches can be then employed to solve this problem.

One issue is how to recover the optimal beamforming

vectors w∗
k from X∗

k yielded by Algorithm 1 for (43). If it

happens that rank(Xk
∗) = 1, ∀k, then we clearly find the

optimal beamforming vectors wk
∗ for the original problem

as the (scaled) eigenvector with respect to the only positive

eigenvalue of Xk
∗. Given that the uncertainty bounds ξk

are sufficiently small, [34, Theorem 1] established that S-

procedure based SDP for downlink beamforming designs

always has a rank-one optimal solution Xk
∗, ∀k. For large ξk

case, it cannot be proved that rank-one optimal solutions for

(43) always exist; in this case, we may adopt a randomized

rounding strategy [33] to obtain vectors wk
∗ from Xk

∗ to

nicely approximate the solution of the original problem. In

fact, although no proof for rank-one solution in large ξk case

is available, it was observed in extensive simulations that this

kind of SDPs can have a rank-one optimal solution in many

cases [34].

B. Multi-Cell HetNet

Consider a multi-cell HetNet with M cells. For each cell

m = 1, . . . ,M , a set of Lm of BSs serve a set Km of users.

Each BS lm ∈ Lm has Nlm ≥ 1 antennas whereas each user

has a single antenna. The set of all BSs is then L =
⋃M

m=1 Lm,

and the set of all users is K =
⋃M

m=1 Km. In this setup, user

km ∈ Km can be only served by the BSs lm ∈ Lm, i.e., the

BSs in its serving cell. In other words, only partial coordinated

transmissions are allowed for serving users [20], [26]. Denote

by hli,km
∈ CNli

×1 and wli,km
∈ CNli

×1 the channel vector

and the transmit-beamforming vector from BS li to user km,

∀l ∈ Li, ∀km ∈ Km, ∀(i, k). Then the SINR for user km ∈
Km is given by

SINRkm
=

∑

lm∈Lm
|hH

lm,km
wlm,km

|2
∑

ki 6=km

∑

li∈Li
|hH

li,km
wli,ki

|2 + σ2
km

. (44)

The transmit-power constraint with the BS lm ∈ Lm is:
∑

km∈Km

‖wlm,km
‖2 ≤ almPlm ; (45)

and the total consumed power across all BSs is:

M∑

m=1

∑

lm∈Lm

∑

km∈Km

‖wlm,km
‖2 + aTπ. (46)

With the objective function in (5a), the constraints (5b), (5c)

replaced by (46), (44)–(45), the resultant problem has the same

structure as its single-cell version (5). The proposed Benders’

decomposition based and dual-subgradient based approaches

then readily carry over to find the joint BS activation and

beamforming design solution in this multi-cell setup.

With the SINR replaced by the worst-case SINR similarly as

(38), we can also formulate the multi-cell version of (43). The
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Fig. 2. A HetNet with L = 7 BSs and K = 6 users.

proposed approaches can also carry over to yield the robust

beamforming designs along with the optimal BS activation

strategy for multi-cell HetNets.

VI. SIMULATION RESULTS

Consider a cellular network comprising 7 identical hexag-

onal cells as shown in Fig. 2. We adopt similar channel

and network power models as in [19], [24]. Assume that

one BS is located at each cell center. Each BS has two

transmit antennas. The cell-radius is 1 kilometer (km), and

the single-antenna users are uniformly distributed in the area.

The channel coefficient from the m-th antenna of the l-th BS

to user k is modeled as

hm
lk =

√

Llk(dlk)θlkξlkh̃
m
lk, (47)

where Llk(dlk) = 148.1 + 37.6 log10(dlk) denotes the path

loss at distance dlk (km), θlk = 9 dBi is the transmit antenna

gain, ξlk is the log-norm shadowing coefficient with zero mean

and 8 dB variance, and h̃m
lk is small-scale Rayleigh fading

coefficient. The noise variance is σ2
k = −143 dBm. The

following power consumption model is adopted per BS:

PB,l =

{

P act
B,l +

1
η
P tx
B,l, BS l is active;

P slp
B,l , BS l is not active.

(48)

where P tx
B,l denotes the transmit power, P act

B,l = 6.8 W stands

for the implementation power consumption for the active BS,

η = 25% denotes the efficiency of the power amplifier, and

P slp
B,l = 4.3 W is the implementation power consumption for

the BS in the sleep mode. The maximum transmit power

allowed by each BS is 43 dBm. Based on the above model,

we have πl = 0.625 for the optimization problem (3).

We compare the proposed algorithms with five baseline

schemes, including random BS association (RBA), mixed inte-

ger programming (MIP), relaxed mixed integer programming

(RMIP) [19], Sparsity based approach [26], and joint BS

association and power control (JBAPC) [25]2.

2While the original JBAPC was developed for the HetNet with single-
antenna BSs, we generalize it to allow coordinated beamforming for the BSs
equipped with multiple antennas.
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Fig. 3. Convergence behaviors of the proposed algorithms and the MIP for
one channel realization when the SINR target is 15 dB.

For fair comparison, we first consider a HetNet with L = 7
BSs and K = 6 users. Fig. 3 depicts the convergence

behaviors of proposed Benders’ decomposition based and

dual-subgradient based algorithms as well as the MIP for

one channel realization when the SINR target is 15 dB and

accuracy level ǫ = 0.01. It is shown that the proposed Benders’

decomposition based scheme converges much faster than the

MIP. From simulation results, we find that 26 iterations are

sufficient for the Benders’ algorithm to find the optimal BS

activation and coordinated beamforming, while more than 60

iterations are required for the MIP. In addition, the proposed

dual-subgradient algorithm converges after only 12 iterations.

Note that the complexity with the Benders’ decomposition

based algorithm can be smaller than that with the MIP per

iteration since a SOCP (13) with a smaller size needs to be

solved due to the Benders’ partition. The dual-subgradient

based algorithm has the smallest complexity as it only needs

to solve the SOCP (20) in polynomial time, while the other

two methods need to additionally solve an integer program,

e.g., (17), with an exponential-time complexity in the worst

case, in each iteration.

In a nutshell, the proposed Benders’ decomposition based

algorithm has significantly reduced computational complexity

in finding the globally optimal solution than the MIP method.

Furthermore, the proposed dual-subgradient algorithm has a

very low (polynomial-time) complexity to yield a near-optimal

solution with little performance loss. The latter performance

loss is in fact due to the potential non-zero duality gap

between the original (non-convex) problem (8) and its dual

(29). Yet, it can be observed in Fig. 4 that the proposed

dual-subgradient based scheme consumes only additional 0.5%

power on average more than the optimal one for an SINR

target of 5 dB.

Fig. 4 depicts the total power consumption with the RBA,

sparsity based, JBAPC, RMIP, MIP, as well as the proposed

Benders’ and the dual-subgradient methods. Each point is

computed by averaging over 100 channel realizations. It is
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Fig. 4. Total power consumption of a HetNet with L = 7 BSs and K = 6
users.

observed that the total power consumption with the RBA,

JBAPC, or sparsity-based algorithm is much higher than the

optimal one provided by the MIP. This is because coordinated

beamforming is not considered in the JBAPC, whereas the

sparsity based algorithm aims to also minimize the number of

active BSs, leading to its sub-optimality. The RMIP algorithm

requires additional 10% power consumption than the MIP.

It is also shown that the proposed Benders’ decomposition

based approach always has the same total power consump-

tion as the MIP for all SINR targets. This corroborates the

correctness of the Benders’ decomposition approach. With a

much lower complexity, the proposed dual-subgradient based

algorithm yields power consumption only slightly higher than

the optimal one produced by the Benders’ and MIP methods.

Next, consider the case with limitation on the maximum

number of iterations to ensure an affordable computational

complexity. Fig. 5 shows the total power consumption with

the RBA, RMIP, MIP, Benders’, and dual-subgradient methods

where the maximum number of iterations is limited to be 16.

The other parameters are the same as in Fig. 4.

Note that due to large dimension of optimization variables,

a large number of iterations could be required for the proposed

Benders’ decomposition approach and the MIP to converge.

Yet, the proposed Benders’ decomposition algorithm con-

verges faster than the MIP algorithm. Compared to the results

in Fig. 4, we see that when the number of iterations is limited,

a much higher power budget is required for RMIP as well as

MIP, especially for high target SINR cases. It is also interesting

to see that the total consumed power with the MIP is much

higher than that with the proposed Benders’ decomposition

algorithm. This is due to the fact that the standard branch-

and-cut method is quite inefficient and the MIP algorithm

converges very slow in this medium-size network scenario.

More interestingly, the proposed dual-subgradient algorithm

always yields the minimum total power among all the schemes,

capable of as large as 15% power saving when compared

to other algorithms for high-target SINRs. This indicates
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Fig. 5. Total power consumption of a HetNet with L = 7 BSs and K = 6
users. The maximum number of iterations for each algorithm is limited to be
16.

that when only low computational complexity is allowed,

the proposed dual-subgradient algorithm can be an attractive

candidate for finding an efficient BS activation and coordinated

beamforming solution.

Fig. 6 depicts the total power consumption of a HetNet

under channel uncertainty. There are L = 7 BSs and K = 6
users in the network. The channel uncertainty bounds are

modeled as εk = θk‖hk‖, k = 1, . . . ,K , where θk is chosen

to be θk = 0.01 or 0.02 during simulations. The optimal

BS activation and beamforming vectors are determined by

the proposed Benders’ decomposition based algorithm. It is

observed that with imperfect CSI, more transmit power is

required than that with perfect CSI. For instance, more than

10% power is needed for an SINR target of 12 dB when

θk = 0.02.

VII. CONCLUSIONS

We developed efficient optimal and suboptimal algorithms

for joint BS activation and coordinated downlink beamforming

design in HetNets. While the proposed Benders’ decompo-

sition approach is capable of obtaining the global optimal

solution within a finite number of iterations, the proposed

dual-subgradient scheme can yield a near-optimal solution

with guaranteed very low (polynomial-time) complexity. The

simulated results validated that the proposed algorithms sig-

nificantly outperform existing alternatives.

As green wireless communications have received grow-

ing interest, some recent works have addressed the resource

allocation for the smart-grid powered CoMP transmissions,

where the BSs are jointly powered by persistent grid energy

and harvested renewable energy sources [37]–[40]. The en-

ergy harvesting (EH) communication integrated with smart

grids clearly presents new theoretical and design challenges.

Generalization of the proposed approaches to EH integrated

smart-grid powered CoMP scenarios will be pursued in future

research.
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APPENDIX A

PROOF OF THE PROPOSITION 1

Proof: For an arbitrary ǫ ≥ 0, finite termination directly

follows from the finiteness of the set A as well as the fact

that no â can repeat itself in solution to (25) in Step 2).

This is because: i) if â /∈ V , then Step 1-a) generates

a L∗(a, λ̂) constraint that precludes â from being feasible

in (25) ever again; ii) if â ∈ V and v(â) is finite, then

a generated constraint a0 ≥ L∗(a, µ̂) would imply the ǫ-
optimality of â if â were ever to occur again as a solution

of (25) [if (ā0, ā = â) were to solve (25) subsequently, then

ā0 ≥ L∗(â, µ̂) = v(â) = v(ā) would have to hold; hence,

the termination condition would be satisfied].
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