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Joint Power and Time Allocation for NOMA-MEC Offloading

Zhiguo Ding, Jie Xu, Octavia A. Dobre, and H. Vincent Poor

Abstract—This paper considers non-orthogonal multiple access
(NOMA) assisted mobile edge computing (MEC), where the
power and time allocation is jointly optimized to reduce the
energy consumption of offloading. Closed-form expressions for
the optimal power and time allocation solutions are obtained
and used to establish the conditions for determining whether
conventional orthogonal multiple access (OMA), pure NOMA or
hybrid NOMA should be used for MEC offloading.

I. INTRODUCTION

Both non-orthogonal multiple access (NOMA) and mobile

edge computing (MEC) have been recognized as important

techniques in future wireless networks [1], [2]. Sophisticated

optimization frameworks developed in [3], [4] show that by ap-

plying NOMA to MEC, not only can severe delay be avoided,

but also energy consumption can be reduced, although the

comparisons between NOMA and orthogonal multiple access

(OMA) in [3], [4] rely on simulation. Insightful analytical

results developed in [5] confirmed the advantages of NOMA-

MEC offloading, by using fixed bandwidth allocation.

This letter studies the impact of NOMA on energy-

efficient MEC offloading, by focusing on the fundamental

two-scheduled-user case in order to obtain an insightful un-

derstanding of NOMA-MEC. The existing studies in [3]–[5]

consider two offloading strategies only, OMA and pure NOMA

(i.e., both the users offload all of their tasks at the same time).

However, there is a third strategy, termed hybrid NOMA in

this paper, i.e., a user can first offload parts of its task by

using a time slot allocated to another user and then offload

the remainder of its task during a time slot solely occupied

by itself. The performance of the three strategies is studied

in this paper, where closed-form expressions for the optimal

time and power allocation solutions are obtained, by applying

geometric programming (GP). These closed-form solutions not

only facilitate low-complexity resource allocation, but also

reveal important properties of NOMA-MEC offloading. For

example, by using the obtained closed-form solutions, hybrid-

NOMA-MEC can be proved to be superior to OMA-MEC

when users have demanding latency requirements for their task

offloading, whereas OMA-MEC is preferred if a user’s task is

delay tolerant. It is worth pointing out that the pure NOMA

strategy is not preferred for either of the two situations.

II. SYSTEM MODEL

Consider an MEC offloading scenario, in which K users

with different quality of service (QoS) requirements com-

municate with one access point with an integrated MEC
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server. Because of their limited computational capabilities, it is

assumed that the users choose to offload their computationally

intensive, latency-critical, and inseparable tasks to the server.

Each user’s task is characterized by the parameter pair

{Nk, βk}, k = 1, . . . ,K , which is defined as follows:

• Nk denotes the number of nats contained in a task;

• Dk denotes the computation deadline of a task.

Without loss of generality, assume that Nk = N , 1 ≤
k ≤ K , and the users are ordered according to their com-

putation deadlines, i.e., D1 ≤ · · · ≤ DK . To reduce the

system complexity, it is further assumed that the MEC server

schedules only two users, user m and user n, m ≤ n, to be

served at the same resource block. Note that scheduling two

users to perform NOMA is also aligned with how NOMA is

implemented in LTE-A [6]. To better illustrate the benefit of

NOMA, OMA-MEC is illustrated first.

If OMA is used, each user is allocated a dedicated time

slot for offloading1. Since user m has a more demanding

deadline than user n, user m is served first. Therefore the

users’ transmit powers, denoted by POMA
m and POMA

n , need to

satisfy Dm ln(1 + POMA
m |hm|2) = N and (Dn −Dm) ln(1 +

POMA
n |hn|

2) = N , respectively, where hi denotes user i’s

channel gain, i = m,n.

By using the principle of NOMA, the two users can offload

their tasks simultaneously during Dm to the server. It is impor-

tant to point out that user m experiences the same performance

as in OMA if its message is decoded at the second stage of

successive interference cancelation (SIC) and user n’s data

rate during Dm is constrained as Rn ≤ ln
(

1 +
Pn,1|hn|

2

POMA
m |hm|2+1

)

,

where Pn,1 denotes the power used by user n during Dm.

As pointed out in [5], user n needs to consume more energy

in NOMA than in OMA if the user completely relies on Dm.

Therefore, hybrid NOMA is considered, i.e., user n shares Dm

with user m, and then continuously transmits for another time

interval, denoted by Tn, after Dm. Denote the power used by

user n during Tn by Pn,2. As user m experiences the same as

in OMA, we focus only on user n’s performance in this letter.

III. NOMA-ASSISTED MEC OFFLOADING

The problem for minimizing the energy consumption of

NOMA-MEC offloading can be formulated as follows:

min
Tn,Pn,1,Pn,2

DmPn,1 + TnPn,2 (1a)

s.t. Dm ln

(

1 +
Pn,1|hn|

2

POMA
m |hm|2 + 1

)

(1b)

+Tn ln
(

1 + |hn|
2Pn,2

)

≥ N

0 ≤ Tn ≤ Dn −Dm (1c)

Pn,i ≥ 0, ∀i ∈ {1, 2}. (1d)

1In this paper, the time and the energy costs for the server to send the
outcomes of the tasks to the users are omitted, since the size of the outcomes
is typically very small. The energy consumption for the computation at the
server is also omitted, as the server is not energy constrained.
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The objective function (1a) denotes user n’s energy consump-

tion for MEC offloading, (1b) denotes the rate constraint to

ensure that user n’s N nats are offloaded within Dm+Tn, and

(1c) denotes the deadline constraint, i.e., Tn +Dm ≤ Dn. It

is worth noting that the benefit of using NOMA is obvious for

the case of Dn = Dm, where the power required by the OMA

case becomes infinite while the power in NOMA is finite.

In the first two subsections of this section, we will focus on

the scenario where Dn < 2Dm, in order to avoid the trivial

case with OMA solutions. In particular, we first obtain the

optimal solutions for Pn,1 and Pn,2 as explicit functions of

Tn by applying GP, and then find the optimal solution of Tn.

The scenario Dn ≥ 2Dm is also discussed at the end of this

section.

A. Finding the Optimal Solutions for Pn,1 and Pn,2

In order to make GP applicable, the objective function and

the constraints in (1) need to be transformed as follows. By

using the fact Dm ln(1 + POMA
m |hm|2) = N , constraint (1b)

can be simplified as follows:

ln
(

1 + e−
N

Dm |hn|
2Pn,1

)Dm (

1 + |hn|
2Pn,2

)Tn
≥ N. (2)

Define x1 = 1 + e
− N

Dm |hn|
2Pn,1 and x2 = 1 + |hn|

2Pn,2.

Problem (1) is transformed to the following equivalent form:

min
Tn,x1,x2

Dme
N

Dm x1 + Tn (x2 − 1) (3a)

s.t. eNx−Dm

1 x−Tn

2 ≤ 1 (3b)

0 ≤ Tn ≤ Dn −Dm (3c)

xi ≥ 1, ∀i ∈ {1, 2}. (3d)

Define yi = lnxi, i = 1, 2. By fixing Tn, problem (3) can

be transformed to the following equivalent form:

min
y1,y2

Dme
N

Dm ey1 + Tne
y2 (4a)

s.t. e−Dmy1−Tny2+N ≤ 1 (4b)

yi ≥ 0, ∀i ∈ {1, 2}. (4c)

By treating problem (4) as a special case of GP and applying

logarithm to (4), the Karush-Kuhn-Tucker (KKT) conditions

can be applied to find the optimal solution as follows:














































Dme
N

Dm ey1

Dme
N

Dm ey1+Tne
y2

− λ1 − λ3Dm = 0

Tne
y2

Dme
N

Dm ey1+Tney2
− λ2 − λ3Tn = 0

N −Dmy1 − Tny2 ≤ 0
λ3 (−Dmy1 − Tny2 +N) = 0

−yi ≤ 0, ∀i ∈ {1, 2}
λiyi = 0, ∀i ∈ {1, 2}
λi ≥ 0, ∀i ∈ {1, 2, 3}

, (5)

where λi are Lagrange multipliers. The optimal solutions of

Pn,1 and Pn,2 can be obtained as in the following lemma.

Lemma 1. Assume Dn < 2Dm. The optimal solutions for

Pn,1 and Pn,2 in problem (1) can be expressed as the following

closed-form functions of Tn:






P ∗
n,1 = |hn|

−2e
N

Dm

(

e
N(Dm−Tn)

Dm(Dm+Tn) − 1
)

P ∗
n,2 = |hn|

−2
(

e
N(Dm−Tn)

Dm(Dm+Tn)
+ N

Dm − 1
) . (6)

Proof. Please refer to the appendix.

B. Finding the Optimal Solution for Tn

By substituting the optimal solution obtained in Lemma 1

into problem (1), the original problem can be written in an

equivalent form as follows:

min
Tn

gTn
, Dm

(

ey
∗

1 − 1
)

e
N

Dm + Tn

(

ey
∗

2 − 1
)

, (7)

s.t. Tn ≤ Dn −Dm,

where gTn
is the energy consumption normalized by omitting

the constant |hn|
−2 in the objective function (1a). Note that

both y∗1 and y∗2 are functions of Tn as defined in (20).

The derivative of gTn
with respect to Tn can be expressed

as follows:

dgTn

dTn

=Dme
N

Dm ey
∗

1
(−2N)

(Dm + Tn)2
+
(

ey
∗

2 − 1
)

(8)

+ Tne
y∗

2
(−2N)

(Dm + Tn)2
.

Recall that y∗2 = y∗1 + N
Dm

. Therefore, the derivative of gTn

can be rewritten as follows:

dgTn

dTn

=Dmey
∗

2
(−2N)

(Dm + Tn)2
+
(

ey
∗

2 − 1
)

(9)

+ Tne
y∗

2
(−2N)

(Dm + Tn)2

=ey
∗

2

(

1−
2N

Dm + Tn

)

− 1.

Further, recall that y∗2 = N(Dm−Tn)
Dm(Dm+Tn)

+ N
Dm

= 2N
Dm+Tn

. Thus,

the derivative of gTn
can be expressed as follows:

dgTn

dTn

=gx

(

2N

Dm + Tn

)

, (10)

where

gx(x) , ex (1− x)− 1. (11)

gx(x) is a monotonically non-increasing function since
dgx(x)

dx
= −xe−x ≤ 0 for x ≥ 0. Therefore,

dgTn

dTn
≤ 0 since

dgTn

dTn

≤ gx (0) = 0, (12)

which means that gTn
is monotonically non-increasing. Hence,

the optimal solution of Tn for problem (1) is given by

T ∗
n = Dn −Dm. (13)

It is worth pointing out that T ∗
n < Dm, since the case Dn <

2Dm is considered in this subsection.

C. Remarks and Discussions

1) For the superiority of NOMA over OMA: we can show

that OMA cannot outperform NOMA, as presented in the

following. The energy consumption gap between NOMA-

MEC and OMA-MEC is given by

∆ ,Dm

(

ey
∗

1 − 1
)

e
N

Dm |hn|
−2 + Tn

(

ey
∗

2 − 1
)

|hn|
−2 (14)

− Tn

(

e
N
Tn − 1

)

|hn|
−2.
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By using (20), the gap can be further expressed as follows:

|hn|
2∆ ,Dmey

∗

2 (Dm + Tn)−Dme
N

Dm − Tne
N
Tn (15)

=e
2N

Dm+Tn (Dm + Tn)−Dme
N

Dm − Tne
N
Tn = fTn

(Tn).

As shown in (32), fTn
(Tn) ≤ 0, which means that the use of

NOMA outperforms or at least yields the same performance

as OMA, under the condition Dn < 2Dm.

2) For the case Dn ≥ 2Dm: this case corresponds to a

scenario in which user n has less demanding latency require-

ments. Compared to the case Dn < 2Dm, Tn can be larger

than Dm for the case Dn ≥ 2Dm, since Tn = Dn − Dm.

In this case, OMA yields the best performance, as shown in

the following. Since the hybrid NOMA solutions in Lemma

1 are feasible only if Tn < Dm and the energy consumption

of hybrid NOMA, i.e., gTn
in (7), is a monotonically non-

increasing function of Tn, gTn
is always strictly lower bounded

by

Dm|hn|
−2

(

e
N

Dm − 1
)

. (16)

On the other hand, the lower bound in (16) can be achieved by

OMA when Dn ≥ 2Dm, i.e., the solution obtained with λ1 6=
0, λ2 = 0 and Tn = Dm, as shown in (23). In other words,

when Dn ≥ 2Dm, OMA requires less energy consumption

than hybrid NOMA. Furthermore, OMA can also outperform

pure NOMA since

EOMA − ENOMA

|hn|−2
≤
(a)

Dm

(

e
N

Dm − 1
)

−Dme
N

Dm

(

e
N

Dm − 1
)

= −Dm

(

e
N

Dm − 1
)2

≤ 0, (17)

where step (a) is due to the fact that the minimal energy

required by OMA is no less than that in (16). Therefore, it

is concluded that OMA outperforms hybrid NOMA and pure

NOMA when Dn ≥ 2Dm. This conclusion is reasonable,

since a more relaxed deadline makes it possible to use only

the interference-free time slot (Dn −Dm) for offloading.

IV. NUMERICAL RESULTS

In this section, the performance of the proposed NOMA-

MEC scheme is evaluated via simulation results, where the

normalized energy consumption in (7) is used. As can be

observed from Fig. 1, the use of NOMA-MEC can yield

a significant performance gain over OMA-MEC, particularly

when Dn is small. This is because OMA-MEC relies on the

short period (Dn −Dm) for offloading. Take Dn → Dm as

an example. (Dn−Dm) becomes close to zero, and hence the

energy consumed by OMA-MEC becomes prohibitively large,

as shown in the figure. On the other hand, NOMA-MEC uses

not only (Dn−Dm) but also Dm for offloading, which makes

the energy consumed by NOMA-MEC more stable.

To better illustrate the optimality of the solutions obtained

in Lemma 1, the energy consumption is shown as a function of

different choices of (Pn,1, Pn,2) in Fig. 2. The figure clearly

demonstrates that among all the possible power allocation

choices, the one provided in Lemma 1 yields the lowest energy

consumption. As discussed in Section III-C, the performance

of NOMA and OMA becomes quite similar when Dn becomes
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large, which is confirmed by Fig. 1, while further details

about this aspect are provided in Fig. 3. As can be seen from

this figure, when Dn increases, the power allocated to Dm

approaches zero, which means that hybrid NOMA is degraded

relative to OMA, as pointed out in Section III-C.

V. CONCLUSIONS

In this paper, the principle of NOMA has been applied to

MEC, and optimal solutions for the power and time allocation

have been obtained by applying GP. Analytical and simulation

results have also been provided to demonstrate the superior

performance of NOMA-MEC over OMA-MEC.

APPENDIX A

PROOF OF LEMMA 1

The proof of the lemma can be completed by studying

the possible choices of λi, i = 1, 2, 3, and showing that the
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solutions for the case with λi = 0, ∀i ∈ {1, 2}, yield the

smallest energy consumption.

1) Hybrid NOMA (λi = 0, ∀i ∈ {1, 2}): since λi = 0,

∀i ∈ {1, 2}, yi > 0 and hence Pn,1 and Pn,2 are non-zero,

which is the reason why this case is termed hybrid NOMA.

For this case, we can show that λ3 6= 0 as follows. If λ3 = 0,

the KKT conditions lead to the following two equations:










Dme
N

Dm ey1

Dme
N

Dm ey1+Tney2
= 0

Tne
y2

Dme
N

Dm ey1+Tne
y2

= 0
, (18)

which cannot be true. Therefore, λ3 6= 0 follows, which means

that the KKT conditions can be rewritten as follows:






















e
N

Dm ey1

Dme
N

Dm ey1+Tne
y2

− λ3 = 0

ey2

Dme
N

Dm ey1+Tney2
− λ3 = 0

(−Dmy1 − Tny2 +N) = 0
yi > 0, ∀i ∈ {1, 2}

. (19)

With some algebraic manipulations, the optimal solutions for

y1 and y2 can be obtained as follows:

{

y∗1 = N(Dm−Tn)
Dm(Dm+Tn)

y∗2 = N(Dm−Tn)
Dm(Dm+Tn)

+ N
Dm

. (20)

Since Dn < 2Dm, Tn ≤ Dn −Dm < Dm, and the solutions

y∗i ’s satisfy the constraints yi > 0, which mean that the

solutions shown in (20) are feasible. With the power allocation

solutions in (20), the overall energy consumption is given by

EH-NOMA =Dm|hn|
−2e

N
Dm

(

e
N(Dm−Tn)

Dm(Dm+Tn) − 1
)

(21)

+ Tn|hn|
−2

(

e
N(Dm−Tn)

Dm(Dm+Tn)
+ N

Dm − 1
)

.

2) Pure NOMA (λ1 = 0 and λ2 6= 0): since λ1 = 0 and

λ2 6= 0, we have y1 6= 0 and y2 = 0, and hence Pn,1 6= 0 and

Pn,2 = 0, which is the reason to term this case pure NOMA.

Since y2 = 0 corresponds to an extreme situation in which all

the power is allocated to Dm, the use of the rate constraint in

(2) yields the following choice of Pn,1:

P̃ ∗
n,1 =

(

e
N

Dm − 1
)

e
N

Dm |hn|
−2, (22)

which means that the overall energy consumption becomes

ENOMA = Dm

(

e
N

Dm − 1
)

e
N

Dm |hn|
−2. (23)

3) OMA (λ1 6= 0 and λ2 = 0): since λ1 6= 0 and λ2 = 0,

we have y1 = 0 and y2 6= 0, and hence Pn,1 = 0 and Pn,2 6= 0,

which is the reason to term this case as OMA. Since all the

power is allocated to Tn, the use of the rate constraint in (2)

yields the following choice of Pn,2:

P̃ ∗
n,2 =

(

e
N
Tn − 1

)

|hn|
−2, (24)

which means that the overall energy consumption becomes

EOMA = Tn

(

e
N
Tn − 1

)

|hn|
−2. (25)

4) Comparisons among the three cases: in the following,

we can show that hybrid NOMA requires the smallest energy.

As discussed in Subsection III-B, the overall energy is a

monotonically non-increasing function of Tn when λi = 0,

∀i ∈ {1, 2}. Therefore, EH-NOMA is upper bounded by

EH-NOMA ≤Dm|hn|
−2e

N
Dm

(

e
N

Dm − 1
)

= ENOMA, (26)

since Tn ≥ 0. Hence, the use of hybrid NOMA requires less

energy consumption than pure NOMA.

The difference between EH-NOMA and EOMA can be ex-

pressed as follows:

EH-NOMA − EOMA

|hn|−2
= Dme

N
Dm

(

e
N(Dm−Tn)

Dm(Dm+Tn) − 1
)

(27)

+Tn

(

e
2N

(Dm+Tn) − 1
)

− Tn

(

e
N
Tn − 1

)

= fTn
(Tn),

where fTn
(x) is defined as follows:

fTn
(x) , (Dm + x)e

2N
(Dm+x) −Dme

N
Dm − xe

N
x . (28)

Note that fTn
(x) is a monotonically non-decreasing function

for x < Dm, as shown in the following. The derivative of

fTn
(x) is given by

dfTn
(x)

dx
=e

2N
Dm+x

(

1−
2N

Dm + x

)

− e
N
x

(

1−
N

x

)

. (29)

Now define fy(y) = e
N
y

(

1− N
y

)

, and the derivative fTn
(x)

can be expressed as follows:

dfTn
(x)

dx
=fy

(

Dm + x

2

)

− fy (x) . (30)

Note that fy(y) is a monotonically increasing function since

dfy(y)
dy

= N2e
N
y

y3 > 0. Since x < Dm, Dm+x
2 > x. Therefore,

the derivative fTn
(x) is non-negative, i.e.,

dfTn
(x)

dx
=fy

(

Dm + Tn

2

)

− fy(Tn) ≥ 0, (31)

which means that fTn
(x) is a monotonically non-decreasing

function. Since Tn < Dm, we have

EH-NOMA − EOMA

|hn|−2
= fTn

(Tn) ≤fTn
(Dm) = 0. (32)

Combining (26) and (32), hybrid NOMA, i.e., the solutions

obtained with λi = 0, ∀i ∈ {1, 2}, yields the smallest energy

consumption. By using y∗i in (20), the required powers during

Dm and Tn can be obtained, and the proof is complete.
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