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Energy Optimization For Wireless Video
Transmission Employing Hybrid ARQ

Bentao Zhang , Pamela Cosman , Fellow, IEEE, and Laurence B. Milstein, Fellow, IEEE

Abstract—In this paper we investigate energy-optimized wireless
video transmission employing a hybrid automatic repeat request.
We formulate the problem as maximizing the video quality, subject
to a constraint on the wireless transmission energy consumption.
We consider multiple parameters in multiple layers in a wireless
video transmission system: transmit power, alphabet size, FEC
code rate, maximum number of transmissions, and unequal video
data importance. An analytical framework is proposed to include
these parameters, which allows us to divide this problem into two
sub-problems: data transmission and unequal error protection.
The problem is tackled by solving the two sub-problems, which are
done by exhaustive search and convex optimization, respectively.
Simulations of different videos show that the proposed scheme
outperforms methods using conventional data transmission and/or
unequal error protection.

Index Terms—Energy optimization, wireless video transmission,
hybrid ARQ, unequal error protection.

I. INTRODUCTION

MOBILE wireless video traffic has been growing rapidly
in recent years. According to a Cisco report, global mo-

bile data traffic will increase sevenfold between 2016 and 2021
[1]. However, due to the unpredictable nature of the wireless
channel, it is a challenging task to provide high quality video
transmission. In addition, mobile devices usually have limited
battery capacities [2]. Large energy consumption or transmit
power increases the probability of successful transmission, and
hence yields high video quality, but results in a short battery
life. Therefore, it is an important task to improve wireless video
quality with limited energy consumption.

In this paper, we consider a cross-layer optimization with a
maximum number of retransmissions. We employ Hybrid Auto-
matic Repeat reQuest (HARQ) [3]–[14], which is a combination
of FEC and automatic repeat request (ARQ). Pure FEC may add
unnecessary redundancy, whereas pure ARQ may require many
retransmissions due to heavy losses for each single transmis-
sion. The authors in [15], [16] suggest that HARQ outperforms
pure FEC and pure ARQ for wireless video transmission.
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In this paper, we consider both unequal importance for the
transmissions of the same video content, and unequal impor-
tance for different video contents, and we include the analysis
of both HARQ and AMC. We consider multiple parameters in
multiple layers in a wireless video transmission system: trans-
mit power, alphabet size, FEC code rate, maximum number of
transmissions and unequal frame importance. We decouple the
problem into two sub-problems, data transmission and video
UEP, which are solved by exhaustive search and convex opti-
mization, respectively. Finally we conduct simulations to com-
pare the performance of the proposed scheme to existing data
HARQ and/or video UEP schemes. The results show that the
proposed scheme significantly outperforms comparison HARQ
and UEP methods.

The contributions of this work can be summarized as follows:
� We establish a framework to optimize video quality, sub-

ject to an energy consumption constraint, which considers
both the unequal importance of multiple transmissions and
the unequal importance of different video contents.

� We decouple a non-convex problem into two sub-
problems, where the first one is non-convex and solved
by exhaustive search, and the second one is convex and
solved using a Lagrangian multiplier.

� We conduct simulations on different videos, and both sim-
ulation and theoretical results show that the proposed
scheme significantly outperforms the baseline scheme
which either takes into account only one of the unequal
importances considered in this paper or does not consider
any unequal importance at all.

� We analyze the performance of the algorithm using a
specific set of parameters for all videos, instead of us-
ing the optimal parameters for each video. Results show
that the specific set of parameters can provide close-to-
optimal video quality, and thus the proposed algorithm
can be run offline to generate a lookup table. During the
video transmission, the parameters are obtained from the
table, and the power and extra latency due to computation
are avoided. The complexity of the offline algorithm is
analyzed.

The rest of the paper is organized as follows. The related
work is introduced in Section II. In Section III, we formulate
the problem and propose an algorithm. In Sections IV and V,
we introduce the two procedures in the algorithm. We show
simulation results in Section VI, and conclusions are drawn in
Section VII.
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II. RELATED WORK

A. Energy Optimization For Video Transmission

Energy optimization for video transmission has been studied
by many researchers. In [17], the authors developed a framework
to estimate the energy consumption of the video based on the
channel state and video characteristics. However, the unequal
importance of multiple transmissions was not fully investigated.
In [18], the authors optimized the energy efficiency at the ap-
plication layer. They adapt video encoder parameters based on
the channel state and drop less important packets to avoid net-
work congestion. In [19], a quasi-quadrature modulation is used
to minimize the power consumption of video transmission. In
[20], the authors proposed an algorithm to assign different for-
ward error correction (FEC) code rates for the frames in a group
of pictures (GOP) and drop packets with low priority. In [21],
the authors studied coding unit level prioritization and FEC code
rate selection in a wireless relay network. The authors in [22]
studied the trade-off between energy saving and video quality
and proposed an algorithm to assign different adaptive mod-
ulation and coding (AMC) modes to different video encoding
layers. In [23], the authors maximized video quality, subject
to an energy constraint in a D2D network, by optimizing the
bit rate and FEC code rate on the paths between nodes in the
D2D network. In [24], the optimal power allocation and the
link adaptation algorithms are derived analytically, subject to a
quality-of-service constraint. However, the fact that the video
contents in a video sequence can require different quality-of-
service, which reflects the unequal importance of video con-
tents, is not taken into account. In [25], the source and channel
coding are jointly optimized to achieve the best video quality,
under an energy constraint, which is suitable for video stream-
ing scenarios. In [26], the authors optimized energy efficiency
for MIMO-OFDM multimedia communication with quality-of-
service constraints. The trade-off of the energy between video
encoding and transmission was discussed in [27].

B. Video Transmission With HARQ

We summarize the work on video transmission employ-
ing HARQ in this section. In [28], the authors proposed an
APP/MAC/PHY cross-layer framework to optimize perceptual
video quality. The maximum number of retransmissions varies
with the layer in which the packet is encoded. If a transmis-
sion fails, the next retransmission is assigned a lower order
modulation and coding scheme to provide a satisfactory prob-
ability of success. A limited-retransmission priority encoding
transmission (LR-PET) scheme investigated PET with multi-
ple transmissions [29]. The optimal protection depends on both
the importance of the stream content and its behavior in future
transmissions. The authors in [30] showed that under a scenario
where the video contents have the same decoding deadline,
the optimal strategy concludes that the most important packets
should be retransmitted as often as needed and the less im-
portant ones may get discarded. A prioritized retransmission
scheme was proposed based on the error propagation effect of

the lost packet [31]. The authors in [32] assessed the impact of
the lost macroblocks on the reconstructed frame and the ones
with the highest impact are prioritized to be retransmitted. In
[33], a video flow is subdivided into independent and incre-
mentally encoded packets and the HARQ scheme privileges the
retransmission of independent packets. The maximum number
of transmissions is changed based on the importance of the
packet for LTE networks in [34], [35]. The authors in [36] con-
sidered interlayer FEC and HARQ, and found the best FEC code
rate distribution among the video layers to minimize the video
distortion. In [37], retransmissions are used for the base layer to
reduce network congestion. The authors in [38] studied unequal
error protection (UEP), retransmission and GOP-level interleav-
ing. They proposed segment-wise and byte-wise retransmission
based on different types of receiver feedback. When the round
trip time fluctuates significantly, the authors in [39] proposed a
retransmission scheme to adaptively control the retransmission
window size. The transmit power optimization problem was
solved in [40] for multimedia applications, based on the obser-
vation that some performance metrics such as throughput, delay,
and peak signal-to-noise ratio, may exhibit a staircase behavior
for particular systems with HARQ. The authors in [41] proposed
a scheduling scheme based on channel quality in LTE networks.
In [42], the video source is able to adjust the video layers based
on the channel estimator at the receiver. In [43], an adaptive
unequal video protection method was designed for peer-to-peer
video streaming over mobile wireless mesh networks, which
assigns different priorities to the frames. A priority-based key
frame protection method, which utilizes the idea of unequal er-
ror protection, was studied on a 5G network in [44]. A joint
source-channel resource allocation problem was investigated in
[45] to achieve adaptive error protection for video transmission.

The existing schemes on video retransmission employing
HARQ can be categorized into two groups. For the first group,
multiple transmissions of the same video content are treated
equally, and the authors leverage the unequal importance of
video contents which arises from the coding/decoding struc-
ture [46]. For example, for an IPPP encoding structure, a GOP
begins with an intra-coded I frame followed by predicted P
frames. An I frame does not use any other frames as reference
for encoding, whereas a P frame uses the preceding frame as ref-
erence [47]. The frames at the beginning of a GOP have higher
importance than later frames because of the decoding depen-
dency of later frames on previous frames. Thus, different video
contents should have unequal protection during transmission to
maximize the decoded video quality. Examples of leveraging
unequal importance of video contents include assigning dif-
ferent maximum numbers of transmissions, assigning different
priorities for retransmission, and using different FEC codes. We
analyze this unequal importance quantitatively in Section III-C,
using the model in [48] and [49].

For the second group, the multiple transmissions of the same
video content have unequal importance, but there lacks an ana-
lytical framework to provide the optimal strategy in each trans-
mission. This unequal importance of multiple transmissions was
studied using a single alphabet size and variable power [4],
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[5]. The authors derived the optimal transmit power for each
transmission round and this unequal power allocation outper-
forms the scheme in which the power is kept constant in each
transmission. The optimal rate in each transmission for incre-
mental redundancy was analyzed in [50], [51]. However, most
of the existing data transmission HARQ schemes are based on
information-theoretical analysis, which assumes there is no er-
ror when the SNR is larger than a threshold and assumes there
is always an error when the SNR is smaller than the threshold.
In our previous work [52], we used multiple alphabet sizes and
variable power and investigated both the optimal transmit power
and the optimal alphabet selection algorithm across the trans-
missions of the same data content, based on the actual packet
error rate (PER) performance of a turbo code.

III. PROBLEM SETUP AND FORMULATION

A. System Setup and Assumptions

A source encoder encodes a GOP, which contains T frames,
with IPPP structure. Each frame is encoded into one or more
slices. A slice is encoded by the FEC encoder and becomes
a codeword, and is then sent through the wireless channel. A
slice contains only information bits, a codeword is a slice plus
parity bits, and a packet is any realization of a codeword. That
is, a codeword can be transmitted multiple times, and the re-
alization of each transmission is a packet. Slice copy is used
at the decoder for error concealment. The term “packet error
rate/probability” (PER) denotes the probability of error of any
single transmission or retransmission of a codeword, and “over-
all packet error rate/probability” denotes the probability of error
after a maximum number of transmissions of a codeword. For
simplicity, the slices within frame i use the identical FEC code
rate ri , maximum number of transmissions Ni , power allo-
cation algorithm and alphabet size mapping algorithm, where
i = 1, 2, ..., T . The available FEC code rates are 1/2, 1/3 and 1/5,
and the retransmissions of a codeword use the same FEC code
rate as the first transmission. The maximum number of transmis-
sions Ni ∈ {1, 2, ...Nmax}. For power allocation, the transmit
power varies with retransmission number of a codeword/slice,
but does not vary with the slice number in a frame. Thus,
in a given frame, the power depends on only the retransmis-
sion number of a codeword/slice, but not which slice it is. The
maximum transmit power is Smax . For alphabet size mapping,
adaptive M -PSK is used, and available modulations are BPSK,
QPSK, 8PSK and 16PSK. Thus, retransmissions are allowed
to use different alphabet sizes from the first transmission. The
alphabet mapping algorithm will be explained in Section III-B.
All packets contain L bits (including FEC, but excluding CRC
bits and tail bits) and we ignore the influence of CRC bits and
tail bits since their number is small relative to L. The symbol
duration of the system, Ts , is kept constant, and a rectangular
pulse shape is used. The number of symbols for an M -PSK
packet is L/log2(M), and the number of information bits in a
codeword in frame i is Lri . The receiver is a matched filter and
coherent detection is used. The system block diagram is shown
in Fig. 1.

Fig. 1. System block diagram.

The instantaneous channel gain for the j-th transmission of a
codeword in frame i, γj,i , is assumed to be Rayleigh distributed,
and the pdf of γj,i does not change with time. The fades of differ-
ent transmissions of a codeword are assumed to be independent,
and we assume perfect CSI is available at the transmitter.

B. Alphabet Size Mapping

Since adaptive modulation is used, we introduce the al-
phabet size mapping in this subsection before we formulate
the problem. The instantaneous received signal-to-noise ratio
(SNR) for the j-th transmission of a codeword in frame i is
Γj,i = γ2

j,iSj,iTs/N0, where Sj,i is the transmit power for the
j-th transmission of a codeword in frame i andN0 is the spectral
density of the additive Gaussian noise. Since the packet error
probability for turbo codes cannot be expressed analytically, we
fit the packet error probability with an exponential function as
in [3]. For a given code rate, we have

ψM (Γj,i) =

⎧
⎨

⎩

1, 0 < Γj,i < Γmin
M

alog2M e
−bl o g 2M Γj , i , Γj,i ≥ Γmin

M ,
(1)

where ψM (Γj,i) is the conditional single-transmission packet
error probability, conditioned on Γj,i , for M -PSK, and an >
0, bn > 0, n = 1, 2, 3, 4. The parameters an , bn and Γmin

M are
obtained through simulation and curve fitting and they depend
on the code rate. The simulated packet error rate for a rate 1/3
turbo code is shown in Fig. 2.

We map alphabet sizes as in [3]. We set a PER “upper bound”
Uj,i for the j-th transmission of the codewords in the i-th frame.
Uj,i and Uk,i can be the same or different for j �= k. Let the
instantaneous received SNR boundaries for the j-th transmission
of the slices in the i-th frame be (Γ(1)

j,i ,Γ
(2)
j,i ,Γ

(3)
j,i ,Γ

(4)
j,i ,Γ

(5)
j,i ),

and choose M -PSK when Γ(log2M )
j,i ≤ Γj,i < Γ(log2M+1)

j,i . The
SNR boundaries for the j-th transmission of the codewords in
the i-th frame are determined by setting the left hand side of
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Fig. 2. Packet error rate vs. instantaneous received SNR.

Equation (1) equal to Uj,i , where Γ(1)
j,i = Γmin

2 , Γ(5)
j,i = ∞:

Γ(n)
j,i =

1
bn
ln

(
an
Uj,i

)

, n = 2, 3, 4. (2)

The terms Γ(2)
j,i ,Γ

(3)
j,i and Γ(4)

j,i are determined by Uj,i . Thus, we
aim to choose the largest alphabet size so that the curve-fitted
conditional PER, conditioned on Γj,i , is lower than Uj,i when

Γj,i > Γ(2)
j,i , and we choose BPSK when Γ(1)

j,i < Γj,i ≤ Γ(2)
j,i , i.e.,

the curve fit to the conditional PER is lower than 1. The system
does not transmit when Γj,i ≤ Γ(1)

j,i , i.e., the fitted conditional
PER is 1. Although Uj,i is not a strict upper bound on the
conditional PER over the whole range where BPSK is used, we
use the term “upper bound” since the conditional PER is lower
than Uj,i for all of the channel states which are above some
threshold.

C. Problem Formulation

We want to minimize the mean square error (MSE) in the
GOP of the given video sequence, subject to overall energy
and maximum power constraints. The system parameters we
can directly control are the maximum number of transmissions,
FEC code rate, power, and PER “upper bound”. According to
[48] and [49], the MSE directly depends on the average PERs
for the frames (although the average PER further depends on
the system parameters above). Here the “average PER” is the
instantaneous PER averaged over the Rayleigh fading channel.
If the average PER for frame i in a GOP is denoted by Pei ,
where i = 1, 2, ..., T , then the MSE incurred in frame i is

σ2
0

i∑

τ=0

Peτ
1

1 + α(i− τ)
, (3)

where σ2
0 are α are parameters which depend on the video. The

above model assumes that 1) the pixel errors incurred in different
frames are independent and 2) the pixel errors incurred in a
frame, but propagated from different frames, are uncorrelated.
The first assumption is valid in our model, since a packet can

only contain contents from one frame, and different packets
experience independent fading, thus the pixel errors in different
frames are independent. The second assumption is realistic when
Pei is small. The accuracy of the model is evaluated in Section V.
Therefore, the MSE over the GOP is

MSE({Pei}) = σ2
0

T∑

i=1

i∑

τ=1

Peτ
1

1 + α(i− τ)

= σ2
0

T∑

i=1

Pei

T −i∑

τ=0

1
1 + ατ

, (4)

where {Pei} = (Pe1, Pe2, ..., PeT ) is the set of PERs for T
frames. Note that the MSE over the GOP in Equation (4) is
just the sum of the MSE of every frame in the GOP, so Equation
(4) does not require further assumptions beyond those made for
Equation (3).

The optimization problem is formulated as follows:

min MSE({Pei})

s.t.
T∑

i=1

niE(Pei) = min(Ec , Ẽc)

0 ≤ Sj,i ≤ Smax for i = 1, 2, ..., T and

j = 1, 2, ..., Ni

variables : {Pei} (5)

where ni is the number of information bits in frame
i, Ec is the energy constraint for the entire GOP, Ẽc =
(
∑T

i=1 ni)SmaxTsNmax/rmin represents the maximum energy
that a GOP could consume. Here, rmin is the lowest FEC code
rate (rmin = 1/5 in this paper). The maximum energy occurs
when the FEC is the strongest possible and the maximum num-
ber of transmissions is used. The term E(Pei) is the energy
consumption per information bit in frame i to achieve an av-
erage PER of Pei , i.e., the energy consumption of a codeword
divided by the number of information bits in the codeword. The
units of Ec , Ẽc and E(Pei) are Joules. We define E(Pei) in this
way because the number of information bits in frame i is de-
termined by the video encoder, which does not depend on the
FEC rate ri . Thus, E(Pei) is a fair comparison for different FEC
rates. The set operator is {·}. The maximum energy that an in-
formation bit in frame i can possibly use isSmaxTsNmax/rmin ,
i.e., the codeword uses BPSK, FEC rate rmin , maximum power
Smax and gets transmitted Nmax times. The energy constraint
Ec is used to minimize MSE when Ec ≤ Ẽc , and the energy con-
sumption cannot exceed Ẽc when Ec > Ẽc . In Equation (5), the
function E(Pei) is not uniquely defined in the above formulation
since there can be multiple sets of parameters (Ni, ri , Sj,i , Uj,i)
which generate the same Pei , but do not result in the same en-
ergy consumption. Thus, for a given Pei , there can be multiple
values of energy E(Pei).

As a consequence, for any Pei being considered, we
choose the energy-minimizing Emin (Pei) to achieve Pei , where
Emin (Pei) is defined as the least energy consumption per
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TABLE I
TABLE OF VARIABLES

information bit to achieve an average PER of Pei . Notice that
Emin (Pei) is a function of Pei , but not the system parame-
ters (Ni, ri , Sj,i , Uj,i). Intuitively, if a particular packet is to
be transmitted with a certain PER, it does not make sense to
achieve that PER using a parameter set (Ni, ri , Sj,i , Uj,i) that
uses a higher energy if the same PER can be achieved using a
parameter set that uses a lower energy. Hence in the following,
as the algorithm searches through the possible values of PER,
for each value of PER, only the energy-minimizing value of
achieving that PER, Emin (Pei), will be considered.

Note that there are two constraints in Equation (5): energy
constraint Ec and power constraint Smax . The energy Ec con-
straint is determined by the video application, and is determined
by such factors as the desired video quality level and the bat-
tery status. The power constraint Smax is determined by the
hardware, e.g., the power amplifier. These two constraints are
determined independently.

D. Algorithm

Equation (5) is a non-convex optimization problem due
to the non-convexity of the term E(Pei), so we solve
it by using a combination of exhaustive search and La-
grangian multiplier method. First, we quantize Pei . For
each quantized value of Pei , we then quantize the variables
S1,i , ..., SNi ,i , U1,i , ..., UNi ,i and exhaustively search all possi-
ble tuples of Ni, ri , S1,i , ..., SNi ,i , U1,i , ..., UNi ,i to find all the
tuples which yield PER Pei . Among these, we find the one
which has the minimum energy consumption Emin (Pei). After
examining all quantized values of Pei and obtaining the corre-
sponding minimum energy, we get the function Emin (Pei). Then
we use the Lagrangian multiplier method to solve Equation (5).

Before introducing the details of the algorithm, we de-
fine Eave(Ni, ri , S1,i , ..., SNi ,i , U1,i , ..., UNi ,i) to be the aver-
age overall energy consumption (including retransmissions)
of an information bit in frame i, i.e., the overall energy

consumption of a codeword divided by the number
of information bits in the codeword, and we define
Pave(Ni, ri , S1,i , ..., SNi ,i , U1,i , ..., UNi ,i) to be the average
overall PER for a codeword in frame i. Notice that the codewords
in one frame have the sameNi, ri , Sj,i , Uj,i , but the modulation
alphabet is allowed to vary from one codeword to the next based
on the channel state.

IV. PROPOSED HARQ

A. Problem Formulation

The procedure which obtains Emin (Pei) solves the HARQ
problem by optimizing the parameters in each transmission,
and does not depend on frame number i, so we simplify the
notation by removing the dependence on i. Then the problem
can be formulated as follows:

min Eave(N, r, {S}, {U})
s.t. P ave(N, r, {S}, {U}) = Pe

0 ≤ Sj ≤ Smax j = 1, 2, ..., N

variables : N, r, {S}, {U}, (6)

where N is the maximum number of transmissions of the
codeword, r is the FEC code rate of the codeword, {S} =
(S1, ..., SN ) with Sj being the transmit power for the j-th
transmission of the codeword and {U} = (U1, ..., UN ) with
Uj being the PER “upper bound” for the j-th transmission of
the codeword. Eave(N, r, {S}, {U}) is the average overall en-
ergy consumption (including retransmissions) of an information
bit in a codeword, Pave(N, r, {S}, {U}) is the average overall
PER for a codeword, and Pe is the average overall PER con-
straint. We define {Γ} = (Γ1,Γ2, ...,ΓM ) as the set of channel
states forM transmissions of the codeword, whereM ≤ N , and
{X} = (X1,X2, ...,XM ) as the set of outcomes for M trans-
missions of the codeword. Xj = 1 means the j-th transmission
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of the codeword is successful, andXj = 0 means the j-th trans-
mission is not successful. Let Pcndt

e (N, r, {S}, {U} | {Γ}) be
the conditional codeword error probability, conditioned on {Γ},
i.e., the probability that the codeword cannot be successfully de-
coded after N transmissions with the given channel states {Γ}
in the transmissions. Let Ecndt(N, r, {S}, {U} | {Γ}, {X}) be
the conditional energy consumption of an information bit, con-
ditioned on {Γ} and {X}, i.e., the sum of the energy con-
sumptions of all transmissions of the codeword with the given
channel states {Γ}, divided by the number of information bits
in the codeword. Then we have the following equations:

Pcndt
e (N, r, {S}, {U} | {Γ})

= P(X1 = 0,X2 = 0, ...,XN = 0 | {Γ}) (7)

Ecndt(N, r, {S}, {U} | {Γ}, {X})

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑k
j=1 ej (Γj ) if k is the smallest number such that

Xj = 1, k ≤ N
∑N

j=1 ej (Γj ) if Xj = 0 for all j ∈ [1, N − 1]

,

(8)

where ej (Γj ) is the energy consumption during the j-th trans-
mission of an information bit, given that the channel state is
Γj .

B. Special Case

For simplicity of presentation, consider the special case where
N = 2. Other cases can be shown to follow by similar analysis.
The average overall PER is

Pave(2, r, {S}, {U})

= E{Γ}[Pcndt
e (2, r, {S}, {U} | {Γ})]

=
∫ ∞

0

∫ ∞

0
Pcndt
e (2, r, {S}, {U} | {Γ})fΓ1,Γ2(Γ1,Γ2)dΓ1dΓ2

=
∫ ∞

0

∫ ∞

0
Pcndt
e1 (r, S1, U1 |Γ1)Pcndt

e2 (r, S2, U2 |Γ2)

× fΓ1,Γ2(Γ1,Γ2)dΓ1dΓ2

=
∫ ∞

0
Pcndt
e1 (r, S1, U1 |Γ1)fΓ1(Γ1)dΓ1

×
∫ ∞

0
Pcndt
e2 (r, S2, U2 |Γ2)fΓ2(Γ2)dΓ2, (9)

where fΓ1,Γ2(Γ1,Γ2) is the joint pdf of the channel states for
the two transmissions, fΓj

(Γj ) is the pdf of the channel state
for the j-th transmission, and Pcndt

ej (r, Sj , Uj |Γj ) is the con-
ditional PER in the j-th transmission, conditioned on chan-
nel state Γj . The SNR boundaries in the j-th transmission

(Γ(1)
j ,Γ(2)

j ,Γ(3)
j ,Γ(4)

j ,Γ(5)
j ) are obtained from the method in

Section III-B. With the SNR boundaries, we have

Pcndt
ej (r, Sj , Uj |Γj ) = ψ2i (Γj ) = aie

−bi Γj

when Γ(i)
j < Γj < Γ(i+1)

j , i = 1, 2, 3, 4 (10)

where the curve-fitted parameters ai and bi depend on r. Let
Aj be the average SNR in the j-th transmission, where Aj =
E[γ2SjTs/N0]. Then we have

Pave(N, r, {S}, {U})

=
1

A1A2

[∫ Γ( 1)
1

0
e
− Γ 1

A 1 dΓ1 +
4∑

i=1

ai

∫ Γ( i+1)
1

Γ( i )
1

e
−
(
bi + 1

A 1

)
Γ1dΓ1

]

×
[∫ Γ( 1)

2

0
e
− Γ 2

A 2 dΓ2 +
4∑

i=1

ai

∫ Γ( i+1)
2

Γ( i )
2

e
−
(
bi + 1

A 2

)
Γ2dΓ2

]

(11)

The average overall energy per information bit is in Equation
(12), where Ecndtj (r, Sj , Uj |Γj ) is the conditional energy con-
sumption during the j-th transmission of the information bit,
conditioned on channel state Γj .

Eave(2, r, {S}, {U})
= E{Γ},{X }[Ecndt(2, r, {S}, {U} | {Γ}, {X})]
= E{Γ}[P(X1 = 1)Ecndt(2, r, {S}, {U} | {Γ},X1 = 1)

+ P(X1 = 0)Ecndt(2, r, {S}, {U} | {Γ},X1 = 0)]

= E{Γ}
[P(X1 = 1)Ecndt1 (r, S1, U1 |Γ1) + P(X1 = 0)

× (Ecndt1 (r, S1, U1 |Γ1) + Ecndt2 (r, S2, U2 |Γ2)
)]

=
∫ ∞

0

∫ ∞

0

[Ecndt1 (r, P1, U1 |Γ1) + Pcndt
e1 (r, P1, U1 |Γ1)

× Ecndt2 (r, S2, U2 |Γ2)
]
fΓ1,Γ2(Γ1,Γ2)dΓ1dΓ2

=
∫ ∞

0
Ecndt1 (r, S1, U1 |Γ1)fΓ1(Γ1)dΓ1

+
∫ ∞

0
Pcndt
e1 (r, S1, U1 |Γ1)fΓ1(Γ1)dΓ1

×
∫ ∞

0
Ecndt2 (r, S2, U2 |Γ2)fΓ2(Γ2)dΓ2

=
1

A1Lr

4∑

i=1

∫ Γ( i+1)
1

Γ( i )
1

S1Ts
i

e
− Γ 1

A 1 dΓ1 +
1

A1A2Lr

×
[∫ Γ( 1)

1

0
e
− Γ 1

A 1 dΓ1 +
4∑

i=1

ai

∫ Γ( i+1)
1

Γ( i )
1

e
−(bi + 1

A 1
)Γ1dΓ1

]

×
[

4∑

i=1

∫ Γ( i+1)
2

Γ( i )
2

S2Ts
i

e
− Γ 2

A 2 dΓ2

]

, (12)

With the above expressions, we would like to solve Equation
(6). However, the problem is non-convex, even when N = 2.
We use an exhaustive search to find the optimal solution. First,
we quantize Pe . For each quantized value of Pe , we then quan-
tize the variables S1, ..., SN , U1, ..., UN and exhaustively search
all possible tuples ofN, r, S1, ..., SN , U1, ..., UN to find the one
which gives average PER Pe and has the minimum energy con-
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TABLE II
SIMULATION PARAMETERS

Fig. 3. Energy consumption for different FEC rates and maximum number of
transmissions. Average channel SNR is 0 dB.

sumption Emin (Pe). We quantize three continuous parameters:
Pe ,S andU . In the numerical exhaustive search, the step size for
log10(Pe) is 0.02, the step size for 10log10(S) is 0.02 and the step
size for log10(U) is 0.02. The range for Pe is from the minimum
achievable PER to 1. The minimum achievable PER depends on
the channel statistics, e.g., 4 × 10−3 when E[γ2S0Ts/N0] = 1.
The range for S is from 0 to Smax = 2S0. The range for U is
from 10−6 to 1.

Figs. 3 and 4 show the minimum energy consumption per bit
vs. PER for different (N, r) combinations whenE[γ2S0Ts/N0]
= 0 dB and 10 dB, respectively. The energy consumption per
bit is normalized by S0Ts , i.e., the energy consumption per bit
(in units of Joules) for BPSK without FEC in a single transmis-
sion. Thus, the y-axis is dimensionless. In this paper, we let the
available protection combinations be {N} = {3, 2, 1}, {r} =
{1/5, 1/3, 1/2}, so there are 9 possible protections. In both fig-
ures, each line color corresponds to a value of N : black for N
= 3, green for N = 2, and blue for N = 1, and each line type
corresponds to a value of r: dashed for r= 1/5, solid for r= 1/3,
and dotted for r = 1/2. Then Emin (Pe) is the minimum among
these curves. From both figures, we find that, given N , energy
decreases with the decreasing of r, which is due to the coding

Fig. 4. Energy consumption for different FEC rates and maximum number of
transmissions. Average channel SNR is 10 dB.

Fig. 5. Power distribution for N = 3 and r = 1/5. Average channel SNR is
10 dB.

gain; given r, energy decreases with the increasing ofN , which
is due to the diversity in the transmissions. The influence ofN is
larger than the influence of r, especially when the channel SNR
is large. No matter what the channel SNR is, (N = 3, r = 1/5)
results in the minimum energy due to the best coding gain and
diversity in transmissions.

Figs. 5 and 6 show the power and PER “upper bound” distri-
butions for (N = 3, r = 1/5) whenE[γ2] = 10 dB. In Fig. 5, the
y-axis is the ratio of the transmit power to the constant power S0

in dB. In Fig. 6, the y-axis is the parameter PER “upper bound”,
which determines the alphabet size based on the instantaneous
CSI. The first transmission has the least power and the largest
PER “upper bound” among the three transmissions, and the
opposite holds for the third transmission. The conclusion is if
there are three transmission opportunities, the first transmission
should be sent at a low cost, because if it happens to succeed,
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Fig. 6. PER “upper bound” distribution for N = 3 and r = 1/5. Average
channel SNR is 10 dB.

then the second and third transmissions are not necessary and
energy consumption is low; however, if the first transmission
fails, we need to expend additional power and transmission du-
ration on the second transmission to guarantee the PER; if the
second transmission also fails, the third transmission should use
the most resources since it is the last transmission opportunity
and its transmission failure would result in the failure of the
codeword.

C. Complexity Analysis

Since the algorithm uses an exhaustive search, the com-
plexity of the algorithm is O(

∑Nm a x

n=1 |{r}| · (MSMU )n ) =
O(|{r}| · (MS MU )N m a x + 1−1

MS MU −1 ), where |{r}| is the number of rate
options, and MS and MU are the number of discrete values
of S and U in the exhaustive search, respectively. This num-
ber is exponentially increasing with Nmax . Note, however, this
optimization does not depend on the video and can be done of-
fline. The results for the optimization, i.e., N, r, {S}, {U}, can
be stored, and we only need a lookup table during the video
transmission.

V. PROPOSED UEP

A. Problem Formulation

After obtaining Emin (Pei), we solve the video content UEP
problem, since the PERs for each frame are optimized, and thus
different frames have unequal error protection. This procedure
can be formulated as the following problem:

min MSE({Pei})

s.t.
T∑

i=1

niEmin (Pei) = min(Ec , Ẽc)

0 ≤ Sj,i ≤ Smax for i = 1, 2, ..., T and

j = 1, 2, ..., Ni

variables : {Pei}. (13)

Let the average overall PERs for the frames be
Pe1, Pe2, ..., PeT . The task is to find the optimal average PER
for each frame, where frame i uses energy Emin (Pei) to achieve
this PER. It is seen in Equation (3) that the error in the previous
frames can propagate to later frames, so the frames at the front
should have lower PER than frames at the end, i.e., the PER
sequence should be in ascending order, i.e., Pej ≤ Pek where
j ≤ k.

Section IV showed that all frames should use the strongest
protection, i.e,N = 3 and r = 1/5, to minimize the energy con-
sumption. For simplicity of notation, let g(Pei) = Emin (Pei).
As stated in Section III-C, we know the solution to Equation (5)
when Ec ≥ Ẽc : the codeword uses BPSK, FEC rate rmin , max-
imum power Smax , and transmits Nmax times. So we consider
the case Ec < Ẽc . Then using Equation (4), Equation (13) can
be written as

min σ2
0

T∑

i=1

Pei

T −i∑

τ=0

1
1 + ατ

s.t.

T∑

i=1

nig(Pei) = Ec . (14)

where the constraint on Sj,i has been taken into account in the
procedure that yields Emin (Pei).

We obtained the numerical results of g(Pei) through exhaus-
tive search. We approximate the second order derivative by
g(Pe i +h)−2g(Pe i )+g(Pe i−h)

h2 , where h is a sufficiently small value.
We find that the approximate second derivative is positive, so
g(Pei) is convex. Since the objective function in Equation (14)
is a linear function of Pei , it is a convex function; since g(Pei) is
convex, the constraint is convex, so this problem is convex and
we can use the Lagrange multiplier method to get the globally
optimal solution. The Lagrange function is

L = σ2
0

T∑

i=1

Pei

T −i∑

τ=0

1
1 + ατ

+ λ

(
T∑

i=1

nig(Pei) − Ec
)

(15)

Letting ∂L
∂Pe i

= 0 for i = 1, 2, ..., T , we have

σ2
0Pei

T −i∑

τ=0

1
1 + ατ

+ λnig
′(Pei) = 0, (16)

where g′(Pei) � g(Pe i +h)−g(Pe i )
h . Letting ∂L

∂λ
= 0, we have

nig(Pei) − Ec = 0. (17)

Equations (16) and (17) together give the solution to Equation
(14).

B. Complexity Analysis

The complexity of the proposed UEP algorithm is composed
of two parts: parameter estimation of σ2

0 and α, and solving
Equations (16) and (17). The complexity for the first part de-
pends on the algorithm of curve fitting and the complexity for
the second part depends on the algorithm of solving the convex
problem. This work does not focus on the complexity analysis
of these two parts. However, as shown in Section VI-C, the UEP



5614 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 6, JUNE 2019

algorithm can use fixed parameters without much loss of accu-
racy and performance and thus can be solved offline. Therefore,
the results can be stored, and a lookup table is sufficient during
video transmission.

VI. NUMERICAL RESULTS

A. Comparison Algorithms

The comparison HARQ scheme [4], [5] uses a single alphabet
size and variable power, whereas the proposed HARQ uses vari-
able alphabet sizes and variable power. The comparison UEP
is similar to the method in [46], but with a modification that
improves its performance. In [46], the authors assume constant
power and a single alphabet size without retransmission, and
they use three rates of FEC for the frames in a GOP. The video
quality depends on the choice of these three values. The num-
ber of FEC code rates is limited due to the implementation
complexity. We improve upon their method by allowing vari-
able power and variable alphabet size and using the strongest
FEC and the maximum number of transmissions for all frames,
and assign three levels of energy consumption for the frames.
As discussed in Section IV, using variable power with a single
strong FEC performs better than using constant power and three
different FEC values as done in [46]. Since the optimal energy
levels are hard to obtain, we determine three non-overlapping
ranges by trial and error, and randomly choose the three energy
values from these non-overlapping ranges. The best ranges we
found are (1.2E0, 1.5E0], (0.8E0, 1.2E0] and (0.5E0, 0.8E0],
where E0 is a parameter dependent on the energy constraint.
Since the video quality depends on the selection of these three
values, we repeat this experiment 20 times and show the aver-
age Y-PSNR, where Y-PSNR is the peak signal-to-noise ratio
(PSNR) for the Y channel in the YUV video. Here, PSNR =
10log10(V 2

max/MSE), Vmax is the maximum pixel value, and
MSE is the mean square error on the Y channel.

B. Simulation Environment

We use JM 15.0 software to achieve H.264 video coding.
The previous frame is used for error concealment. We use video
from a mobile video database [53], [54]. The video scenes are a
football game with high motion, a person skating with medium
motion, and an interview scene with slow motion. The videos
are of size 1024× 576 with 1903 frames, 2022 frames and 2229
frames. The video frame rate is 30 fps, so their lengths are
approximately 60 to 70 seconds. We repeat the experiment 10
times for statistical convergence.

C. Discussion of Results

We show the Y-PSNR vs. channel SNR for different cases
in Figs. 7 to 10, where the solid lines correspond to simulation
results and dashed lines correspond to theoretical results. In
Fig. 7, the video is skate and the energy constraint for a GOP is
Ec = 20 mJ. The maximum energy that a GOP can possibly use
with BPSK, FEC rate rmin , maximum power Smax and Nmax

transmissions is 75 mJ. For all cases, the Y-PSNR increases with
channel SNR. When using the proposed UEP, the gap between

Fig. 7. Y-PSNR for skate. High energy constraint.

Fig. 8. Y-PSNR for skate. Low energy constraint.

the proposed HARQ and comparison HARQ is about 4 dB in
the low SNR region, which shows a significant advantage for
the proposed HARQ. When using the proposed HARQ, the gap
between the proposed UEP and EEP is about 1.6 dB in the
low SNR region, and the gap between the proposed UEP and
comparison UEP is about 0.7 dB in the low SNR region. The 0.7
dB gap means that it is not desirable to divide the whole GOP into
three groups as in the comparison UEP. But some conventional
UEP schemes, e.g., those which use different FEC for different
parts of the video data, only allow a few protection levels due
to the complexity. However, the proposed UEP is able to assign
different protection for each frame, thus achieving higher video
quality. In Fig. 8, the energy constraint Ec = 10 mJ. The curves
show a similar trend to Fig. 7. In both figures, the theoretical
analysis and simulation are close except for the low SNR region.
This is because the PER is large in the low SNR region, so the
model is less accurate because the errors that occur in a frame,
but which propagate from different frames, are not uncorrelated.

Figs. 9 and 10 show the Y-PSNR for football and interview
with energy constraint Ec = 20 mJ. Comparing Figs. 9 and
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Fig. 9. Y-PSNR for football. High energy constraint.

Fig. 10. Y-PSNR for interview. High energy constraint.

10 to 7, we find that for a given scheme, Y-PSNR depends
on the video motion. With higher motion, Y-PSNR is lower
because frame copy is less effective for high motion video. The
difference between UEP and EEP, which is defined as the UEP
gain, depends on video motion. With higher motion, the gain is
smaller. However, the difference between the proposed HARQ
and comparison HARQ is almost the same for all videos.

Next we evaluate the influence of the parameters σ2
0 and α,

which depend on the video, on the UEP gain. Let the PER
sequence with respect to EEP be Pe0, Pe0, ..., Pe0, and let the
PER sequence with respect to UEP be Pe1, Pe2, ..., PeT . Then
the UEP gain (dB) is

10log10

(
σ2

0

∑T
i=1 Pe0

∑T −i
τ=0

1
1+ατ

σ2
0

∑T
i=1 Pei

∑T −i
τ=0

1
1+ατ

)

= 10log10

(
Pe0

∑T
i=1

∑T −i
τ=0

1
1+ατ

∑T
i=1 Pei

∑T −i
τ=0

1
1+ατ

)

. (18)

Fig. 11. UEP gain on Y-PSNR vs. α.

From Equations (16) and (17), we find that the unequal PER
sequence Pe1, Pe2, ..., PeT does not depend on σ2

0, since σ2
0 is

absorbed by the Lagrangian multiplier λ. Thus, the UEP gain in
Equation (18) only depends onα. Theα values for football, skate
and interview are 0.18, 0.0065, 0.005, respectively. In Fig. 11,
the blue solid curve shows the UEP gain vs. video parameter α.
We curve fit the parameter α based on the video and use this
correct value for the problem solving. The gain decreases with
the increase of α, and high motion video has large α, so the
gain is smaller for high motion video. This is also demonstrated
from Figs. 7 to 10. The red dashed curve shows the UEP gain
vs. video parameter α, but fixed α = 0.1 is used for problem
solving. There is a small loss due to unmatched parameter α
for low motion video, and the loss is negligible for medium and
high motion video.

Comparing Figs. 7, 9 and 10, we find that the performance
gain for the proposed HARQ over the comparison HARQ is
similar for videos with different degrees of motion. This can
be demonstrated by Equation (4). Supposing EEP is used, we
let the PER sequence with respect to the comparison HARQ
be Pe0, Pe0, ..., Pe0, and let the PER sequence with respect to
the proposed HARQ be P ′

e0, P
′
e0, ..., P

′
e0. Then the HARQ gain

(dB) when using EEP is

10log10

(
σ2

0

∑T
i=1 Pe0

∑T −i
τ=0

1
1+ατ

σ2
0

∑T
i=1 P

′
e0

∑T −i
τ=0

1
1+ατ

)

= 10log10

(
Pe0

P ′
e0

)

(19)

This gain does not depend on σ2
0 and α. When using UEP,

this gain is also largely independent of σ2
0 and α according to

numerical results. Thus, the gain of the proposed HARQ sys-
tem is almost constant for different videos, and fixed parameters
provide close-to-optimal performance. This means the proposed
algorithm has the important advantage that if optimization re-
sults are obtained offline, then minimal computation is caused
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by the proposed algorithm during transmission. This reduces
the computational power and delay, and allows the algorithm to
be real-time.

VII. CONCLUSION

In this paper, we investigate energy-optimized wireless video
transmission employing Hybrid ARQ and AMC. We consider
both the unequal importance for multiple transmissions of the
same video content, and the unequal importance of different
video contents. We divide the problem into two sub-problems
which solve the unequal importance for multiple transmissions
and solve the UEP for different video content, respectively.
The unequal importance for multiple transmissions shows that
the transmissions should be sent with increasing order of cost
to minimize the overall energy consumption. The video UEP
shows that the frames in a GOP should have increasing order of
packet error rate to minimize the MSE in the GOP. We compare
the proposed scheme to the HARQ that uses single alphabet size
and variable power, whereas the proposed scheme uses variable
alphabet size and variable power. Compared to the video UEP
scheme which is only allowed to have three (or few) levels
of protections, the proposed scheme is able to assign optimal
protection for each frame in the GOP. Simulations show that in
the low SNR region, the proposed scheme outperforms the com-
parison HARQ by about 4 dB, and outperforms the comparison
video UEP scheme by 0.8 to 1.6 dB depending on the video
motion. There is a total gain of 4.8 to 5.6 dB compared to video
transmission using conventional HARQ without any video UEP.
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