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Decentralized Scheduling for Cooperative
Localization with Deep Reinforcement Learning

Bile Peng, Gonzalo Seco-Granados, Senior Member, IEEE Erik Steinmetz,
Markus Frohle, Student Member, IEEE, and Henk Wymeersch, Member, IEEE

Abstract—Cooperative localization is a promising solution to
the vehicular high-accuracy localization problem. Despite its high
potential, exhaustive measurement and information exchange
between all adjacent vehicles is expensive and impractical for
applications with limited resources. Greedy policies or hand-
engineering heuristics may not be able to meet the requirement
of complicated use cases. We formulate a scheduling problem
to improve the localization accuracy (measured through the
Cramér-Rao lower bound (CRLB)) of every vehicle up to a
given threshold using the minimum number of measurements.
The problem is cast as a partially observable Markov decision
process (POMDP) and solved using decentralized scheduling
algorithms with deep reinforcement learning (DRL), which allow
vehicles to optimize the scheduling (i.e., the instants to execute
measurement and information exchange with each adjacent
vehicle) in a distributed manner without a central controlling
unit. Simulation results show that the proposed algorithms have
a significant advantage over random and greedy policies in terms
of both required numbers of measurements to localize all nodes
and achievable localization precision with limited numbers of
measurements.

Index Terms—Machine-learning for vehicular localization, co-
operative localization, deep reinforcement learning, deep Q-
learning, policy gradient.

I. INTRODUCTION

Localization of vehicles has gained importance with the
availability of increasingly automated vehicles. Modern vehi-
cles can rely on a variety of sensors, including global position-
ing system (GPS), LIDAR, radar, and stereo cameras [1]. The
use of radio technologies can play an important role as a redun-
dant sensor, especially in the context of emerging 5G commu-
nication [2] and internet of vehicles [3]-[5] technologies. As
5G can be used both for communication and localization, it is a
natural candidate for cooperative localization, where vehicles
aid one another to determine their relative or absolute loca-
tions. Cooperative localization has shown to improve both cov-
erage and accuracy [6]. Cooperation between vehicles comes
at a cost in terms of resources (power, bandwidth), which need
to be carefully optimized due to their scarce nature [7], [8]. In
addition, cooperation leads to larger delays (and thus reduced
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update rates), due to (i) the measurement process, where inter-
vehicle distance and angle measurements are collected; (ii)
the information exchange (communication) during fusion of
information, where measurements and a priori information are
combined. Consequently, scheduling of transmissions for the
cooperative localization problem is an important challenge [9],
[10]. Often, the corresponding optimization problems do not
have closed-form solutions and suffer from poor scalability,
due to their combinatorial nature. If we take cooperation
and long-term reward into account, the problem complexity
would be prohibitive for traditional approaches. A recently
(re-)emerging trend in the field of wireless communication is
to rely on machine learning tools for providing novel solutions
to outperform engineered methods [11].

Among the different branches in machine learning, deep
reinforcement learning (DRL) is particularly attractive, as
it combines reinforcement learning (RL) and deep neural
network (DNN), can be applied to difficult Markov decision
processs (MDPs) where labeled data may be expensive or
not available, consider the interaction between agent and
environment (i.e., the action of agent changes the environment
state) and take long-term rewards into account [12]. Concisely,
DRL involves agents observing states and acting in order to
collect long-term rewards. The decisions are determined by
a policy, which maps the state to an action. For complicated
problems with large state and action spaces, the DNN is an
possible implementation of the policy. So-called DRL has seen
success across many areas [13]-[19].

DRL algorithms can be generally categorized into Q-
learning and policy gradient (PG). The former estimates the
expected long-term reward (defined as Q-value) of each action
and selects the action with the highest Q-value (hence the
algorithm estimates the Q-values explicitly and formulates
the policy in an indirect way) [20], [21], whereas the latter
optimizes the policy directly by improving the policy in
direction of the gradient of the total reward with respect to
the policy parameters [22]. A more detailed introduction to
DRL can be found in Section III.

In context of wireless communication, DRL has been ap-
plied to a number of applications, e.g., in the areas of power
and rate control [23]-[26]. In addition, distributed routing
was investigated in [27] using the REINFORCE method (a
policy gradient algorithm). A good overview of work up to
2012 can be found in [28]. More recently, [29] considers
a deep Q-network (DQN) for multi-user dynamic spectrum
access, and [30] applies a DQN for scheduling in a vehicular
scenario where gateways aim to deliver data quickly without



depleting their batteries. Power control was again consid-
ered in [31], where agents make decisions based on high-
dimensional local information (interference levels to and from
neighbors) with rewards given by spectral efficiency, penalized
with interference. Recent advances in machine learning in
the vehicular domain were covered in [32], and highlights
intelligent wireless resource management based on DQN.

From a more abstract point of view, the above problems can
be seen as either single-agent RL or multi-agent reinforcement
learning (MARL) [33]. For a survey on MARL, we refer the
reader to [34]. In contrast to single-agent RL, MARL presents
a number fundamental challenges [35] as the multi-agent
extension leads to a so-called stochastic game. When all agents
observe the same global state, the problem reverts to an MDP,
though with larger state and action spaces. In contrast, when
independent agents are considered, the actions of other agents
affect the observed environment by an agent, thus leading
to a partially observable Markov decision process (POMDP)
[33]. To make the system more Markovian, state histories are
generally collected, often combined with recurrent DNNs [36].
Deep MARL is a current topic of research [37], [38], where
agents may exchange information regarding rewards, policies
or observations.

In this paper, we consider the cooperative localization
problem from a MARL perspective, where each agent cor-
responds to an edge in the network. The problem is cast as
a POMDP with a per-agent reward designed to localize all
network nodes below a given uncertainty threshold as quickly
as possible. The problem is then solved using DQN and PG.
The obtained policies are then applied to the identical and
larger scenarios, and provide performance improvements over
both a random scheduling as well as a greedy algorithm. The
main contributions of this paper are:

o The formulation of a cooperative localization scheduling

problem in the context of a POMDP;

o The development of DQN and PG algorithms to solve the

POMDP.

In the following part this paper, Section II introduces the
system model and describes the calculation of the Cramér-
Rao lower bounds (CRLBs), which is used as metric of
localization precision. Section III presents the DRL algorithm
for optimized decentralized scheduling. The simulation results
are presented in Section IV and the conclusion is drawn in
Section V.

II. SYSTEM MODEL

In this section, we introduce the considered scenario, the
approach to calculate the CRLB and formulate the scheduling
problem.

A. Network Model

We consider a network graph G = (V,€&), where V =
{1,2,...,N} is the set of nodes (vehicles) and £ C V x V
is the set of edges (links) between nodes. Each node has a
position x; = (x;,¥;), ¢ € V in a global frame of reference,
where z; and y; are the coordinates in z and y directions,
respectively. Each node is equipped with two types of sensors:

Fig. 1. Measurement between two nodes comprises relative position: distance
l;; and angle a;;.

a GPS-type of sensor that provides an estimate of x; with
covariance X" and a radar-type of sensor that provides
relative location information for (¢, j) € £. Finally, we assume
that nodes can communicate with adjacent nodes.

B. Measurement Model

We consider a radar-type measurement with multiple receiv-
ing antennas. The measured quantities are thus distance /;; and
angle «;;, which are shown in Fig. 1 and calculated as

i = /(2 — 2 + (y; — v)? (1)
and
o;; = arctan <M> 2)
l'j — X;

respectively. The measurement can be expressed as

arctan | =YL
Tj—Tq

T, — ;)2 )2 3)
_<\/(J )2 + (y; y)>+nij,

where n;; is Gaussian measurement noise, assumed to be of
zero mean and diagonal covariance matrix X;;.

C. Objective

Our objective is to localize all nodes of the network (i.e., to
reduce the uncertainty on the position of each node below
some threshold) as quickly as possible (i.e., with as few
measurements as possible). Let a;; € N be the number of
times nodes i and j perform a measurement and X2 denote
the posterior position covariance of node ¢, then this problem
can be formulated as follows:

minirlnize Z a;j
(i,5)€€ 4)
s.t. (X" (A)] <k, Vi

where A describes actions of all agents, [A];; = a;; and & is
a threshold (in meters).



D. Network Localization Formulations

In this section, we describe two approaches to network
localization and highlight the impact of measurement ordering.

1) Measure-then-Localize: Under this first approach, the
network first performs all measurements between all pairs of
nodes and then localizes all nodes. The localization uncertainty
can be lower bounded [39] using the Fisher information matrix
(FIM) J(A), which is a 2N x 2N matrix, with 2 x 2 block

i=j
i #

prior . Jmeas
S R D DR s
_aijJ;r;eas

Jij(A) = { ®)

in which J?*" is the a priori information of node i (e.g., from
GPS) and JJ°® is the amount of information a measurement
between nodes ¢ and k brings. From the model, it follows
immediately that

IS =T BTy, (6)
where
%i; = diagloj o] (7

is the measurement covariance matrix with o7 and o2 the
noise variances in distance and angle measurements, respec-
tively, and the 2 x 2 Jacobian matrix of the range and angle

measurements:
(i x)
Fz] - ((iz _ ij)T/l%j (8)

in which X; = [~y; a;]T. Finally, the equivalent Fisher
information matrix (EFIM) of node i J¥(A) is defined as
the Schur complement of the block of J(A) without the
2 rows and 2 columns corresponding to node i, of the
matrix J(A). As the FIM provides a lower bound under the
error covariance, it follows, under regularity conditions, that
¥P(A) = (JE(A))~!. We further introduce the positioning
error bound (PEB) as

PEB; = 1/tr[(JE(A)) ] ©)

so that (4) can be approximated by

mingnize Z aij
(i.g)€E (10
s.t. PEB; < &, Vi

While this problem in principle allows to find the optimal A,
it is generally hard to solve due to the high-dimensional and
integer nature of A, as well as the complex dependence of
JE(A) on A.

Remark 1: In (10) the ordering of the measurements does
not play a role: a measurement between two nodes with high
a priori uncertainty is equally useful if it is scheduled first or
last. Moreover, when multiple measurements are taken, each
measurement contributes equally.

Fig. 2. Split of C for update using Kalman principle.

2) Localize-while-Measuring: A more practical way of
performing network localization is to consider the perspective
of a single link in the network (4, j), whereby a measurement
is used immediately to update the location estimates of both
nodes, but does not impact the location estimates of other
nodes. Hence, this leads to a sequential decision making
problem to progressively improve the EFIMs, whereby each
link must decide whether or not to activate (i.e., measure
and then update the location estimates) based on the current
observable state of the network.

The evolution of the uncertainty is easily understood in
the inverse FIM domain. Let C(©) = (JPo)~1 correspond
to the a priori block-diagonal covariance for all nodes. By
induction, we assume that we have performed a sequence
of measurements A(l),A(2)7 .. .,A(k), where each A% ¢
BN >N contains zeros and a single one. Assume that C*) = C
is known and we wish to determine C*+1) = C' after
measurement A(k+1), which involves nodes ¢ and j.

1) We split the covariance matrix C into the following
parts: (i) covariance matrix involved in the measurement
C;; € R**4, (ii) covariance matrix between involved
quantities (¢j) and not involved quantities (denoted by
\ij) Cjj,\i; and (iii) covariance matrix of not involved
quantities C\;;\;; € R**N =% Note that C; € R?*?
will denote the covariance of the position of node
1. Without loss of generality, we focus on the case
7 = i+ 1, in which the split is illustrated in Fig. 2
(the general case can be obtained by reordering the node
indices).

2) After a measurement, C;; will change accordingly be-
cause the measurement increases covariance between the
involved quantities; C;; \;; is also affected because the
measurement updates the involved quantities and their
covariance with the uninvolved quantities decreases.
C\ij,\ij is unchanged since none of its respective po-
sition estimates are affected by the measurement.

3) We apply the principle of the sequential estimation to up-
date the covariance. The Kalman gain for measurement



between nodes ¢ and j is calculated as [39, pp. 249]

—1
KijzcijTZTj(zijJrTijcijTZTj) . an

ng = Cy; — Ky;'T;;Cy; (12)
Ciinig = Cijnig — KiyTi;Cijig (13)
Vignis = Chijis (14)
where we have introduced
Ty = (Ty —Ty) (15)

4) Finally, the whole updated matrix C’ is then built again
from the updated blocks.

It is to note that ¢ and j are assumed to be adjacent in
Fig. 2 for simplicity. If ¢ and j are not adjacent, C has to
be split into more pieces but all of them still falls into the
above described three categories. It is also to note that C is
symmetric. Therefore, only half of the elements need to be
computed in order to determine the whole matrix.

Remark 2: From the above description, it follows that now
the order of measurements plays a role, since different decision
sequences Agl), Aff), ce ASLK) and AZ()I), AZEZ), ce AZ()K)
lead to different covariances C(¥), even when 22{21 AP =
Zszl Algk) = A. Secondly, taking multiple measurements
between two nodes will improve the relative positioning in-
formation, but will lead to more correlation. Hence, there is
less benefit compared to the Measure-then-Localize approach
of consecutively measuring multiple times between the same
nodes.

The problem (4) can be approximated as follows:

K
> 3wy

minimize
k
KA® T Gpee
S.t. Z agf) =1,Vk (16)
(i.4)e€

C(k+l) _ f(C(k),A(k+l))
w[C)] < k, Vi

in which the function f(-) executes the procedure listed
above. While C*) can be calculated in closed form after
each measurement, it is extremely difficult to find an optimal
scheduling scheme to reduce uncertainty below x with the
smallest number of measurements. In particular, the long-term
benefit is more difficult to consider than the instantaneous
reduction in uncertainty. However, this type of problem in now
in a form where RL can be applied.

III. DEEP REINFORCEMENT LEARNING FOR SCHEDULING
OPTIMIZATION

In this section, we formulate the original scheduling prob-
lem in the DRL framework and introduce the training algo-
rithms with DQN and PG.

A. Problem Formulation

1) Single Agent Case: DRL is an area in machine learning
that optimizes a policy of an agent (in the considered problem,

an agent is a link between two nodes) when interacting with
an environment with the objective to maximize the long
term cumulative reward. The interaction between agent and
environment is described as an MDP (S, A, P, R,~), where
s € S is the state of the agent, a € A is an action of the agent,
P describes the transition density p(s’|s,a) from the current
to the next state, and R describes the instantaneous reward
r(s,a) (or more generally r(s,s’,a)) and v € [0,1] is the
discount factor. In RL, an agent can take an action a according
to a policy m given a state s. The agent obtains reward r
as feedback of action a from the environment and updates
state from s to s’. In summary, the data item (s,a,r,s)
characterizes one interaction between agent and environment.
In the next time step, a new action will be taken, given the
state s’. In order to collect enough data to train the model, the
training process involves many episodes. In each episode, the
nodes begin with their initial PEBs (one anchor with low PEB
and other nodes with high PEBs) and reduce their PEBs until
every node achieves the objective.

2) Multiple Agent Case: If there are multiple agents in-
teracting with the environment and the reward of each agent
depends on the actions of other agents, the RL problem
becomes an MARL problem. In our case, all agents behave
individually but are governed by the same policy (as they
have the same objective). In formulating the agent’s policy
(particularly for DQN), the other agents are considered as
part of the environment. Therefore, if the policy changes, the
environment changes as well. Since the agent’s reward depends
on the actions of other agents, the reward is issued before
the next action of the same agent (i.e., after the actions of
other agents). This is a crucial difference to the single-agent
RL. When the agent does not have access to the environment
state, the MDP becomes a POMDP, which is described by
(S, A,P,R,7,Q,0), in which o € Q is the observation and
O describes the observation probabilities p(o|s). The action
is then a function of the observed state (as well as the state
history), not the true state. Such a situation is relevant in our
context, as each agent has access only to local information,
which in turn is affected by decisions of other agents.

B. Solution Strategies

The objective of this section is to develop algorithms that
perform scheduling for cooperative localization (4), such that
the constraint of objective PEB is satisfied for every node
in the scenario with minimum number of measurements. As
Section II-D points out, it is extremely difficult to solve this
problem analytically. Therefore, we mention two standard
solutions using DRL, which learn to make decisions according
to the experience in the form of simulated data [40]. The
two solutions are based on the two major categories of DRL,
namely DQN and PG, which are elaborated as follows.

1) DON: DQN focuses on estimation of the expected long-
term reward of available actions, defined as Q-values, and the
implicit policy 7, is to choose the action that maximizes the
Q-value. The Q-value given state s, action a and policy 7 in



time step 1" is expressed as

Q7 (s,a) = lZ’y Tr (st,at)|sT = s,ar = a, w} a7

where E(-) is the expectation operator, T is the time step under
consideration, s; and a; are state and action in time step t,
respectively, r;(s¢, a;) is the instantaneous reward at time step
t and given state s; and action a;. The optimal Q-value is
given by Q*(s,a) = max, Q7 (s,a) and satisfies the Bellman
equation [21]:

Q*(s,a) =Ey [r(s,a) + fymC&LLXQ*(S’7a’)|s,a :

The optimal policy should choose the action that maximizes
the Q value under every possible state, i.e.,

(18)

7 (s) = argmax Q" (s, a) (19)

for any s € S.

If the number of available states and actions is small, we
can use a look-up table to exhaustively list the expected Q-
values for each (state, action) pair. However, if S or A is
continuous or very high dimensional, which is the case of the
addressed problem in this paper, the possible values cannot
be presented in such a table. In this case, this look-up table
can be approximated by a DNN with parameter set 6, denoted
as Q(s,a;0). This approach is referred to as DQN. DQN is
an off-policy method, which allows it to use training data
generated by a different policy than the one currently being
optimized.

In episode i, 6; is optimized to to minimize the mean
square error (MSE) between output of the DNN and the Q-
values calculated by the instantaneous rewards and Q-values
obtained from the previous training. The loss of one data item
is therefore calculated as

Li(0:) = B | (i — Q(s,0:6,))° (20)

where y; is a target value given by
;= / /. 61;_ 21
yi =r+ymaxQ(s’, a’; fi1), 2D

with y; = r when s is a terminal state. The expectation (20)
is approximated by an average over a training database and
the minimization is performed via a gradient descent method
(ADAM in our work). As in other machine learning problems,
DQN must take the exploitation-exploration trade-off [41] into
account. Therefore, we apply e-greedy in the training. Namely,
we select a random action with the probability of € and the
action with the highest Q-value with the probability of 1 — ¢,
where ¢ is a small and decaying value with the episodes.

2) PG: While DQN estimates the Q-values and formulates
the policy implicitly by choosing the action with highest Q-
value or with the e-greedy policy, PG optimizes the policy
explicitly, which determines the action given a state. We
represent the stochastic policy by a DNN parameterized by
6. Under a stochastic policy m(als;#), there is a natural
exploration. The parameter 6 should be optimized to maximize
the expected cumulative reward, defined as

H-1
J(a) = ETN;D(T;@) [T(T)] = ETNp(T;G) [Z T(St, at)‘| (22)

t=0

where 7 is the path of states, actions from sgp,ag to
Sg_1,ay_1 with H the maximum number of time slots in
an episode, r(7) is the sum of rewards on path 7 (defined as
path return), p(7;6) is the probability of path 7 given policy
0, which is computed as

3t+1|5taat) (23)

H-1
p(73:0) = p(s0) [ ] w(ar|se; 0)p(

t=0
with p(so) the probability of initial state so, H the number
of time slots, 7(a¢|s¢; @) the probability of choosing action a;
given state s; and policy 6, p(si+1]|st,a:) is the probability
of state s,y in the next time step given current state s; and
action a;. According to the REINFORCE algorithm [22], the

gradient of J(#) with respect to 6 is calculated as

v@‘](o) T~p(‘r 0) [( ( ) - b)VQ lng(T; 0)]

ZZH

where b is an actlon-lndependent baseline and N is the sample
size. In this paper, b is defined as the mean path return. In each
iteration, the gradient ascent makes paths with high rewards
more likely to appear in the future. This is equivalent to
improving expected rewards with paths generated under the
new policy.

24)
—b)Vologm(ai|si;0)

C. Formulation of Network Localization as a RL Problem

We assume that the network has a baseline schedule, where
each time an agent is scheduled, it needs to decide whether or
not to measure. Not measuring takes no time, while measuring
comes at a cost. We will now describe the network localization
problem as a POMDP.

1) POMDP Description: In the problem considered in this
paper, we assume that an agent cannot observe the global state
in order to make the proposed algorithm more practical (hence
the global state is partially observable). The state is therefore
defined to contain the local state and a limited amount of
global information (which is easy to observe). Formally, we
introduce the following POMDP:

o Agents: The agents are the links (4, j) € £ in the network.

e Actions: A = {0,1}, corresponding to the decision of
not measuring (¢ = 0) or measuring (¢ = 1). Agents
locally decide whether or not to measure, where not
measuring takes up negligible time, while measuring
takes significant time.

o States: S comprises the global state of the network,
including the true locations of all nodes (say, x;), as well
as the estimated locations (X;) and the global covariance
matrix C.

o State transitions: P is determined by the evolution of the
full network covariance, as described in Section II-D2.
The evolution of the estimates depends on the specific
localization algorithm. During training, the means are
generated as X = x + C'/?w, in which w ~ N(0,Iyy).

e Observations: () is the local observation, available to each
agent, given by the projection of S onto the following
vector

0 = {)A(l

—%;,Cij,ni5} (25)



where n;; is the number of neighbors of the involved
nodes that have not yet achieved the target PEB . This
observation tells the agent how many nodes need its help
and a large n;; motivates the agent to measure. Please
note that this definition of 2 fully determines O. To
remain consistent with the standard DRL terminology,
we call denote the observation as the local state, since it
does not introduce any ambiguity.

e Rewards: In this particular problem, we define R as
follows. We first introduce an immediate (deterministic)
reward:

. 0 a=0
T;T; = {m . rﬁnal _ cmeas o 1 (26)
where ¢™® > 0 represents a fixed measurement cost,
piinal > () ig a positioned reward given once, when a
node’s uncertainty falls below the threshold, and m €
{0,1,2} is the number of nodes that reduce their uncer-
tainty below the threshold as a consequence of the action.
Secondly, we introduce a long-term (stochastic) award:

w .
Zw:l Tg}n
w

where W is the number of time slots in between the
times when agent (ij) acts. Here 7™ is the immediate
reward of another agent (w # (ij)) that acted in between
two consecutive actions of agent (ij), and o« > 0 is a
parameter that encourages altruism in the agent.

27)

__ ,.im
Tij = Tij + «

Remark 3: The observable state only contains local in-
formation (i.e., information of nodes 7 and j), such that a
decentralized decision process is possible. The observable state
can be extended to include estimates with respect to one-
hop or two-hop neighbors, and the covariances Cy of these
neighbors. Note that the dimensionality of the observable must
be made constant, so it should either compress the neighbor’s
information or consider a fixed number of neighbors (e.g., an
upper bound).

D. Implementation Considerations

The implementation is provided in Algorithms 1 and 2. We
note that we do not keep track of agent observation histories,
as each agent implements the same policy. Since the state
definition (25) is local, scenarios used for training and testing
do not need to be identical, which broadens the generality of
the algorithm, and can speed up training. As we will see later,
it is possible to train on a small network and test on a larger
network.

Since PG operates on the cumulative reward of an entire
episode and each agent has the same policy, it is inherently
global and cooperative behaviour can emerge even with o = 0
in (26). In contrast, DQN with o = 0 will not lead to any
cooperation, as agents cannot see the benefit of their actions
for the network as a whole. On the other hand, setting « to a
large value will lead to large variations in the stochastic reward
signal and can negatively affect learning. For that reason, we
have found that PG was far easier to implement and optimize
and led to more stable learning.

Algorithm 1 DQN Training for Decentralized Scheduling
1: Initialize DNN with random 6
2: for episode e =1,..., M do
3: Generate initial state s
4 Initialize memory D
5 fort=1,2,...H do
6: Select an agent (a link (7))
7.
8

Observe state s; of the agent
Select a random action a; with probability €

9: Otherwise select a; = argmax,, Q(s¢, as;0)

10: Execute a; and record r; and s44;

11: Save (st,at,rt,st+1) in D

12: if t mod P = 0 then > gradient step
13: Sample random minibatch from D

14 Set y; according to (21)

15: Gradient step on (20) to update 6

16: end if

17: end for

18: end for

Algorithm 2 PG Training for Decentralized Scheduling

1: Initialize DNN with random 6

2: for episode e =1,..., M do

3: for scenario s=1,...,5 do

4 Generate initial state s

5: Initialize memory D

6: fort=1,2,...H do

7: Select an agent (a link (7))
8: Observe state s; of the agent
9: Select action a; ~ m(al|s; 6)
10: Execute a; and record 7 s and s;41
11: end for

12: Compute 7, s = Zfil Tets

13: end for

14: Set baseline b = Zflzl Zle Tet,s/(HS)
15: Gradient step on (24) to update 6
16: end for

Another remark is that both algorithms are on-policy learn-
ing, i.e., they optimize the policy with data generated ac-
cording to the current policy. The data are generated with
the simulator described in Section II and according to the
current policy. The description of the CRLB calculation in
Section II and definitions of state, actions and reward in
Section III provide sufficient information to reproduce the
results presented in the next section.

IV. SIMULATION RESULTS

Simulation results are introduced in this section, which
confirms the advantages of the proposed algorithms.

A. Setup

We defined two scenarios to train and test the proposed
algorithms, which are depicted in Fig. 3: a highway scenario
with 3 lanes, considering a network of 3 vehicles per lane
(Fig. 3(a)) and a highway scenario with 2 lanes, considering 5
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Fig. 3. Multi-lane multi-vehicle scenarios for training and testing of DQN
and PG. The boxes next to each vehicle are the vehicle index and final PEB
whereas the lines between vehicles are measurements.

vehicles per lane (Fig. 3(b)). To demonstrate the generalization
capabilities of DRL, the first scenario is used for training,
while both scenarios are used for testing. In Fig. 3, indices and
PEBs of vehicles are denoted in the frames near the vehicle.
For each scenario, we set a random vehicle as an anchor, with
low initial uncertainty (the vehicle with the PEB of 0.00 in
Fig. 3 is the anchor vehicle), while all remaining vehicles are
nodes with high initial uncertainty (this high uncertainty is not
shown in the figure). In order to achieve a balance between
exploration and exploitation in DQN, e-greedy is used during
training, where ¢ reduces linearly from 1 (in episode 0) to 0
(in episode 350) and remains O until the end of the training.’
Additional simulation parameters during training are provided
in Table I. The DNN parameters for DQN and PG are listed
in Table II and Table III, respectively. These parameter values
were determined empirically. 1000 independent scenarios are
applied in testing to make the results sound in a statistical
sense.

During training we compute the FIM based on the true
positions, while in testing the FIM is based on the estimated
positions.

'Due to the MARL nature, the actions of other agents are part of the
environment and influence the Q-values. Therefore, ¢ must be reduced to
0 at the end of the training to make the environment consistent with the
environment in testing.

TABLE I
SIMULATION PARAMETERS

Parameter Value
oy 0.1 m [1]
Oa 0.1° [1]
7 (discounting factor) 0.75
Cost of measurement 0.1
Terminal reward 1.2
Initial PEB of normal vehicles (m) 3.4 [42]
Initial PEB of anchors (m) 0.0
Objective PEB « (m) 0.12
Number of scenarios in PG training 100
Number of scenarios in testing 1000
TABLE II

DQN PARAMETERS
Parameter Value
Number of layers 4

Number of neurons per hidden layer 100

Activation function ReLU
Loss MSE

« (altruism) 3
Optimizer ADAM
Initial learning rate 5x10~°
Batch size 128
Episodes 650
Number of scenarios in training 40

B. Performance Metrics and Benchmarks

The objective is for the vehicles to reduce their PEBs below
a given threshold x by means of cooperative localization, i.e.,
radar measurement of relative positions between the vehicles
and information sharing of current position estimates, with
minimum number of measurements. Hence, the performance
metrics are:

1) Efficiency: the number of measurements needed to bring
all PEBs below the objective and the number of vehicles
that have achieved the objective.

2) Outage probability: the fraction of vehicles that fail to
achieve the objective.

3) Realized PEB: the PEBs that is achieved by the vehicles
upon completion of the methods.

Performance is evaluated for DQN and PG and two bench-
marks: a random policy (which decides randomly whether to
measure or not) and a greedy policy [43] (which chooses to
measure if and only if the instantaneous reward defined in (26)
is positive).

TABLE III
PG PARAMETERS

Parameter Value
Number of layers 4
Number of neurons per hidden layer 100

Activation function ReLU

« (altruism) 0
Optimizer ADAM
Episodes 2000
Initial learning rate 1x10~*
Number of scenarios in training 100
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Fig. 4. Loss in DQN training as a function of the number of training episodes.

C. Training Performance

1) DON: The training of the DQN is carried out with
Algorithm 1. The evolution of the loss (20) is shown in Fig. 4.
The training loss (MSE) reduces from roughly 0.6 to less
than 0.02 within 50 episodes and remains stable. We now
look more detail to the Q-values as a function of variances
of vehicles Fig. 5 shows Q-values of two actions for an agent
between two normal vehicles (denoted as “nor.” in the legend)
and an agent between an anchor and a normal vehicle. The
variances of one vehicle are assumed constant (PEB is 3.4
for normal vehicle and O for anchor) and the variances of
the other vehicle are shown in the horizontal axis for both x
and y directions. It can be observed that (i) except for very
small values of o2, it is preferred to measure with an anchor
vehicle. When 2 < 0.01 m? (corresponding approximately
to the PEB of 0.12 m), then it is preferred not to measure; (ii)
similarly, measuring with normal vehicles, is only performed
if the variance is low enough such that the other vehicle can
benefit from the measurement. If the variances of both vehicles
are high, the information exchange between them would not
bring significant advantage to compensate for the measurement
cost; (iii) Q-values with a normal vehicles are higher than Q-
values with an anchor, because the former has two chances to
obtain rewards whereas the latter has only one.

2) PG: Unlike DQN, PG optimized the expected path
return directly (Algorithm 2), which is approximated by the
mean path return of 100 scenarios in the training, as shown
in Fig. 6. We can observe that the mean reward is improving
steadily in the training. After 2000 episodes, the probabilities
of actions returned by the neural network are either close to
0 or close to 1, i.e., the stochastic policy reduces to (almost)
deterministic policy. Therefore, the exploration stops and the
policy can not be optimized further.

3) Comparison between DQON and PG: Comparing the
parameters in Table II and Table III as well as the results,
we can conclude that DQN is more sample-efficient than PG.
However, the algorithm description in Section III shows that
the algorithm complexity of DQN is higher than PG because
we need to design the reward carefully to encourage cooper-
ation between agents. On the other hand, PG is cooperative
in its nature because all agents follow the same policy and
the episode reward will increase when agents cooperate. In
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Fig. 5. Q-values as functions of priori location variance for a normal adjacent
vehicle and an adjacent anchor.

8.0
7.5
7.0
6.5

6.0

Mean reward

1 1
1000 1500

Episode

1
500

\
0

2000

Fig. 6. Mean rewards in PG training.

addition, DQN requires more careful parameter tuning than
PG in our experience.

D. Testing Performance

In this section, we present the simulation results to evaluate
the performance of the DRL.

1) Detailed Example: We first consider the detailed exam-
ple of Fig. 3, which shows the measurements (black lines) and
the final PEBs of each vehicle (red text). The anchor vehicle
has a PEB of 0 m and the normal vehicles have an initial
PEB of 3.4 m. As depicted in the figure, the PEBs of normal
vehicles have been successfully reduced below the objective
of 0.12 m. Note that the order of measurements cannot be
illustrated in Fig. 3 due to the limit of the paper length.

2) Statistical Analysis: In a more general and statistical
perspective, Fig. 7 shows the empirical cumulative distribution
functions (ECDFs) of the number of measurements needed to
localize all the vehicles for the four methods for scenarios
with sizes of 3x3 and 2x5. It turns out that except the
greedy method, all methods are able to reduce the PEBs
below the threshold. We can observe that DQN and PG
perform almost equally well in both scenarios, while PG has a
slightly shorter tail in the second scenario. Both RL algorithms
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outperform the random policy considerably. Since the greedy
policy only considers the immediate reward, it can only reduce
the PEBs of all normal vehicles below the objective if the
anchor vehicle is at the center of the first scenario (3x3),
where all normal vehicles are adjacent to the anchor and the
anchor can reduce their PEBs below the objective with one
measurement. Therefore, the ECDF of the greedy policy has
8 measurements (one measurement for each normal vehicle)
with the cumulative probability of 0.12 (roughly 1/9) and infi-
nite number of measurements above it (because the objective
is never achieved with other anchor positions) in the first
scenario and the measurements are constantly infinite in the
second scenario. On the other hand, the random policy decides
whether to measure or not by chance. Therefore, given enough
time (which is the case of our test simulation), the fraction with
random policy can always tend to 1. However, this comes
with a lot of unnecessary measurements, hence a very low
efficiency. A further observation is that the advantages of both
DRL algorithms are bigger in the second scenario, indicating

N. nodes that reached objective
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Fig. 8. Fraction of vehicles that have achieved the objective as a function of
time.

that a more complicated scenario requires the sophisticated RL
more than a simple scenario.

Fig. 8 shows the fraction of vehicles that have achieved
the objective as a function of time for the four policies in
the testing scenario. It is obvious that vehicles achieve the
objective faster with both DRL algorithms than with random
and greedy policies (PG performs slightly better than DQN).
Due to the reason stated above, some vehicles never achieve
the objective under the greedy policy.

To gain understanding in the realized PEB values of the 4
methods, Fig. 9 shows the ECDFs of PEBs after 10 measure-
ments in the testing scenario. The figure provides an intuitive
impression of achievable PEBs under resource constraint for
limited numbers of measurements. Around 11% of the PEBs
are 0 (bottom left corner of the graph), which are the anchors
(1 out of 9 vehicles). Similar to the results shown before,
the two DRL algorithms have similar and better performances
than the random and the greedy policies. more than 80% of
all PEBs are reduced below 0.3 m? with 10 measurements,
which is considerably better than random and greedy policies.
Besides, the random policy has a considerably higher spread
than the other three policies due to its random nature. These
facts demonstrate the advantage of the proposed algorithm in
the resource-limited situation.

From the results above, we can conclude that the proposed
decentralized scheduling algorithms with DRL are able to
reduce all PEBs below the objective with fewer measurements
(Fig. 7) and reduce the PEBs to lower levels with limited
numbers of measurements (Fig. 9) than the random and greedy
policies. The advantage is achieved by means of optimized
scheduling, in particular, by maximizing the effect of one mea-
surement (e.g., a measurement between two normal vehicles
does not decrease the PEB much and should be avoided) and
cooperation between agents (i.e., agents take rewards of other
agents into account). Although the algorithms are trained in
a specific scenario, they can operate in different scenarios,
because they are designed to be decentralized and the vehicles
require only local information for the optimal decision, which
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does not depend the global scenario. Our results show that
the correlation between local state and actions is sufficient
such that the proposed algorithms outperform the base lines
(random and greedy policies) considerably. The reason is that
the cooperation mechanism does not depend on the scenario
setup. Despite that the global information is incomplete (e.g.,
how many vehicles depend on the considered vehicle globally
to reduce their PEBs) and the agents do not have a global
picture as a consequence, the trained models still prove them-
selves valid in a bigger scenario in a statistical sense, which
is confirmed by the simulation results. The generality of the
proposed algorithm is thus demonstrated.

V. CONCLUSION

This paper studied the problem of cooperative localization
of vehicles in the context of multi-agent reinforcement learn-
ing. Cooperative localization is an important approach to im-
prove localization precision and coverage. However, the mea-
surement between nodes causes delays, which is particularly
detrimental for vehicular applications. Hence, measurement
scheduling is an important problem. We have proposed a novel
formulation of the scheduling problem to account for mea-
surement ordering and thereby can transform the cooperative
localization problem as a POMDP, whereby state transitions
and rewards are computed based on the PEB, which is as a
general measure of localization accuracy. We have shown that
the optimal scheduling problem is difficult to solve analytically
especially in a decentralized manner, where the nodes make
decisions based on the local information without coordination
of a central unit. We propose to solve this problem with DRL,
which optimizes the policy based on the rewards it obtains
after executing an action according to the state. Two DRL
algorithms, DQN and PG, are applied to solve the problem.
Simulation results show that both methods outperform random
and greedy policies in terms of required numbers of mea-
surements. With limited number of measurements, the DRL
algorithms also reduce PEBs considerably more than random
and greedy policies. We found that DQN required more tuning

of parameters and reward definition, while PG was able to
perform well in its standard form.
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