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Abstract

In this correspondence, we analytically characterize the benefit of digital processing in uplink

massive multiple-input multiple-output (MIMO) with sub-connected hybrid architecture. By assuming

that the number of radio frequency (RF) chains is equal to that of users, we characterize achievable rates

of both pure analog detection and hybrid detection under the i.i.d. Rayleigh fading channel model. From

the derived expressions, we discover that the analog processing can outperform the hybrid processing

using the maximal ratio combining (MRC) or zero-forcing (ZF) criterion in cases under some engineering

assumptions. Performance comparison of the schemes are presented under tests with various numbers

of users and numbers of antennas at the base station.

Index Terms

Analog processing, hybrid processing, massive MIMO.

I. INTRODUCTION

In multiple-input multiple-output (MIMO) researches and applications, there present two kinds

of beamforming implementations, i.e., analog beamforming and digital beamforming. The analog

beamforming helps reap diversity with low system complexity and power consumption, while

digital beamforming is more flexible in that it achieves the tradeoff between diversity and
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spatial multiplexing. In detail, the digital beamforming could be designed to improve the signal

power, cancel out the interference, minimize the mean square error, etc. This can be realized by

optimizing the digital beamformer with various objective functions [1]–[3]. However, the digital

beamforming, which requires higher hardware costs, leads to harder challenges for practical

implementations than the analog one. In multiuser case, although a fully digital beamforming

is able to achieve the optimal performance in terms of system capacity, sub-optimal linear

processing is widely used due to its low complexity. In future communication systems, large-scale

antenna arrays are employed to improve the quality, capacity and reliability of communcations,

i.e., massive MIMO [4]–[6]. For massive MIMO, the system might not be able to afford

the pure digital beamforming because of the growing power consumption, hardware cost and

system complexity. To alleviate this issue, hybrid analog and digital beamforming was proposed

to establish the tradeoff between complexity and performance [7]–[9]. In detail, the hybrid

beamforming consists of a high-dimensional analog beamformer and a low-dimensional digital

beamformer which decreases the required number of RF chains. For multiuser massive MIMO,

ideas of modified linear processing [10]–[12], were introduced to achieve highly desirable

performance with further reduced system complexity. Especially, in [10], the spectral efficiency

of hybrid beamforming based on linear digital beamforming designs is proved to asymptotically

approach that of the pure digital beamforming for massive MIMO. However, as sub-optimal

design without optimal performance, hybrid beamforming based on linear digital beamforming

designs is not proved to outperform analog processing in all cases. Serving as circumstantial

evidence, from [10]–[12], the analog beamforming approximately transferred the channel matrix

into a diagonal matrix in which no interference among users may asymptotically exist. Therefore,

it is reasonable to investigate whether the analog beamforming could sometimes beat some

popular linear, but not mathmatically optimal hybrid beamforming. In other words, the pure

analog beamforming could be enough for some specific communication scenarios.

In this work, we assume that the number of RF chains is equal to that of users and derive

the uplink achievable rates of the hybrid detection using maximal ratio combining (MRC) and

zero-forcing (ZF) criterions, and the pure analog detection under Rayleigh fading channels.

Furthermore, we investigate the SNR and the number of antennas thresholds between the pure

analog processing and hybrid processing schemes. The obtained thresholds display the conditions

when the pure analog processing is suggested. Numerical results not only verify the proposed

conclusions, but also show that the superiority of the pure analog detecton and hybrid detection
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still holds for the downlink case and mmWave channel model.

II. SYSTEM MODEL

Consider the uplink of a massive MIMO utilizing hybrid analog and digital processing with

the sub-connected structure. The system is formed by a base station (BS) equipped with an array

of M antennas and K single-antenna users. We assume that the BS owns NRF RF chains. Each

RF chain is connected to an exclusive set of N antennas through a dedicated phase shifter where

N = M
NRF

.

We consider a flat fading channel. At BS, the received signal processed by hybrid detection

can be represented as

y =
√
pWAHs+WAn (1)

where s = [s1, s2, ..., sK ]
T ∈ CK×1 denotes the vector of symbols transmitted by all users such

that E[ssH ] = IK , H = [h1,h2, ...,hK ] ∈ CM×K stands for the channel matrix between the BS

and all users with hk ∼ CN (0M , IM), and n refers to the additive white Gaussian noise vector

with n ∼ CN (0K , σ
2
nIK), A = [a1, a2, ..., aNRF

]T ∈ CNRF×M and W = [w1,w2, ...,wK ]
T ∈

CK×NRF , respectively, represent the analog and digital detection matrices. According to (1), the

k-th element of y is given by

yk =
√
pwT

kAhksk +
√
p
∑

j 6=k

wT
kAhjsj +wT

kAn. (2)

III. UPLINK RATE DERIVATIONS

A. Analog Processing

Generally, analog processing is implemented by phase shifters which conduct rotations to

signal phases. In this stage, the analog processing is designed by selecting the optimal angles to

maximize the signal power of each user, like the designs in [10]–[12]. Interference among users

is left to be addressed via the following digital processing if hybrid processing applies. In this

work, we take the assumption that each subarray is responsible for one user which implies that

NRF = K. Thus, for each user, the analog processing problem can be formulated as

max
ak

‖aT
khk‖2F (3)

s.t. |ak,i| =







1√
N
, N(k − 1) + 1 ≤ i ≤ Nk

0, otherwise
(4)
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where ak,i is the i-th element of ak. Then, it is not difficult to get

ak,i =







1√
N

h∗
k,i

|hk,i| , N(k − 1) + 1 ≤ i ≤ Nk

0, otherwise
(5)

where hk,i is the i-th element of hk. For the k-th user, its effective channel after analog processing

is defined as

gk , Ahk. (6)

For the analog detection, the digital processing part is removed from the system in the physical

aspect. In contrast, in the mathematical aspect, W does not cope with the multiuser interference

which indicates that

W = IK . (7)

With the design above, we derive the uplink rate in the following theorem.

Theorem 1: The uplink ergodic rate per user using the analog detection is characterized as

R̄A ≈ log2

(

1 +
γ πN

4

γ(K − 1) + 1

)

(8)

where γ = p

σn
is the signal-to-noise ratio (SNR).

Proof: The ergodic rate can be well approximated in massive MIMO by

R̄A =E






log2






1 +

p|wT
kAhk|2

p
∑

j 6=k

|wT
kAhj |2 + σ2

n‖wT
kA‖2F













(a)≈ log2






1 +

pE[|wT
kAhk|2]

p
∑

j 6=k

E[|wT
kAhj|2] + σ2

nE[‖wT
kA‖2F ]







(b)
= log2






1 +

γE
[

|gk,k|2
]

γ
∑

j 6=k

E
[

|gk,j|2
]

+ E[‖wT
kA‖2F ]






(9)

where (a) is achieved by applying [13, Lemma 1], (b) uses (6) and (7). The work of deriving

the ergodic rate is now to calculate the expectation of terms in (9).

First of all, we have the following term in (9) as

E[‖wH
k A‖2F ]

(a)
= E

[

‖wH
k ‖2F

]

= 1 (10)

where (a) is due to the fact that AAH = IK from (5). Subsequently, the elements of gk, gk,i, are

investigated. Recalling hk ∼ CN (0M , IM), {hk,i}’s are independent and identically distributed
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(i.i.d.) complex Gaussian variables with zero mean and unit variance. Thus, |hk,i|’s follow i.i.d.

Rayleigh distribution with mean
√
π

2
and variance 1 − π

4
. Applying the Central Limit Theorem

and owing to the fact that gk,k =
1√
N

Nk
∑

i=N(k−1)+1

|hk,i|, we get

gk,k ∼N
(√

πN

2
, 1− π

4

)

(11)

for large N in massive MIMO. Similarly, it is easy to get gk,i ∼ CN (0, 1), i 6= k according to

the Lindeberg-Lévy Central Limit Theorem. Thus, we have

E
[

(gk,k)
2] =E [gk,k]

2 + V [gk,k] =
πN

4
+
(

1− π

4

)

. (12)

Analogously, E
[

|gk,j|2
]

= 1 can be proved.

Substituting (10), (12) and E
[

|gk,j|2
]

= 1 into (9), it yields

R̄A ≈ log2

(

1 +
γ[πN

4
+ (1− π

4
)]

γ(K − 1) + 1

)

(a)→ log2

(

1 +
γ πN

4

γ(K − 1) + 1

)

(13)

where (a) utilizes
πN
4

πN
4

+1−π
4

→ 1 due to the fact that M,N → ∞ in the large numbers of antennas

regime with small numbers of users.

B. Hybrid Processing

For hybrid processing, if the digital processing is based on MRC, the BS calculates the

detection matrix as

WMRC = GH (14)

where G = [g1, g2, ..., gK ]. For the uplink massive MIMO, we derive a tractable expression of

the achievable uplink rate which is given in the following theorem.

Theorem 2: The uplink ergodic rate per user using the hybrid detection is characterized as

R̄MRC
H ≈ log2

(

1 +
γ(πN

4
+K)2

γ(K − 1)(πN
2

+K) + πN
4

+K

)

. (15)

Proof: See Appendix A.

Apart from MRC, ZF is another well-known linear receiver which is denoted as

WZF = (GHG)−1GH . (16)
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We also derive a tractable expression of the achievable uplink rate for ZF-based hybrid processing

in the following proposition.

Proposition 1: The uplink ergodic rate per user using the hybrid detection is characterized as

R̄ZF
H ≈ log2 (1 + E[γk]) (17)

where the probability density function (p.d.f.) of γk is approximated by

f(γk) ≈
exp(− γk

γ(πN
4K

+1)
)

(

γk

γ(πN
4K

+1)

)NRF−K

γ
(

πN
4K

+ 1
)

Γ(NRF −K + 1)
. (18)

Proof: See Appendix B.

We take the assumption that NRF = K which further implies

E[γk] =

∫ ∞

0

γk

exp(− γk

γ(πN
4K

+1)
)

γ
(

πN
4K

+ 1
) dγk = γ

(

πN

4K
+ 1

)

. (19)

Combining (17)-(19), the ergodic uplink rate per user is denoted as

R̄ZF
H ≈ log2

(

1 + γ

(

πN

4K
+ 1

))

. (20)

IV. ANALOG DETECTION VS HYBRID DETECTION

To compare the performance of the pure analog processing and hybrid processing, we define

the rate gap as

∆R =R̄H − R̄A. (21)

A. MRC-based Hybrid Processing

Substituting (8) and (15) into (21), we get

∆R ≈ log2

(

1 +
γ(πN

4
+K)2

γ(K − 1)(πN
2

+K) + πN
4

+K

)

− log2

(

1 +
γ πN

4

γ(K − 1) + 1

)

. (22)

Checking that ∆R ≥ 0, we obtain γ
(K−1)

K

(

(πN)2

16
− πNK

4
−K2

)

<
(

πN
4

+K
)

. It is always

checked if
(πN)2

16
− πNK

4
−K2 < 0 since γK−1

K
and πN

4
+K are always positive. By checking

the quadratic inequation
(πN)2

16
− πNK

4
− K2 < 0, we then get K >

π(
√
5−1)
8

N . Knowing that

N = M
K

, it yields

K2 >
π(
√
5− 1)

8
M ≈ M

2
. (23)
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Observation 1: If K2 > M
2

, the MRC-based hybrid detection outperforms the pure analog

detection whatever γ is.

This observation relates to the impact of interference and noise on the system performance.

Specifically, when K is large, the interference becomes pronounced and its impact on the system

performance becomes dominant. As a result, the hybrid processing using digital processing

becomes better than the pure analog processing which only strenghtens the signal power via

analog beamforming to combat noise.

Otherwise, when K2 < M
2

, the superiority of hybrid detection and analog detection depends

on γ. It follows that

∆R







≥ 0, γ ≤ η1

< 0, γ > η1
(24)

where η1 =
K(πN

4
+K)

(K−1)
(

(πN
4
)
2−πNK

4
−K2

) .

Observation 2: For K2 < M
2

, the pure analog detection outperforms the MRC-based hybrid

detection if γ > η1 but the MRC-based hybrid detection exceeds the pure analog detection if

γ < η1.

Combining Observation 1 and 2, it is revealed that, for low SNRs, the MRC-based hybrid

detection always outperforms the analog detection. While for high SNRs, the analog detection

has better performance than the MRC-based hybrid detection if K is small but is beaten by the

MRC-based hybrid one if K is large. In particlar, from (22) for R̄H , R̄A ≫ 1, it indicates

∆R
(a)→ log2

(

γ(πN
4

+K)2

γ(K − 1)(πN
2

+ 2K) + πN
4

+K

)

− log2

(

γ πN
4

γ(K − 1) + 1

)

(b)→ log2

(

γ(πN
4

+K)

2γ(K − 1) + 2

)

− log2

(

γ πN
4

γ(K − 1) + 1

)

= log2

(

1 +
K
πN
4

)

− 1

(c)
=

4

π ln 2

K2

M
− 1 + o

(

K

N

)

(25)

where (a) is achieved by using
πN
2

+K
πN
2

+2K
→ 1 when N → ∞, (b) is obtained since

2γ(K−1)+1
2γ(K−1)+2

→ 1

for large γ, and (c) applies the Taylor’s expansion for small K
N

≪ 1. Since we consider a massive

MIMO (M → ∞) with a limited number of RF chains (small K), N = M
K

≫ K is always

correct.
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Observation 3: The rate gap between the two detection schemes increases linearly with the

system parameter K2

M
in high SNR scenario.

B. ZF-based Hybrid Processing

From (8), (20) and (21), we can write

∆R = log2

(

1 + γ

(

πN

4K
+ 1

))

− log2

(

1 +
γ πN

4

γ(K − 1) + 1

)

. (26)

It is not difficult to obtain

∆R







≥ 0, γ ≥ η2

< 0, γ < η2
(27)

where η2 =
πN
4K

(K−1)−1
πN
4K

(K−1)+K−1
.

Observation 4: The pure analog detection has better performance than the ZF-based hybrid

detection if γ < η2 but is beaten by the ZF-based hybrid detection if γ > η2.

V. SIMULATION RESULTS

In this section, we compare the uplink performance of the analog detection and hybrid detection

based on different linear processing. Based on results in figures which display the sum rates,

several observations can be made:

-20 -15 -10 -5 0 5

SNR (dB)

0

2

4

6

8

10

12

14

16

18

U
pl

in
k 

S
um

 R
at

e 
(b

ps
/H

z)

MRC-Hybrid-5 users-simulation
Analog-5 users-simulation
MRC-Hybrid-15 users-simulation
Analog-15 users-simulation

MRC-Hybrid-5 users-(15)
Analog-5 users-(8)
MRC-Hybrid-15 users-(15)
Analog-15 users-(8)

1
 in (24)

50 100 150 200 250 300 350 400 450 500

Number of BS Antennas (M)

-5

0

5

10

15

20

25

U
pl

in
k 

S
um

 R
at

e 
an

d 
R

at
e 

G
ap

 (
bp

s/
H

z)

MRC-Hybrid-simulation
Analog-simulation
MRC-Hybrid-(15)
Analog-(8)
Rate gap per user-simulation
Rate gap per user-(25)

Fig. 1. Uplink sum rates with M = 120 in (a) and K = 10, SNR= 10dB in (b).

(1) As shown in Fig. 1 and Fig. 2, the derived expressions of achievable rates and the derived

SNR thresholds, i.e., η1 and η2, are quite accurate for all detection methods (pure analog detection,
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MRC and ZF-based hybrid detection). In the derivations, we take the assumption that the system

is equipped with massive MIMO (M → ∞) with a limited number of RF chains (small K) due

to practical constraints, which implies that N = M
K

can be fairly large. It is notable that the

number of antennas at each subarray may not always be very large in practical applications with

a finite number of BS antennas. It is discovered from Fig. 1(b) that the derived expressions

are accurate even when N is not too large (M = 50, K = 10, N = 5). Therefore, it is still

acceptable and appropriate to assume that N is large in derivations.

(2) Simulation results verify the observations. In Fig. 1(a), for K2 > M
2

, the MRC-based

hybrid detection outperforms the analog detection whatever the SNR is; otherwise, the analog
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2
.

detection outperforms the MRC-based hybrid detection at high SNRs (γ > η1) but is beaten

by the MRC-based hybrid detection at low SNRs (γ < η1). While in Fig. 1(b), it is illustrated

that the hybrid detection enjoys better performance with a small M but is beaten by the analog

detection when M is large enough. For the ZF-based hybrid processing (Fig. 2), it has worse

performance than the analog processing in the low-SNR region (γ < η2) but outperforms the

analog processing when the SNR is large (γ > η2).

(3) In Fig. 3, we provide some numerical results for the downlink channels. It is revealed

that conclusions on the superiority of the pure analog detection and hybrid detection are similar

with those for uplink case. More specifically, the hybrid detection does not always outperform

the pure analog detection in all cases. If the number of users is relatively large (K = 8), the

sum rate of the MRC-based hybrid processing is always larger than the pure analog detection at

all SNRs. Whereas if the number of users is small (K = 4), the MRC-based hybrid processing

outperforms the pure analog detection only when the SNR is low.

(4) Apart from Rayleigh channels, hybrid/analog processing can also be applied to mmWave

communications. For the mmWave channels, the geometric channel model for user k can be

expressed as

hk =

√

M

L

L
∑

l=1

αk
l aBS(φ

k
l ) (28)

where L denotes the number of propagation paths from BS to user, and αk
l ∼ CN (0, 1) represents

the complex gain of the l-th path. Variable φk
l is the azimuth angle of departure (AOD) of the l-th
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path which follows uniform distribution over [0, 2π), and aBS(φ
k
l ) is the antenna array response

vector of the BS which depends on specific array structures. For uniform linear arrays (ULAs)

in our simulations, aBS(φ
k
l ) is defined as

aBS(φ
k
l ) =

1√
M

[

1, ej
2π
λ
d sin(φk

l
), ..., ej(M−1) 2π

λ
d sin(φk

l
)
]H

(29)

where λ is the signal wavelength and d is the distance between adjacent antenna elements.

Results in Fig. 4 show that the analog detection can sometimes outperform the hybrid one in

some cases even over mmWave channels. In detail, when the number of users is small (K = 4),

the analog detection falls to beat the hybrid one at low SNRs but outperforms hybrid detection

when the SNR becomes large. However, when the number of users is relatively large (K = 8),

the hybrid processing has better performance than analog processing for all SNRs.

VI. CONCLUSIONS

We have derived the achievable uplink rates in massive MIMO for the pure analog processing

and hybrid processing with the sub-connected structure under Rayleigh fading channels. It is

shown that the achievable rates of the MRC and ZF-based hybrid processing can not always

be larger than that of the analog processing. The SNR and the number of antennas thresholds

between the pure analog detection and hybrid detection schemes. Simulation results verify derived

conclusions not only on uplink Rayleigh fading channels but also for the downlink case and

mmWave channels. Furthermore, the derivations of the downlink case is an interesting while

challenging topic in our future work.

APPENDIX A

PROOF OF THEOREM 2

Similar with steps in (9), the ergodic rate of MRC-based hybrid beamforming can be well

approximated by

R̄MRC
H

(a)≈ log2






1 +

γE[|gH
k gk|2]

γ
∑

j 6=k

E[|gH
k gj |2] + E[‖gH

k A‖2F ]






. (30)

where (a) uses (6) and (14).

To complete the proof, we focus on the expectation of terms in (30). Using the similar steps

in (10), we obtain

E[‖gH
k A‖2F ] = E[‖gH

k ‖2F ] = (
πN

4
+K − π

4
) (31)
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according to the distributions of gk,k and gk,i.

We first focus on the covariance between |gk,m|2 and |gk,n|2 (∀m 6= n). From (5) and (6), it

yields, e.g., for the m-th element in gk, |gk,m|2 = 1
N

∣

∣

∣

∣

∣

Nm
∑

i=N(m−1)+1

hk,i
h∗
m,i

|hm,i|

∣

∣

∣

∣

∣

2

. Since |gk,m|2 and

|gk,n|2 correspond to different elements in H, and thanks to the assumption that elements in H

are i.i.d. variables, they are independent which implies

Cov[|gk,m|2, |gk,n|2] = 0. (32)

Then, we have that |gk,i|2 ∼ Γ(1, 1) for i 6= k, which implies

V
[

|gk,i|2
]

= 1. (33)

In addition, since

(

gk,k−
√
πN
2√

1−π
4

)2

∼ χ2(1) from (11), we have

V





(

gk,k −
√
πN
2

√

1− π
4

)2


 =
V[g2k,k −

√
πNgk,k +

πN
4
]

(1− π
4
)2

=
V[g2k,k] + πNV[gk,k]− 2

√
πNCov[g2k,k, gk,k]

(1− π
4
)2

=2. (34)

Due to the definition of covariance, we obtain

Cov[g2k,k, gk,k] =E[g3k,k]− E[g2k,k]E[gk,k]

(a)
= (E[gk,k])

3 + 3E[gk,k]V[gk,k]− E[g2k,k]E[gk,k]

=
√
πN(1− π

4
) (35)

where (a) could be proved by applying
gk,k−

√
πN
2√

1−π
4

∼ N (0, 1) and E[xp] = 0 for x ∼ N (0, σ2) if

p is odd. Combining (34) and (35), it yields

V[g2k,k] = πN
(

1− π

4

)

+ 2
(

1− π

4

)2

. (36)

Consequently, we write

E[|gH
k gk|2] =E





(

K
∑

i=1

|gk,i|2
)2




=

(

E

[

K
∑

i=1

|gk,i|2
])2

+

K
∑

i=1

V
[

|gk,i|2
]

+ 2
∑

1≤m<n≤K

Cov[|gk,m|2, |gk,n|2]

(a)
=ω1 (37)
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where (a) uses (32)-(36) and the above obtained distributions of gk,k and gk,i and ω1 = (πN
4

+

K − π
4
)2 + πN(1 − π

4
) + 2(1− π

4
)2 + (K − 1).

Analogously, E[|gH
k gj |2] = (πN

2
+K − π

2
) , ω2 can be readily proved.

Substituting (31), (37) and E[|gH
k gj|2] = (πN

2
+K − π

2
) into (30)

R̄MRC
H ≈ log2

(

1 +
γω1

γ(K − 1)ω2 + (πN
4

+K − π
4
)

)

(a)→ log2

(

1 +
γ(πN

4
+K)2

γ(K − 1)(πN
2

+K) + πN
4

+K

)

(38)

where (a) uses similar steps in (13). It completes the proof.

APPENDIX B

PROOF OF PROPOSITION 1

Similar with steps in (9), the spectral efficiency of each user is

R̄ZF
H =E

[

log2

(

1 +
γ

[(GHG)−1]k,k

)]

≈ log2

(

1 + E

[

γ

[(GHG)−1]k,k

])

. (39)

Denoting γk = γ

[(GHG)−1]k,k
, the remaining work is to calculate E[γk] which requires ana-

lyzing the distributions of effective channels. As mentioned in Appendix A, we have gk,k ∼
N
(√

πN
2

, 1− π
4

)

and gk,i ∼ CN (0, 1), i 6= k. We approximate gk,k as g̃k,k =
√
πN
2

+ α where

α ∼ CN (0, 1). The effective channel matrix with g̃k,k refers to G̃. The i-th row of G̃, i.e.,

G̃i, has a complex multivariate normal distribution denoted by G̃i ∼ CN (µµµi,ΣΣΣ). Then G̃HG̃

follows a complex Wishart distribution denoted by Y = G̃HG̃ ∼ CW(NRF ,V,ΣΣΣ) where

V = [µµµ1, ...,µµµNRF
]T .

A complex semi-correlated central Wishart matrix Ŷ ∼ CW(NRF , Σ̂ΣΣ), with the effective

correlation matrix being Σ̂ΣΣ = ΣΣΣ+ 1
NRF

VHV, has the same first-order moments and second-order

moments differing by 1
NRF

VHV, as the complex non-central Wishart matrix Y [14]. For the

case of Ŷ ∼ CW(NRF , Σ̂ΣΣ), substituting p.d.f. of γk into (39) [1], the proof completes.

REFERENCES

[1] D. Gore, R. W. Heath, and A. Paulraj, “On performance of the zero forcing receiver in presence of transmit correlation,”

in Proc. IEEE Int. Symp. Inf. Theory, pp. 159, Lausanne, Switzerland, June 30–July 5 2002.



14

[2] Y. Zhou and T. Ng, “MIMO-OFCDM systems with joint iterative detection and optimal power allocation,” IEEE Trans.

Wireless Commun., vol. 7, no. 12, pp. 5504–5516, Dec. 2008.

[3] Y. Zhou and T. Ng, “Performance analysis on MIMO-OFCDM systems with multi-code transmission,” IEEE Trans. Wireless

Commun., vol. 8, no. 9, pp. 4426–4433, Sept. 2009.

[4] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Trans. Wireless

Commun., vol. 9, no. 11, pp. 3590–3600, Nov. 2010.

[5] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, “Scaling up MIMO:

Opportunities and challenges with very large arrays,” IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40–60, Jan. 2013.

[6] H. Xie, B. Wang, F. Gao, and S. Jin, “A full-space spectrum-sharing strategy for massive MIMO cognitive radio systems,”

IEEE J. Sel. Areas Commun., vol. 34, no. 10, pp. 2537–2549, Oct. 2016.

[7] A. Alkhateeb, O. E. Ayach, G. Leus, and R. W. Heath, “Channel estimation and hybrid precoding for millimeter wave

cellular systems,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 831–846, Oct. 2014.

[8] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave MIMO

systems,” IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.

[9] T. E. Bogale and L. B. Le, “Beamforming for multiuser massive MIMO systems: Digital versus hybrid analog-digital,” in

Proc. IEEE Globecom 2014, Austin, TX, USA, Dec. 2014, pp. 4066-4071.

[10] L. Liang, W. Xu, and X. Dong, “Low-complexity hybrid precoding in massive multiuser MIMO systems,” IEEE Wireless

Commun. Lett., vol. 3, no. 6, pp. 653–656, Dec. 2014.

[11] M. Fozooni, M. Matthaiou, S. Jin, and G. C. Alexandropoulos, “Massive MIMO relaying with hybrid processing,” in Proc.

IEEE ICC 2016, Kuala Lumpur, Malaysia, May 2016, pp. 1-6.

[12] W. Xu, J. Liu, S. Jin, and X. Dong, “Spectral and energy efficiency of multi-pair massive MIMO relay network with

hybrid processing,” IEEE Trans. Commun., vol. 65, no. 9, pp. 3794–3809, Sept. 2017.

[13] Q. Zhang, S. Jin, K. K. Wong, H. Zhu, and M. Matthaiou, “Power scaling of uplink massive MIMO systems with arbitrary-

rank channel means,” IEEE J. Sel. Topics Signal Process., vol. 8, no .5, pp. 966–981, Oct. 2014.

[14] W. Y. Tan and R. P. Gupta, “On approximating the non-central wishart distribution with wishart distribution,” Commun.

Stat. Theory Method, vol. 12, no. 22, pp. 2589–2600, 1983.


	I Introduction
	II System Model
	III Uplink Rate Derivations
	III-A Analog Processing
	III-B Hybrid Processing

	IV Analog Detection vs Hybrid Detection
	IV-A MRC-based Hybrid Processing
	IV-B ZF-based Hybrid Processing

	V Simulation results
	VI Conclusions
	Appendix A: Proof of Theorem 2
	Appendix B: Proof of Proposition 1
	References

