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Power-Efficient Resource Allocation in C-RANs with
SINR Constraints and Deadlines

Salvatore D’Oro, Marcelo Antonio Marotta , Cristiano Bonato Both , Luiz DaSilva, Sergio Palazzo

Abstract—In this paper, we address the problem of power-
efficient resource management in Cloud Radio Access Networks
(C-RANs). Specifically, we consider the case where Remote Radio
Heads (RRHs) perform data transmission, and signal processing
is executed in a virtually centralized Base-Band Units (BBUs)
pool. Users request to transmit at different time instants; they
demand minimum signal-to-noise-plus-interference ratio (SINR)
guarantees, and their requests must be accommodated within a
given deadline. These constraints pose significant challenges to the
management of C-RANs and, as we will show, considerably impact
the allocation of processing and radio resources in the network.
Accordingly, we analyze the power consumption of the C-RAN
system, and we formulate the power consumption minimization
problem as a weighted joint scheduling of processing and power
allocation problem for C-RANs with minimum SINR and finite
horizon constraints. The problem is a Mixed Integer Non-Linear
Program (MINLP), and we propose an optimal offline solution
based on Dynamic Programming (DP). We show that the optimal
solution is of exponential complexity, thus we propose a sub-
optimal greedy online algorithm of polynomial complexity. We
assess the performance of the two proposed solutions through
extensive numerical results. Our solution aims to reach an ap-
propriate trade-off between minimizing the power consumption
and maximizing the percentage of satisfied users. We show that it
results in power consumption that is only marginally higher than
the optimum, at significantly lower complexity.

Index Terms—Cloud Radio Access Networks, resource alloca-
tion, energy efficiency.

I. INTRODUCTION

Cloud Radio Access Networks (C-RANs) are expected to
provide unprecedented scalable, flexible, and efficient infras-
tructure provisioning and management in future 5G networks
and beyond [1–3]. In C-RANs, a set of Remote Radio Heads
(RRHs) perform radio transmissions, while signal processing,
e.g., base band processing, is executed in a pool of one or
more Base Band Units (BBUs) as a cloud system [4–6]. RRHs
and BBUs are interconnected through high-speed optical fiber
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links, which makes it possible to meet the high-performance
requirements of 5G networks, thus guaranteeing low latency
and high-rate data transmission [7].

C-RANs can achieve a considerable reduction of both
CAPEX and OPEX while providing efficient and smart man-
agement of network resources. Since the signal processing is
performed in the BBU pool, the RRHs are characterized by a
simple transceiver design. In addition, by exploiting the cen-
tralized architecture of the BBU pool, it is possible to perform
advanced and efficient signal processing techniques that require
coordination. For example, Coordinated Multipoint (CoMP)
and Joint Transmission (JT) can be implemented to reduce in-
terference and improve the spectral efficiency of the system. To
process a given user transmission in C-RAN environments, the
system: i) allocates the user to the available downlink channels;
ii) selects the subset of active RRHs which will transmit to
the corresponding user, and determines the transmission power
level of those RRHs; and iii) runs a Virtual Function (VF) [8], or
creates a Virtual Machine (VM) [9] instance in the BBU pool, to
which a given amount of computational resources is assigned.
In the remainder of this paper, we do not distinguish between
virtual functions and virtual machines, and we refer to both of
them as VMs.

To take full advantage of C-RANs, green and lightweight
management of network resources has to be considered [10].
However, C-RANs comprise heterogeneous network elements,
which makes the design of energy-efficient algorithms a chal-
lenging task. As an example, to minimize the power consump-
tion of the whole C-RAN system, both radio and computational
resources must be managed jointly. That is, the activation and
management of RRHs have to be addressed together with the
efficient allocation of the computational resources in the BBU
pool. This problem is not trivial, and it is further exacerbated
when minimum Quality of Service (QoS) requirements, such as
temporal deadlines and Signal-to-interference-plus-noise ratio
(SINR), are considered [11]. Due to its complexity and im-
portance, many solutions to the green management of C-RANs
have been proposed in the literature [9, 12–20]. However, those
solutions have not been designed to deal with the relevant case
of finite-horizon scheduling problems. Thus, they are expected
to be sub-optimal when user transmission requests dynamically
arrive at different time instants and have to be accommodated
within a given deadline.

In this paper, we design an optimal green mechanism for
such a dynamic scenario. Specifically, we analyze the case
where subscribers dynamically submit transmission requests,
coupled with the corresponding requirements regarding mini-
mum average SINR and a delivery deadline. We formulate the
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power consumption minimization problem for C-RANs as a
weighted joint power allocation and user scheduling problem.
By considering that the BBU pool has limited computational
resources, we account for both temporal and SINR constraints,
and we show that the problem can be formalized as a Mixed
Integer Non-Linear Problem (MINLP). For such a problem,
we provide an optimal offline solution based on Dynamic
Programming (DP) techniques. We show that its computational
complexity is exponential, which makes it unfeasible to obtain
an optimal solution in large-scale and dense networks within a
reasonable amount of time. Accordingly, we design a greedy
online algorithm of polynomial computational complexity. We
assess and compare the performance of the two proposed solu-
tions through extensive numerical results. Our solution aims to
reach an appropriate trade-off between minimizing the power
consumption and maximizing the percentage of satisfied users.
Our proposed algorithm results in power consumption that is
only marginally higher than the optimum, at significantly lower
complexity.

The remainder of this paper is organized as follows. Related
work is presented in Section II. Section III illustrates the consid-
ered C-RAN, and the corresponding power consumption analy-
sis. The weighted joint power allocation and user scheduling are
formulated in Section IV. Section V provides the optimal offline
solution to the problem. A sub-optimal online solution with
polynomial complexity is proposed in Section VI. Numerical
results are presented in Section VII. Finally, in Section VIII we
outline our main conclusions.

II. RELATED WORK

The problem of providing power-efficient 5G systems un-
der QoS constraints through joint user transmission schedul-
ing and power allocation has been extensively addressed in
the literature. As an example, the downlink joint power and
wireless resource allocation problem in C-RANs under min-
imum SINR constraints has been considered in [12–16]. In
[9], a cross-layer approach for the power-efficient allocation
of network resources is considered where both the RRHs and
the BBU pool are assumed to have limited computational and
hardware resources. The same problem is also addressed and
solved in [17] where, instead, a requirement on the desired
task completion time is considered. A different approach is
contemplated in [18], where power control and caching at the
RRHs are exploited to provide mobile users with minimum QoS
guarantees. In contrast, a fractional programming approach is
proposed in [19] to maximize the energy efficiency of the
network. Those works focus on minimizing the actual overall
power consumption of the network. However, it is worth noting
that the consumed power of each network element can be
significantly different. As an example, the power needed to
activate the optical fibers between the BBU pool and the RRHs
can be significantly lower than the power needed to activate
the RRHs [20]. Accordingly, a more general approach consists
in the minimization of a weighted version of the actual power
consumption. Such an approach is considered in [21], where the
weighted power consumption of the network is minimized by
jointly addressing the power and resource allocation problems
for both downlink and uplink communications.

Fig. 1. The considered C-RAN scenario.

Though optimal, most of the above solutions do not consider
limited computational resources at the BBU pool. Furthermore,
they have not been designed to deal with finite-horizon schedul-
ing problems, where user transmission requests dynamically ar-
rive and have to be scheduled within a deadline. The scheduling
problem for C-RANs over a finite horizon has been considered
in [22, 23]. However, the solution in [22] only focuses on the
BBU pool and does not consider the power consumption of the
RRHs, while [23] does not account for CoMP transmissions,
and the power consumption is restricted to the transmission
power only.

The above literature review reveals that the problem of
minimizing the power consumption of C-RANs over a finite-
horizon through joint RRH and BBU management is worth in-
vestigating. It also shows that further efforts are needed, as none
of the above solutions can be readily applied to optimally solve
the finite-horizon power minimization problem we consider in
this paper.

III. SYSTEM MODEL

We study a C-RAN scenario where mobile users access the
network using several RRHs which are connected to a BBU
pool through high-speed optical links, as shown in Fig. 1.
We consider a a time slotted multi-carrier (or multi-frequency)
system where a set S of subcarriers are available for data
transmission. In this work, we focus on the downlink com-
munications between RRHs and mobile users. We assume
that the allocation of downlink resources has to be performed
over a finite horizon. The finite-horizon concept captures time
requirements in those scenarios where channel gain coefficients
or user positions change every T slots (e.g., slow-fading or
block-fading scenarios). Let T = {1, 2, . . . , T} denote the set
of time slots within the horizon.

A. Modeling Mobile Users

LetN be the set of mobile users in the network. One or more
RRHs can serve each user n ∈ N . In the following, we assume
that mobile users are equipped with single-antenna transceivers,
which at any given time instant can only receive signals on a
single subcarrier.

Each user transceiver generates one (or more) request-to-
transmit to the Telecommunications Operator (TO). Specifi-
cally, each request contains the following parameters:
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• Requesting User: it is the mobile user n who sends the
request r ∈ Rn.

• Deadline: mobile users’ requests have to be accommo-
dated by 1) instantiating a VM in the BBU pool to process
user signals; and 2) scheduling downlink transmissions
through one (or more) RRHs for the whole duration of a
time slot [9] within a given temporal window. For each
request, the temporal window is defined by the 2-tuple
(t0r, δr), where t0r represents the arrival time slot of the
request, and δr is the duration of the temporal window
within which the request must be accommodated.

• SINR Constraint: it represents the minimum average SINR
level γr that has to be guaranteed to request r.

• Computational Resources: they represent the amount mr

of computational resources to run a VM in the BBU
pool for request r. In general, the higher the value of
γr, the higher the value of mr, i.e., mr = f(γr) with
∂f(γr)/∂γr ≥ 0. Such an assumption stems from the ev-
idence that large values of γr require the BBU pool to run
more complex signal processing operations. Accordingly,
mr can be modeled as follows [24, 25]:

mr = mVM + θ log2(1 + γr) (1)

where mVM is a constant term that represents the amount
of resources needed to activate a VM and perform sig-
nal processing (e.g., modulation, encoding, Fast Fourier
Transform, etc..), and θ > 0 is a weighting parameter to
vary the slope of the function mr [25]. It is worth noting
that (1) quantifies the amount of computational resources
in the BBU pool to be allocated to a given request that
demands a minimum SINR level γr. How to satisfy the
aforementioned SINR requirement will be the main topic
of Sections V and VI, where joint power and channel
allocation is effectively used to satisfy users’ requests
while minimizing the power consumption of the system.

• Channel State Information (CSI): at each time slot t, the
channel is modeled through its channel coefficient hrjs(t),
which represents the channel between the mobile user who
has made the request r and the RRH j on subcarrier s
at time slot t. For clarity of notation, we introduce the
channel gain coefficient grjs = |hrjs|2. Accordingly, the
CSI is represented by the channel gain coefficient matrix
Gr(t) = (grjs(t))j∈H,s∈S,t∈T . We assume block-fading,
i.e., channel gain coefficients remain constant within each
time slot t.

Without loss of generality, in the following we omit the time
slot indicator t and we focus on the case where channel gain
coefficients do not vary within the horizon, i.e., grjs(t) =
grjs(t

′) = grjs for all t, t′ ∈ T . However, the solutions
proposed in this paper also apply to the more general case
where channel gain coefficients vary at each time slot. Accord-
ingly, each request r ∈ Rn is defined by the 6-tuple r =(
n, t0r, δr, γr,mr,Gr

)
. Also, we assume that CSI information

is always available to the system through pilot-based [26, 27] or
statistical [28, 29] approaches. However, we do not make any
assumption on the accuracy of the CSI estimation procedure.

B. Modeling RRHs

RRHs are equipped with multiple antennas and are capable
of performing simultaneous transmissions on multiple subcarri-
ers. However, due to hardware limitations, RRHs are required to
satisfy a power constraint. Specifically, at each time slot t, the
total transmission power for each RRH j has to be lower than
or equal to an RRH-specific maximum transmission power level
Pj . RRHs are connected to the BBU pool through high-speed
optical fiber links.

C. Modeling the BBU pool

The BBU pool is the centralized entity where signal pro-
cessing is performed. Through centralized processing, it is
possible to exploit advanced signal processing techniques such
as CoMP and JT. Hence, to improve the SINR and reduce
the interference with other mobile users connected to adjacent
RRHs, in this work we exploit both techniques to provide
JT-CoMP transmissions where several RRHs simultaneously
transmit the same signal to a given user. When a given request is
scheduled, a VM instance on the BBU pool is instantiated, and a
given amount of computational resources in the pool is assigned
to it. Specifically, for each request the system: 1) allocates a
downlink time slot on a given subcarrier to the corresponding
mobile user; 2) selects the subset of active RRHs which will
transmit to the corresponding mobile user, and determines
their optimal transmission power levels; and 3) creates a VM
instance in the BBU pool. Also, we assume that the BBU pool
has a limited amount M of computational resources.

D. Variables Definition

We hereby introduce the relevant variables in our model of
the C-RAN scenario, which for the sake of clarity are also
summarized in Table I. Let R =

⋃
n∈N Rn be the set of all

the requests sent by mobile users. To model the allocation of
mobile users in the time and frequency domains, we define
the allocation variable ars(t) ∈ {0, 1}, where ars(t) = 1
if request r ∈ R is allocated to sub-carrier s ∈ S at time
slot t. Otherwise, ars(t) = 0. Let a = (a(t))t∈T , where
a(t) = (ars(t))r∈R,s∈S . Furthermore, the transmission power
of RRH j on subcarrier s at time slot t is defined as the
continuous variable prjs(t) ∈ [0, Pj ]. Let p = (p(t))t∈T ,
where p(t) = (prjs(t))r∈R,j∈H,s∈S .

To model the selection (i.e., activation) of an RRH, we
define the following activation indicator yj(t) ∈ {0, 1}, where
yj(t) = 1 if RRH j is transmitting at time slot t. Otherwise,
yj(t) = 0. Let y = (y(t))t∈T , where y(t) = (yj(t))j∈H.

Accordingly, for each r ∈ R and s ∈ S , the average SINR
can be written as follows:

SINRrs(t) =

∑
j∈H prjs(t)grjs

σ2 +
∑
j∈H

∑
r′∈R,r′ 6=r pr′js(t)grjs

(2)

where σ2 is the noise power on the considered subcarrier, and
grjs is the expected channel gain coefficient w.r.t. the mobile
user which requested r and the RRH j on subcarrier s.



4

TABLE I
SUMMARY OF NOTATION

Variable Description
N ,H, S,R Sets of users, RRHs, subcarriers and requests
Pj Maximum transmission power level of an RRH

t0r, δr Arrival time of a request and its deadline
mr Amount of computational resources to process a request
Gr Channel gain matrix

σ2 Noise power on each subcarrier
T Horizon duration
γr Minimum average SINR requirement
ars(t) Allocation variable
yj(t) Activation indicator
prjs(t) Transmission power level
M Computational resources of the BBU pool

P
(F)
j , P

(ON)
j , P

(sleep)
j Fibers, activation and sleep power costs

P (BBU)(m) Consumed power by the BBU pool whenm resources
are allocated

CT X , CA, CH Transmission, activation and total power costs

CB Total processing power cost in the BBU pool
C Overall weighted power consumption of the network
ωR, ωB Weighting parameters

E. Constraints Definition

Under the above assumptions, we define the following con-
straints:

1) RRH power constraint: for each activated j ∈ H, the
overall transmission power has to be lower than Pj . Thus,∑
r∈R

∑
s∈S

prjs(t) ≤ yj(t)Pj , ∀j ∈ H,∀t ∈ T (3)

2) Scheduling constraints: each mobile user has a single
antenna, thus it can be scheduled to a single subcarrier.
Also, its request has to be accommodated only once.
Furthermore, a given request cannot be scheduled if its
corresponding temporal requirement is not satisfied. That
is,

T∑
t=1

∑
s∈S

ars(t) = 1, ∀r ∈ R (4)

Furthermore, ars(t) = 0 and prjs(t) = 0 if t /∈ [t0r, t
0
r +

δr].
3) SINR Constraint: the average SINR for each scheduled

mobile user defined in (2) has to be higher than the
minimum QoS requirement γr

SINRrs(t) ≥ γrars(t), ∀s ∈ S,∀r ∈ R,∀t ∈ T (5)

4) BBU bounded computation constraint: the amount of
computational resources in the BBU pool is, in general,
bounded. Let M be the maximum amount of computa-
tional resources which are available in the BBU pool.
Accordingly, at each time slot t we have that the amount
of resources allocated to requests in R is bounded by
M . From constraint (4), this constraint can be defined as
follows: ∑

r∈R

∑
s∈S

mrars(t) ≤M, ∀t ∈ T (6)

F. Power Consumption

In the considered scenario, the main sources of power con-
sumption can be summarized as follows:
• RRH Transmission and Activation: at the RRH side, there

are three main power-consuming processes. First, each
RRH that has been selected for data transmission has to be
turned on. Accordingly, there is an activation power cost
equal to P

(ON)
j . Second, when an RRH is turned on, it

is also connected to the BBU pool through optical fibers,
which generates a fiber power cost equal to P

(F)
j . Note

that P (F)
j depends on j as RRHs are located at different

distances from the BBU pool. RRHs which are far away
from the BBU require optical amplifiers, additional con-
nectors and fibers. Therefore, their P (F)

j will be larger,
while nearer RRHs will have a small P (F)

j . The third
process is represented by the transmission power levels
prjs(t).
It is worth mentioning that the switch between on/off states
would be too costly at small time-scales (e.g., data frame
scale). In fact, RRHs can not be instantaneously turned
on due to hardware constants, which eventually results
in processing and transmission latency that might not be
acceptable for small-scale and fast-varying networks [30].
For this reason, and for the sake of generality, we adopt
a general model where RRHs can be either completely
turned off or put in a sleep state [30]. Accordingly, the
power consumption at time slot t for RRH j ∈ H can be
expressed as follows:

CHj (p(t),y(t)) = CT Xj (p(t)) + ωRCAj (y(t)) (7)

where ωR is a non-negative parameter to weigh the two
contributions in (7), and

CT Xj (p(t)) = yj(t)
∑
r∈R

∑
s∈S

prjs(t) (8)

CAj (y(t)) = yj(t)
(
P

(ON)
j + P

(F)
j

)
+ (1− yj(t))P (sleep)

j

(9)

where P
(sleep)
j is the power consumption of the RRH

j when it is put in a sleep state [31, 32]. It is worth
mentioning that such an approach is general and also
allows us to account for a broader range of applications
[30]. From (7), the total power consumption for all RRHs
at time slot t can be written as

CH(p(t),y(t)) =
∑
j∈H
CHj (p(t),y(t)). (10)

• BBU Allocation: for each scheduled mobile user, a VM has
to be instantiated in the BBU pool. Also, to provide the
desired SINR level to each request r, mr computational
resources must be assigned to a VM. Accordingly, the
power consumption to process request r at the BBU pool
can be expressed as follows:

CBr (a(t)) = P (BBU)
∑
s∈S

ars(t)mr (11)
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where P (BBU) is the per resource power consumption.
Thus, the overall power consumption at the BBU pool side
at time slot t is CB(a(t)) =

∑
r∈R CBr (a(t)).

Accordingly, we have that the total weighted power con-
sumption C(a(t),p(t),y(t)) in the network at time slot t is
defined as follows:

C(a(t),p(t),y(t))

= CT X (p(t)) + ωRCA(y(t)) + ωBCB(a(t)) (12)

where ωB is a non-negative parameter used to weigh the power
consumption at both the RRH and BBU sides. Accordingly, the
total weighted power consumption of the C-RAN system within
the considered time window T is

C(a,p,y) =
∑
t∈T
C(a(t),p(t),y(t)). (13)

Remark 1. The above analysis clearly shows that the power
consumptions at both RRH and BBU sides are tightly coupled.
In fact, wireless transmissions in C-RAN systems not only
require the allocation of a given amount of transmission power
on each RRH, but they also rely on the instantiation of VMs
and the allocation of computational resources in the BBU
pool. It follows that efficient power management in C-RAN
systems requires jointly reducing the power consumption of all
network elements in the cloud and the Radio Access Network
(RAN). We would also like to point out that the complexity and
importance of such a power minimization problem is further
exacerbated in the considered finite-horizon scenario, where
optimal request scheduling is essential to guarantee low power
consumption in the network. This motivates our work, whose
objective is to design optimal resource allocation mechanisms
that effectively minimize the power consumption of a C-RAN
system over a finite-horizon while satisfying both SINR and
scheduling constraints.

IV. PROBLEM FORMULATION

The problem of finding an optimal allocation of network
resources at both the RRH and BBU sides that minimizes
the weighted power consumption C(a,p,y) while satisfying
user requirements and system constraints, can be formulated as
Problem (A).

(A) : min
a,p,y

C(a,p,y)

s.t. Constraints in (3), (4), (5), (6)

ars(t) ∈ {0, 1}, ∀r ∈ R,∀s ∈ S, t ∈ [t0r, t
0
r + δr] (14)

yj(t) ∈ {0, 1}, ∀j ∈ H,∀t ∈ T (15)∑
t/∈[t0r,t0r+δr]

∑
s∈S

ars(t) = 0, ∀r ∈ R (16)

∑
t/∈[t0r,t0r+δr]

∑
s∈S

∑
j∈H

prjs(t) = 0, ∀r ∈ R (17)

where a=(a(1),a(2), . . . ,a(T )); y=(y(1),y(2), . . . ,y(T ));
and p=(p(1),p(2), . . . ,p(T )).

The power constraint is enforced by Constraint (3). Con-
straint (4) ensures that each request is accommodated exactly
once, and each user is scheduled to only one of the available

subcarriers. The SINR constraint is defined by the non-linear
Constraint (5), and Constraint (6) prevents the system from
allocating more computational resources than those available
in the BBU pool. Finally, Constraints (14), (15), (16) and (17)
guarantee the feasibility of the solution.

V. OPTIMAL OFFLINE SOLUTION

Problem (A) aims at reducing the weighted power consump-
tion of the system while jointly: i) allocating requests to the
available sub-carriers, ii) activating VMs in the BBU pool
and assigning computational resources according to (1), iii)
selecting the subset of active RRHs, and iv) controlling their
transmission power to satisfy QoS requirements. In more detail,
Problem (A) is formulated as an MINLP which is well-known
to be NP-hard.

Specifically, Problem (A) is combinatorial, and an exhaus-
tive search approach would result in exponential time solu-
tions whose application to realistic scenarios is unfeasible. To
overcome the above issues, and to reduce the complexity of
the optimal solution, we propose the exploitation of Dynamic
Programming (DP) techniques. In the remainder of this paper,
we assume that a feasible solution to Problem (A) exists. How-
ever, the existence of a solution can be verified by executing a
feasibility test.

In the language of DP, we define:

• System state: at each time slot t, the state of the system is
defined as the setR(t) of active requests that have not yet
been accommodated. Specifically, we have that R(t) =
{r ∈ R : t ∈ [t0r, t

0
r + δr],

∑t−1
τ=1

∑
s∈S ars(τ) = 0};

• Action: at each time slot t, we need to find the optimal
scheduling policy a(t), the subset y(t) of active RRHs to
serve those requests, and the transmission power profile
p(t). Accordingly, the actions to be taken can be defined
as the 3-tuple (a(t),y(t),p(t));

• Single Slot Reward: the single slot reward con-
sists in the single slot weighted power consumption
C(a(t),p(t),y(t)) in (12).

Accordingly, to solve the problem through DP, for each time
slot t ∈ T , we write the Bellman’s equation [33] as

J(R(t), t) = min
a(t),y(t)

Ψ(a(t),y(t)) + ωRCA(y(t))

+ ωBCB(a(t)) + J(R(t+ 1), t+ 1) (18)

s.t.
T∑
τ=t

∑
s∈S

ars(τ) = 1, ∀r ∈ R(t)∑
r∈R(t)

∑
s∈S

mrars(t) ≤M

ars(t) ∈ {0, 1}, ∀r ∈ R(t),∀s ∈ S
yj(t) ∈ {0, 1}, ∀j ∈ H∑
s∈S

ars(t) = 0, ∀r /∈ R(t)
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where J(R(T + 1), T + 1) = 0 for allR(T + 1), and

Ψ(a(t),y(t))

= min
p(t)

∑
r∈R∗(a(t))

∑
s∈S∗r (a(t))

∑
j∈H∗(y(t))

prjs(t) (19)

s.t.
∑

r∈R∗(a(t))

∑
s∈S∗r (a(t))

prjs(t) ≤ Pj , ∀j ∈ H∗(y(t))

SINRrs(t) ≥ γr, ∀s ∈ S∗r (a(t)),∀r ∈ R∗(a(t))

prjs(t) = 0, ∀r /∈ R∗(a(t))

prjs(t) = 0, ∀j /∈ H∗(y(t))

prjs(t) = 0, ∀r ∈ R∗(a(t)), s /∈ S∗r (a(t))

where, for any given tuple (a(t),y(t)), R∗(a(t)) = {r ∈
R(t) :

∑
s∈S ars = 1}, S∗r (a(t)) = {s ∈ S : ars = 1, r ∈

R∗(a(t))}, andH∗(y(t)) = {j ∈ H : yj(t) = 1}.
From (2), we have that the SINR constraint in problem

Ψ(a(t),y(t)) is non-linear. However, the same constraint can
be expressed through the equivalent linear inequality∑

j∈H∗(y(t))

prjs(t)grjs

−γrars(t)

σ2+
∑

j∈H∗(y(t))

∑
r′∈R∗(a(t))

r′ 6=r

pr′js(t)grjs

 ≥ 0 (20)

Since the problem Ψ(a(t),y(t)) is a minimization one,
it is straightforward to show that the SINR constraint is an
active constraint, i.e., the optimal solution of the problem
Ψ(a(t),y(t)) implies that the SINR constraint in (20) must be
met with equality. Accordingly, the problem Ψ(a(t),y(t)) can
be restated as a Linear Programming (LP) one. Specifically,
it can be easily shown that the objective function and all
constraints in Ψ(a(t),y(t)) are convex functions. Therefore,
the LP problem is also convex, and any feasible local minimum
solution is also a global solution to the problem. For any
given tuple (a(t),y(t)) and time slot t, we solve the single-
stage power control problem Ψ(a(t),y(t)) by using standard
interior-point or simplex methods.

By exploiting DP, it is possible to obtain the optimal solution
to the weighted power consumption minimization problem.
Specifically, at each stage, we consider all possible combina-
tions of the outstanding request set R(t). Then, we consider
all possible combinations of (a(t),y(t)). For any given com-
bination (a(t),y(t)), we solve the power allocation problem
Ψ(a(t),y(t)) which is LP and can be solved with polynomial
complexity. Instead, the single slot optimization problem in
(18) is an Integer Linear Programming (ILP) problem which
can be solved through the branch and bound approaches whose
worst-case computational complexity equals that of exhaustive
search algorithms. Finally, we exploit backward induction [33]
to solve the Bellman’s equation and find the optimal solution of
the problem.

LetR be the maximum number of requests in the system. The
number of combinations of the outstanding request set is 2R.
The number of combinations of y(t) and a(t) are 2H and (S +
1)R, respectively. Thus, the single slot optimization problem

in the Bellman’s equation has complexity O(2R+H(S + 1)R).
Let OP be the complexity of the power control problem. The
overall complexity of the finite-horizon power consumption
minimization problem over T slots isO(TOP (S+ 1)R2R+H).
That is, finding the optimal solution of the considered problem
results in exponential computational complexity.

VI. ONLINE GREEDY ALGORITHM

The offline solution in Section V is designed to obtain an
optimal solution of Problem (A). However, it does not scale
well with the number of variables in the problem and requires a
priori knowledge of all the requests submitted by all network
users. Accordingly, to obtain an optimal solution in large-
scale and dense networks within a reasonable amount of time
is unrealistic. Also, requests submitted by network users are
expected to arrive in real-time and are not available in advance.
Therefore, alternative online approaches must be considered.

At any given time instant t, R(t) is the set of outstanding
requests. For the sake of readability, in the following, we omit
the time slot index t. It is worth noting that network nodes
dynamically submit a request and no information concerning
their arrival time and minimum SINR requirements is available.
In such an uncertain scenario, optimality should be relaxed, and
a sub-optimal solution needs to be considered. For these rea-
sons, in this section, we propose a sub-optimal online algorithm
which can be implemented with polynomial time complexity.

As shown in Fig. 2, the proposed greedy algorithm com-
prises two phases. Phase I is devoted to the computation of a
greedy orthogonal scheduling policy that accounts for deadline
constraints and limits to zero (or to a small constant factor)
interference among users. Phase II is devoted to the exploitation
of JT and spectrum sharing to schedule additional requests
while satisfying users’ requirements. The technical details of
Phase I and Phase II are described in Subsections VI-A and
VI-B, respectively.

A. Phase I: Greedy Orthogonal Scheduling

Let H(I) = ∅, and H⊥ε = H, where ε is a parameter
whose importance w.r.t. the proposed greedy algorithm will be
described in Step I.4 in this subsection. For each r ∈ R, j ∈ H
and s ∈ S, we define the following parameters

qr = max{0, t− t0r} (21)

ξrjs =
γrσ

2

grjs
. (22)

At each time slot t, qr is the waiting time (or queueing time)
of request r ∈ R. That is, qr indicates the number of time slots
that request r spent inside the BBU pool queue without being
scheduled. ξrjs represents the minimum amount of power to
fulfill the minimum average SINR level requirement of request
r on channel s when served by RRH j without any other
interfering transmission. Intuitively, smaller values of γr, i.e.,
loose SINR requirements, and high channel gain coefficients
grjs, i.e., better channel conditions, lead to lower transmission
power requirements ξrjs. Conversely, poor channel quality and
high SINR requirements lead to larger values of ξrjs.
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The algorithmic procedure of Phase I is summarized in
Algorithm 1 and it is described in the following.

• Step I.1: For each j ∈ H, we define ξj = {ξrjs : ξrjs ≤
Pj , r ∈ R, s ∈ S}. We also generate νj = (νrjs)r∈R,s∈S
with

νrjs =
qr + 1

ξrjs
(23)

Intuitively, (23) has high values when the request r: i)
requires a small amount of transmission power to meet the
SINR constraint; and ii) already spent several time slots
in the system without being scheduled. In this step, we
sort νj in ascending order. The obtained ordering is then
used to sort ξj

1. This approach generates an ordering of
ξj where requests that are approaching their deadline are
prioritized. Conversely, the scheduling of requests that are
still far away from their deadline is delayed in time. This
strategy is known in the literature as Earliest Deadline First
(EDF) [34], and it has been successfully utilized many
times to design efficient greedy algorithms [35, 36]. The
rationale behind (23) is twofold, as priority is given to
those requests that i) are approaching their deadline and ii)
require the least amount of power to satisfy their minimum
SINR requirement. Recall that any unscheduled request
makes the Constraint (4) unsatisfied, and thus generates
an unfeasible solution to Problem (A). Also, requests
associated to low values of ξrjs are the ones that require
lower transmission power to satisfy their minimum SINR
requirement. Accordingly, the ordering generated through
(23) jointly aims at minimizing the objective function of
Problem (A) and enforcing Constraint (4).

• Step I.2: For each j ∈ H, we build a greedy scheduling
policy ξSj ⊆ ξj as follows. We consider only those
requests which require the lowest transmission power to
be satisfied, while guaranteeing that Pj bounds the overall
transmission power. That is, we schedule those requests in
R with the smallest ξrjs in ξj , such that

∑
ξ∈ξSj

ξ ≤ Pj .
We assume that each RRH can assign a channel to no more
than one request at a time. Furthermore, from (4), we have
that each request can be scheduled on no more than one
channel. Therefore, from the orthogonality assumption,
in ξSj there could not be two requests sharing the same
channel, and each request can appear only once.

• Step I.3: We pick the RRH which schedules the high-
est number of requests with the lowest power consump-
tion. That is, we select j∗ ∈ H such that j∗ =
arg maxj∈H⊥ε {|ξ

S
j |}. Ties are broken by selecting the

RRH such that the overall power consumption is mini-
mum, i.e., j∗ = arg minj∈H⊥ε {

∑
ξ∈ξSj

ξ+P
(ON)
j +P

(F)
j }.

We add j∗ toH(I), i.e.,H(I) = H(I) ∪ {j∗}.
• Step I.4: Let j∗ be the RRH selected at Step I.3. We build

a candidate greedy scheduling policy φj∗ such that φj∗ =
{(r, s) ∈ R× S : ξrj∗s ∈ ξSj∗}. Then, we consider

H⊥ε (φj∗)={j∈H \H(I):grjs ≤ ε,∀(r, s)∈φj∗} (24)

1Note that this step is not the same as simply ordering ξj in ascending order
as the two resulting orderings are generally different.

which we define as the ε-orthogonal set of RRHs whose
interference to the scheduling in φj∗ is upper-bounded2 by
a small multiple factor of ε. Intuitively, if ε = 0, it means
that transmissions performed by RRHs inH⊥0 (φj∗) do not
interfere with the scheduling φj∗ . Instead, small positive ε
results in small tolerable interference values.

• Step I.5: Requests already in φj∗ are removed fromR, i.e.,
R = R \ {r ∈ R : ∃ ξrj∗s ∈ ξSj∗}. Also, the set H⊥ε of
orthogonal RRHs is updated such that H⊥ε = H⊥ε (φj∗) ∩
H⊥ε . Then, Step I.2 is iteratively re-executed among the re-
maining RRHs inH⊥ε , and the best RRH inH⊥ε is selected
again until H⊥ε = ∅ or no more requests can be scheduled
as there are no more computational resources in the BBU
pool. That is,

∑
j∈H(I)

∑
z∈φj mz + minr∈Rmr > M .

Algorithm 1 Phase I: Greedy Orthogonal Scheduling
1: H(I) ← ∅;
2: H⊥ε ← H;
3: while (H⊥ε 6= ∅) ∨ (R 6= ∅) ∨ (

∑
j∈H(I)

∑
z∈φj mz +

minr∈Rmr > M) do
4: for each j ∈ H do
5: ξj ← {ξrjs : ξrjs ≤ Pj , r ∈ R, s ∈ S};
6: Sort νj in ascending order;
7: Sort ξj with respect to νj ;
8: Compute ξSj ⊆ ξj as in Step I.2;
9: end for

10: j∗ ← argmaxj∈H⊥ε {|ξ
S
j |}

11: H(I) ← H(I) ∪ {j∗}
12: φj∗ ← {(r, s) ∈ R× S : ξrj∗s ∈ ξSj∗};
13: H⊥ε (φj∗)←{j∈H \H(I):grjs ≤ ε,∀(r, s)∈φj∗};
14: R← R \ {r ∈ R : ∃ ξrj∗s ∈ ξSj∗};
15: H⊥ε ← H⊥ε (φj∗) ∩H⊥ε ;
16: φ(I)(j∗)← φj∗ ;
17: end while
18: returnH(I),φ(I) = (φ(I)(j))j∈H(I) ;

B. Phase II: JT and Channel Sharing Scheduling

For each RRH j ∈ H(I), let φ(I)(j) be the scheduling policy
at the end of Phase I. Accordingly, for each RRH j ∈ H(I) we
calculate its residual power p̃j under policy φ(I)(j) as follows:

p̃j = Pj −
∑
s∈S

∑
r∈φ(I)(j)

ξrjs (25)

and we defineH(II) as

H(II) = {j ∈ H(I) : p̃j > 0} (26)

Intuitively, H(II) is the subset of activated RRHs whose
residual power is positive at the beginning of Phase II. Such
residual power can be used to schedule multiple user transmis-
sions on the same channel on the same RRH, or to perform
JT operations through multiple RRHs that transmit to the same
user. To this end, in the following we first derive a scheduling
policy φ(II)(j). At the beginning of Phase II, φ(II)(j) is

2Recall that when r is served by RRH j on channel s, the interference at r
is irks = grksp, where p represents the transmission power of an interfering
RRH k ∈ H \ {j} on channel s. In this case, grks = irks/p. Thus, we can
effectively limit the experienced interference at r by a factor proportional to
ε ≥ 0 by allowing transmissions from any RRH k such that grks ≤ ε.
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empty, of course. Then, we use φ(II)(j) to derive a joint user
scheduling and power allocation strategy (a(t),p(t),y(t)).

Algorithm 2 Computation of φ(II)

1: for each j ∈ H(I) do
2: p̃j ← Pj −

∑
s∈S

∑
r∈φ(I)(j) ξrjs;

3: end for
4: H(II) ← {j ∈ H(I) : p̃j > 0}
5: while (H(II) 6= ∅) ∨ (R 6= ∅) ∨ (

∑
l∈H(I)

∑
z∈φ(I)(l)mz +∑

l∈H(II)

∑
z∈φ(II)(l)mz +minr∈Rmr > M) do

6: Compute (r∗, j∗, s∗) as in Step II.1;
7: φ(II)(j∗)← φ(II)(j∗) ∪ {(r∗, s∗)};
8: R← R \ {r∗};
9: p̃j∗ ← p̃j∗ − ξr∗j∗s∗ ;

10: if p̃j∗ ≤ 0 then
11: H(II) ← H(II) \ {j∗};
12: end if
13: end while
14: return φ(II);

The computation of φ(II) is described in the following. For
the sake of clarity, the same procedures are also illustrated in
Algorithm 2.
• Step II.1: We select the request r∗ ∈ R which corresponds

to the minimum required transmission power and can be
scheduled by exploiting the residual power of the RRHs in
H(II). Specifically, we select (r∗, j∗, s∗) such that

ξr∗j∗s∗ = min{ξr,j,s : ξr,j,s < p̃j ,∑
l∈H(I)

∑
z∈φ(I)(l)

mz +
∑

l∈H(II)

∑
z∈φ(II)(l)

mz +mr ≤M,

r ∈ R, j ∈ H(II), s ∈ S}. (27)

• Step II.2: We update the Phase II scheduling policy
φ(II)(j∗) = φ(II)(j∗) ∪ {(r∗, s∗)}.

• Step II.3: We remove r∗ from the outstanding requests set,
i.e.,R = R \ {r∗}.

• Step II.4: We update the residual power of j∗ as follows:
p̃j∗ = p̃j∗−ξr∗j∗s∗ . If p̃j∗ ≤ 0, we remove j∗ fromH(II).

• Step II.5: Step II.1 is iteratively re-executed as soon as
one of the following conditions is satisfied: i) all the
residual power has been exhausted, i.e., H(II) = ∅; ii)
the set of outstanding requests is empty, i.e., R = ∅;
iii) no more requests can be processed in the BBU pool,
i.e.,

∑
l∈H(I)

∑
z∈φ(I)(l)mz+

∑
l∈H(II)

∑
z∈φ(II)(l)mz+

minr∈Rmr > M for all r ∈ R.
Let φ = (φ(I),φ(II)) be the scheduling policy obtained at

the end of Phase I and Phase II, where φ(I) = (φ(I)(j))j∈H(I) ,
and φ(II) = (φ(II)(j))j∈H(I) .

We set ars = 1 for all the scheduled requests such that
(r, s) ∈ φ, and we set yj = 1 for those activated RRHs
j ∈ H(I). Thus, at each time slot t, we obtain the RRH activa-
tion vector a(t) and the request scheduling matrix y(t). Those
two variables are used to compute Ψ(a(t),y(t)) and to solve
the power minimization problem in (19). If a solution is found,
the resulting scheduling and transmission policy is enforced.
Otherwise, if no solution exists, two alternative approaches
can be followed. Specifically, we can either i) unschedule the
extra requests, or ii) activate an additional RRH to search for a

Fig. 2. Block diagram of the proposed greedy algorithm when ε = 0.

feasible power control solution. Those two approaches can be
summarized in the two following policies:

1) Policy 1: We solve the power control problem (19) by
iteratively removing the requests in φ(II) whose required
minimum transmission power ξrjs is maximum until a
solution is computed. If the requests in φ(II) are all
removed, then the original orthogonal scheduling φ(I) is
found. Accordingly, if ε = 0, a solution to the problem
(19) must exist by the construction of the greedy orthog-
onal scheduling policy φ(I). Otherwise, if ε > 0 and a
solution to (19) does not exist, then we set ε = 0 and we
re-execute Phase I, which surely admits a solution.

2) Policy 2: We iteratively launch the power control algo-
rithm by iteratively activating the least power consuming
RRH in H \ H(I) until we find a feasible solution.
If all RRHs have been activated and no solutions are
found, then we launch Policy 1 until a feasible solution
is obtained.

For illustrative purposes, in Fig. 2 we present the block
diagram corresponding to the proposed greedy algorithm when
ε = 0. It is worth noting that if a solution is found, the algorithm
enforces the obtained scheduling policy and moves to the next
time slot. The block diagram for the case where ε > 0 is similar
to that shown in Fig. 2. The only difference is that if no solutions
are found at the end of Policy 2 and Policy 1, then the algorithm
is re-executed by setting ε = 0, which, at least, ensures that
Phase I generates an orthogonal greedy scheduling policy.

The complexity of the ordering in Step I.1 isO(RS logRS).
The operation is performed H times. Therefore, Step I.1 has
complexity O(HRS logRS). Steps I.2 – I.5 have complex-
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Fig. 3. The simulated C-RAN network.

ity O(HR). However, they are iterated over all the available
RRHS until a greedy orthogonal scheduling policy is obtained.
Accordingly, they have complexity O(H2R), and Phase I has
overall complexity O(HRS logRS + H2R). Similarly, it can
be shown that Phase II has complexity O(H2R). Policy 1 has
complexity O(R), while Policy 2 has complexity O(H + 2R).
Therefore, the overall complexity of the proposed greedy algo-
rithm is O(HRS logRS +H2R).

VII. NUMERICAL ANALYSIS

In this section, we assess the achievable performance of the
above proposed solutions through extensive numerical simu-
lations. Specifically, in Section VII-A we analyze the perfor-
mance of the optimal solution. The achievable performance
of the proposed greedy scheduling algorithm is discussed in
Section VII-B.

Our study not only focuses on the power consumption of the
C-RAN system under the algorithms proposed in the previous
Sections, but it also investigates two relevant metrics, namely
satisfied user ratio and RRH activation probability. The former
indicates the percentage of users whose requests are satisfied
by the network. The latter gives us important information on
the number of RRHs that must be effectively turned on to
support user data transmissions and guarantee minimum SINR
requirements.

To assess the performance of the proposed solutions, we
consider a circular network scenario. Despite its simplicity, this
model has been identified as a good candidate for performance
evaluation in C-RAN systems, and has been effectively used
many times in the literature [9, 37–41] as a benchmark for
power allocation, user scheduling, and resource allocation al-
gorithms. In our simulations, we assume that H = 5 RRHs
and a BBU pool are deployed in a circular area as shown in
Fig. 3. The corresponding fiber power costsP (F)

j , which depend
on the distance between the BBU pool and the RRHs, are
P(F ) = {2, 1, 1, 2, 1} W. Let us point out that our solution
is general and can be utilized independently of the actual
distribution of users in the network. However, for simulation
purposes only, we model the position of network users as a
random variable with circular uniform distribution [24, 42, 43].

Specifically, at each simulation run, the position of network
users is randomly generated within a circle whose radius is
set to L = 500m. Channel gain coefficients are generated
according to the path-loss model in [44] for Rayleigh fading
channels. The activation and sleep power costs are assumed to
be equal for all the RRHs. Specifically, we set P (ON)

j = 130 W
[31, 45] and P (sleep)

j = 75 W [31]. The maximum transmission
power level for each RRH is set to Pj = 48 dBm [45]. We
consider the case where the amount of computational resources
to process each request increases linearly with the achievable
Shannon capacity, i.e., the slope in (1) is set to θ = 1. Also,
we assume that the amount of computational resources mVM

to process data requests in the BBU pool is mMV = 5.
Accordingly, we have mr = m for all r ∈ R, which yields
P (BBU)(mr) = P (BBU)(mz) for all r, z ∈ R. We assume that
such a cost is P (BBU)(mr) = 1 W. The weight parameters are
set to ωR = 0.01 and ωB = 0.1. Finally, we assume that users
submit their requests according to a binomial distribution [46]
with success probability p = 0.5, and the number of trials equal
to n = Rmax, where Rmax represents the maximum number of
users in the network. The results shown in this subsection are
averaged over 5000 simulation runs.

A. Optimal Offline Solution

In this subsection, we assess the performance of the optimal
offline solution proposed in Section V, and we compare it with
other scheduling policies. As already discussed in Section V,
to find an optimal solution to the joint scheduling and power
allocation problem is a NP-hard problem, i.e., it has expo-
nential complexity in the number of variables of the problem,
which makes it infeasible to compute an optimal solution even
for small network instances. Thus, in this section only, we
restrict our performance evaluation to the case where only
RRH1 and RRH5 can be activated, while the remaining RRHs
are switched off3. Furthermore, we consider a system where
S = 2 subcarriers are available for data transmission. The
optimization horizon is set to T = 3, and we assume that
all requests have to be accommodated before the horizon is
reached. Finally, we assume that number of users in the network
is Rmax = 7.

In Fig. 4, we show the weighted power consumption C in (13)
as a function of the minimum average SINR requirement level
and the parameter ε in (24). Specifically, we compare the opti-
mal offline solution (solid lines) with two other algorithms: the
greedy online algorithm proposed in Section VI (dashed lines),
and the heuristic approach considered in [47] and [48] where
all RRHs are turned on simultaneously when there is at least
one request to be served (dotted lines). In general, the power
consumption always increases as the minimum average SINR
requirement level increases. Also, the power consumption un-
der the optimal policy is generally lower than that achieved by
all the other considered algorithms. It is worth noting that Fig. 4
shows some cases where the power consumption of the network
under the greedy algorithm is lower than that achieved when the
optimal solution is considered. This result is explained in Fig. 5,

3The case where all RRHs can be selected will be extensively investigated in
Section VII-B.
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where we show that the above phenomenon arises in those cases
where the greedy algorithm does not produce a feasible solution
that satisfies the minimum SINR constraints, i.e., when some
requests cannot be satisfied. By reducing the number of served
users, the corresponding power consumption is also reduced,
thus explaining why the greedy algorithm shows lower power
consumption in some cases. As expected, when all requests are
satisfied, i.e., the satisfied users ration is equal to 1, the optimal
algorithm always provides the best performance. It is also worth
noting that Policy 1 achieves near-optimal performance if com-
pared to the optimal solution, and the additional cost introduced
by the greedy algorithm is small, and anyway lower than that
introduced by the heuristic approach. Although Policy 1 slightly
under-performs Policy 2 in terms of satisfied users ratio, it
both achieves very high satisfaction percentage, (i.e., 96% of
the total number of users) and also consumes less power than
Policy 2. For network operators, the combination of the greedy
algorithm and Policy 1 presents an opportunity to save energy
in those scenarios where the minimum SINR requirement is
low. Instead, when high SINR levels are required, the greedy
algorithm with Policy 2 should be preferred.

To better understand the motivation behind the above find-
ings, in Fig. 6 we show the average activation percentage of
the two RRHs for the three algorithms as a function of the
minimum average SINR requirement level. It is shown that
the optimal solution (solid lines) activates the lowest number
of RRHs, thus resulting in low power consumption levels.
On the contrary, both the proposed (dashed lines) and the
heuristic (dotted lines) approaches activate a higher number of
RRHs. Specifically, since the heuristic approach activates all
the RRHs when at least one request has to be scheduled, it
results in the highest power consumption. Instead, the activation
percentage under the proposed greedy algorithm under Policy
1 is slightly higher than that achieved under the optimal policy.
For C-RANs composed of RRHs with high energy activation
cost, Policy 1 brings even further energy consumption bene-
fits considering the aforementioned trade-off regarding users’
satisfaction. Whereas, when Policy 2 is used, the system will
benefit from near optimal user satisfaction with better energy
consumption than previously proposed solutions, such as the
heuristic in [47, 48].

It is worth noting that the average RRH activation proba-
bility for the heuristic approach (dotted lines) is not always
equal to 1. Such a result is due to the fact that the heuristic
approach activates all the RRHs if and only if there is at
least one request to be scheduled. Otherwise, the RRHs remain
inactive. Furthermore, the power consumption generated by the
proposed greedy algorithm under both Policy 1 and Policy 2
increases as the minimum SINR level increases as well. As
shown in Fig. 6, such a result is directly tied to the higher
RRH activation percentage of the greedy approach when the
minimum required SINR level increases. As a result, to support
high-quality communications, the greedy algorithm proposed in
Section VI activates additional RRHs, thus generating a higher
cost if compared to the optimal solution.

Finally, in Fig. 7 and Table II we investigate the impact of
the weight parameters on the overall power consumption and
RRH activation probability, respectively. Specifically, in our

TABLE II
AVERAGE RRH ACTIVATION PROBABILITY FOR DIFFERENT MINIMUM

SINR REQUIREMENT

Case
Name

Miniminum SINR
Requirement 0 dB 5 dB 10 dB 15 dB 20 dB

Case A 0.402 0.421 0.553 0.562 0.611
Case B 0.324 0.375 0.449 0.511 0.525

simulations we consider the following two cases:
• Case A: all the power cost terms in (10) have similar

amplitudes (i.e., wR = 0.01 and wB = 0.1). This is
the case where the network operator equally weighs the
power consumption of each element of the C-RAN system.
Such a policy stems from the evidence that the power
needed to turn on one RRH (in the order of hundreds of
Watts) is considerably higher if compared to the power
consumption due to RF transmissions (in the order of few
Watts). Accordingly, this policy tries to equally reduce the
power consumption at each element of the network.

• Case B: the weights are set to wR = wB = 1. This
case represents the one where the network operator aims at
minimizing the actual power consumption of the network.
In this case, more attention is given in reducing the activa-
tion of RRHs rather than reducing the transmission power
of each RRH.

Intuitively, Case A generates resource allocation policies
that are power conservative for each element of the network.
On the contrary, Case B aims at reducing the major source
of power consumption of the system while disregarding those
elements whose power consumption is small. The obtained
results show that the values of the weight parameters not only
impact the value of the objective function at the end of the
optimization process, but they also impact the activation of
RRHs. Specifically, in Case B the value of the cost term in (9)
is considerably higher than the other two terms in the objective
function (12). Accordingly, Table II shows that this results in a
lower probability of activating all RRHs if compared to Case A,
where the activation cost is weighted by wR = 0.01.

B. Greedy Online Solution

As already shown in Section VI, the proposed greedy on-
line solution has polynomial complexity. Accordingly, in this
section we assume that all of the five RRHs in Fig. 3 can be
activated. Furthermore, we assume that S = 8 subcarriers are
available for data transmission, and the optimization horizon is
set to T = 10. In Fig. 8 we show the weighted power consump-
tion C as a function of the minimum average SINR requirement
level for different values of the orthogonality parameter ε and
Rmax. Let us recall that, to accommodate users’ requests, Pol-
icy 2 iteratively searches a solution by activating more RRHs.
Instead, Policy 1 keeps the already activated RRHs and removes
those requests which cannot be scheduled due to the limitations
of the spectrum and transmission resources. Therefore, Fig. 8
shows that the power consumption when Policy 2 is enforced
(dashed lines) is higher than that obtained when Policy 1 is
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Fig. 4. Weighted power consumption C as a function of the minimum average
SINR requirement level for different scheduling algorithms.
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Fig. 5. Average satisfied user ratio as a function of the minimum SINR
requirement level for different scheduling algorithms.

employed (solid lines), and increases as the minimum SINR
level increases. Also, as expected, as the maximum number
Rmax of requests at each time slot increases, more RRHs have
to be turned on and the power consumption increases as well.
Because higher transmission power levels have to be considered
and more RRHs have to be activated, introducing interference, a
slightly higher power consumption is experienced when ε > 0.

Fig. 9 shows the average proportion of satisfied users in
the network as a function of the minimum average SINR
requirement level for different values of ε and Rmax. While
Policy 1 (solid lines) is oriented towards power savings, Policy
2 (dashed lines) is user-oriented and is well-suited to satisfy a
higher number of users. Specifically, Fig. 9 shows that Policy 2
performs better than Policy 1 regarding the average proportion
of satisfied users. However, such a high proportion of satisfied
users requires higher power consumption, as shown in Fig. 8.
Also, it is shown that this proportion decreases as the minimum
average SINR requirement increases. In fact, higher SINR
requirements imply lower interference, which leads to a lower
number of scheduled and thus satisfied users. Furthermore, by
considering a positive value of ε, it is possible to satisfy a
higher number of users when the required minimum SINR level
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Fig. 6. Average RRH activation percentage as a function of the minimum
average SINR requirement level for different scheduling algorithms.
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is low. However, as already shown in the above Fig. 8, this
improvement comes at a cost in terms of consumed power. It
is worth noting that when the number Rmax of users in the net-
work is small, approximately the 100% of users’ requests can
be satisfied. On the contrary, larger values of Rmax generally
result in a lower percentage of satisfied users. As an example, a
minimum average SINR level of 10dB would make it possible
to satisfy only 65% of users.

In Fig. 10, we show the average RRH activation percentage
as a function of the minimum SINR requirement level for differ-
ent values of ε andRmax. It is shown that the average number of
activated RRHs is higher under Policy 2 (dashed lines). Instead,
the average number of activated RRHs under Policy 1 (solid
lines) is almost constant with respect to the minimum average
SINR requirement level. Furthermore, when small values of the
minimum average SINR level are considered, positive values
of the parameter ε generate more interference in the ongoing
transmissions, which pushes the network towards the activation
of additional RRHs to support JT and CoMP communications.
Also, while Policy 2 tries to find a feasible solution to the power
allocation problem by activating additional RRHs, Policy 1 re-



12

0 2 4 6 8 10 12 14 16 18

Minimum SINR, [dB]

80

100

120

140

160

180

200
W

e
ig

h
te

d
 P

o
w

e
r 

C
o

n
s

u
m

p
ti

o
n

, 
[W

a
tt

]
R

max
=15, =5e-10

R
max

=15, =0

R
max

=30, =5e-10

R
max

=30, =0

Fig. 8. Weighted power consumption C as a function of the minimum average
SINR requirement level for different values of ε and Rmax (Policy 1: solid
lines; Policy 2: dashed lines).

0 2 4 6 8 10 12 14 16 18

Minimum SINR, [dB]

0.4

0.5

0.6

0.7

0.8

0.9

1

S
a

ti
s

fi
e

d
 U

s
e

rs
 R

a
ti

o

R
max

=15, =5e-10

R
max

=15, =0

R
max

=30, =5e-10

R
max

=30, =0
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moves users’ requests from the scheduling policy. Thus, Policy
2 provides a higher percentage of satisfied users as compared to
Policy 1.

In Fig. 11 and Fig. 12, we show how the RRHs are activated
according to the selected scheduling policy for two different
values of Rmax when ε = 5 × 10−10. Specifically, in Fig. 11
we assume Rmax = 15, and in Fig. 12 we consider the case
where Rmax = 30. For each minimum SINR requirement, we
show five bars. Each bar corresponds to a given RRH in Fig. 3.
Specifically, the i-th bar corresponds to RRHi.

It is shown that, in general, Policy 2 activates more RRHs.
Also, since RRH3 is located at the center of the considered
simulated area, it is the one which has the highest activation
percentage in all the studied cases. Intuitively, being in the
center of the scenario considered allows RRH3 to serve more
users than the other RRHs, which are located at the border.
Also, due to its nearness to the BBU pool, RRH3 requires less
power to activate the optical fibers, e.g., P (F)

3 = 1. On the
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Fig. 10. Average RRH activation percentage as a function of the minimum
SINR requirement level for different values of ε and Rmax (Policy 1: solid
lines; Policy 2: dashed lines).
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Fig. 11. Average activation ratio of each RRH as a function of the minimum
average SINR requirement level for different policies when Rmax = 15.

contrary, RRH1 and RRH4, which are far away from the BBU
pool and are located at the edge of the network, have a fiber
power cost of P (F)

1 = P
(F)
4 = 2, and are the ones which show

the lowest activation percentage.
It is worth noting that, due to the power constraint, each

RRH can serve a limited number of requests. Thus, when the
maximum number of users Rmax in the network is large, it
is expected that all the available RRHs have to be turned on.
This intuition is validated by Fig. 12, which shows that, when
Rmax = 30 and Policy 2 is enforced, all the RRHs are activated
with probability higher than 95%.

In Fig. 13, we analyze the power consumption of each
element of the C-RAN system as a function of the minimum
average SINR requirement level for different values of ε and
Rmax. With respect to the RAN portion of the system, it is
shown that the power consumption due to RF transmissions
increases as the minimum average SINR requirement level and
number of users increase. This results stems from the fact that
to achieve higher SINR values, RRHs are required to transmit at
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Fig. 12. Average activation ratio of each RRH as a function of the minimum
average SINR requirement level for different policies when Rmax = 30.
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Fig. 13. Average power consumption for each element of the C-RAN system as
a function of the minimum average SINR requirement level for different values
of ε and Rmax (Policy 1: solid lines; Policy 2: dashed lines).

high power. Fig. 13 also shows that the power consumption due
to the activation of RRHs has similar behavior in both the cloud
and RAN portions of the system. Specifically, it is interesting
to note that the power consumption due to RRH activation and
processing mimics the RRH activation probability illustrated in
Fig. 10. Finally, in Fig. 13 we investigate the impact of user
scheduling on the power consumption of the cloud portion of
the C-RAN system. Results show that the higher the minimum
average SINR required level, the higher the power consumption
due to processing of users’ data in the BBU pool. Intuitively,
from (1), high QoS requirements require a large amount of
computational resources in the BBU pool, which eventually
results in more consumed power. Moreover, it is shown that
the choice of policy does not considerably impact the power
consumption due to data processing in the cloud. Instead, the
power consumption significantly increases when Rmax is high.
Specifically, the power consumption for data processing in the
BBU pool whenRmax = 30 is approximately 1.25 times higher

than that achieved when Rmax = 15. Although it is out of our
scope, it is also worth mentioning that the decision of which
policy to be used in a centralized pool may differ completely of
the one taken when considering a distributed pool within a C-
RAN. When distributed BBU pools are considered, RRHs are
dynamically assigned to each pool, and the activation cost de-
pends on the distance between each RRH and the corresponding
associated BBU pool in a given assignment slot. In this case, the
benefits and gains explained here might not hold anymore.

VIII. CONCLUSIONS

In this paper, we have addressed the power consumption
minimization problem to schedule user requests within a finite
horizon for a C-RAN. We have formulated the power consump-
tion minimization problem as a weighted joint power allocation
and user scheduling problem accounting for both temporal and
minimum SINR constraints. Also, we have formalized the prob-
lem as an MINLP, which enabled us to find an optimal offline
solution based on DP techniques. Due to the computational
complexity to compute the optimal solution being exponen-
tial, we have designed a heuristic greedy online algorithm of
polynomial computational complexity to solve the problem in
a more realistic time for C-RANs. We have then compared
the outcomes of the optimal and the greedy algorithms. Our
results clearly indicate that the greedy algorithm, while not
optimal, achieves a good trade-off between the minimization of
the power consumption and the maximization of the percentage
of satisfied users. Our proposed algorithm results in power
consumption that is only marginally higher than the optimum,
at significantly lower complexity. We have also assessed the
average activation probability, which shows a slightly increase
when comparing the greedy algorithm against the optimal one.
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