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A General Model for EV Drivers’ Charging Behavior
Zohreh Fotouhi, Massoud Reza Hashemi, Hamed Narimani, and I. Safak Bayram

Abstract—The increasing adoption of electric vehicles (EVs)
due to technical advancements and environmental concerns
requires wide deployment of public charging stations (CSs). In
order to accelerate the EV penetration and predict the future CSs
requirements and adopting proper policies for their deployment,
studying the charging behavior of EV drivers is inevitable.
This paper introduces a stochastic model that takes into the
consideration the behavioral characteristics of EV drivers in
particular in terms of their reaction to the EV battery charge level
when deciding to charge or disconnect at a CS. The proposed
model is applied in two case studies to describe the resultant
collective behavior of EV drivers in a community using real field
EV data obtained from a major North American campus network
and part of London urban area. The model fits well to the
datasets by tuning the model parameters. The sensitivity analysis
of the model indicates that changes in the behavioral parameters
affect the statistical characteristics of charging duration, vehicle
connection time and EV demand profile, which has a substantial
effect on congestion status in CSs. This proposed model is then
applied in several scenarios to simulate the congestion status in
public parking lots and predict the future charging points needed
to guarantee the appropriate level of service quality. The results
show that studying and controlling the EV drivers’ behavior leads
to a significant saving in CS capacity and results in consumer
satisfaction, thus, profitability of the station owners.

Index Terms- Electric Vehicle (EV), characteristic modeling,
congestion control, electric vehicle charging.

NOMENCLATURE

CP Charging Point.
CS Charging Station.
MCS Monte Carlo Simulation.
MDP Markov Decision Process.
ci The state of the EV connection to the CP in

Markov chain with i% level of charge.
di The state of the EV disconnection from the CP

in Markov chain with i% level of charge.
pi The probability of EV driver’s decision to dis-

connect with i% EV’s level of charge, defined
by logistic function.

qi The probability of EV driver’s decision to
connect while the EV is moving with i% EV’s
level of charge, defined by logistic function.

εt The probability of EV parking in time t when
the EV is disconnected from CP.
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xp The central point of the gradient in logistic
function of pi, as a basis for the driver’s
decision to disconnect.

xq The central point of the gradient in logistic
function of qi, as a basis for the driver’s de-
cision to connect.

kp The coefficient of gradient change from zero
to one in logistic function of pi.

kq The coefficient of gradient change from one to
zero in logistic function of qi.

SOCmin The minimum threshold of battery state of
charge to connect.

SOCmax The maximum threshold of battery state of
charge to disconnect.

Ps(ci) The probability of state ci.
Ps(di) The probability of state di.
Pr{k = a} The probability of being in a numbers of se-

quential connection states from cj to c(j+a),
for every possible initial state cj .

Pblock The blocking probability of completely dis-
charged EVs.

I. INTRODUCTION

The use of battery electric vehicles (BEVs) and plug-in
hybrid electric vehicles (PHEVs) in the transportation net-
works leads to a significant reduction in the use of fossil
fuels consumption with direct effect on air pollution. As a
result, accelerating the EV deployment rate is one of the
main objectives of governments policies on air quality and
decarbonisation. The continuous development of EV power-
train, battery and charge technologies and energy management
strategies have further increased the EV market penetration
in recent years [1], [2]. Hopefully, the growing adoption of
EVs will improve the worldwide transportation sustainability
[3]. Therefore, exploring the facilitators and barriers to the
diffusion of EVs is quite important [4]. The Energy Outlook
report by IEA stipulates that the number of EVs on the roads
would increase from 2 to 160 million by 2030 worldwide [5].

The utilization of EVs is not without its advantages and
disadvantages concerning its operation and planning of power
systems. The negative impacts resulting from the electrification
of transportation network and their influence on generation,
transmission, and distribution of power grids motivate the re-
searchers to pursue studies regarding technical, operational and
economic aspects of this issue [6], [7]. Facilitating the rapid
growth of EVs and enjoying its benefits requires the design
and development of private and publicly accessible charging
stations (CSs) [8]. In this regard, appropriate modeling of
charging behavior of EV drivers is our main focus which is
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essential in forecasting the CSs requirements and adopting
proper policies for their development, when the number of
EVs will increase in the future.

Various studies have been performed to model the mobility
behavior of EVs using data analysis [9]–[11] and/or mathemat-
ical methods [12]–[19]. A data mining model is introduced in
[11] to investigate the characteristics of EV charging load in a
geographical area. In [12], uncontrolled EV drivers’ behavior
during charging is described with Markov chain model to
assess the network line loading and the losses due to the
increased number of EVs. A Markov model is proposed in [13]
to simulate the PHEVs travel behavior by considering the type-
of-trip and recharging price flexibility, as well as the choice
of switching the fuel type instead of a fast charging option. In
this method, the estimation of the transition state probabilities
can be very time consuming for all time slots on weekdays
due to limited data and particularly considering the need for a
high temporal resolution. An agent-based modeling approach
is proposed in [15] for predicting the electricity demand for EV
charging by considering the influence of the human aggregate
behavior on load demand.

In [12] to [15], the collective behavior of the EV fleet
drivers is modeled, while [16] to [18] have assumed that
the random behavior of a single vehicle is different from
the behavior of the population it belongs to. Therefore, they
modeled the random behavior of a single vehicle’s driver to
examine the load profile with more details. A heterogeneous
Markov model is presented in [16] to describe the mobility
behavior of a single EV and this model is assessed based
on a 5 months-long data gathered in Denmark. This data set
contains information on whether the vehicle was driven or not
at any time for the same period. The number of parameters
in this model is reduced by applying B-Spline functions to
a generalized linear model. However, the model proposed in
[16] lacks the data regarding any specific assumption about the
vehicle’s characteristics. A Markov chain model is introduced
in [18] to describe the EV driver’s behavior with the objective
of evaluating his/her reaction when the EV is out of power.
The general assumption in [18] is that the EV always leaves
home at the beginning of the day with its fully charged battery,
charged by a home charger and returns home at the end of the
day. The Markov model is adopted to assess the probability of
the EV battery getting depleted before returning home in a case
study. A probabilistic model for nodal EV charging demand is
developed in [19] based on spatial-temporal EV dynamics by
using Monte Carlo Simulation (MCS). In this study, random
trip chain and Markov Decision Process (MDP) are applied to
model individual EV drivers’ driving and charging behavior.

In all the previously mentioned papers, the proposed EV
mobility models have been utilized in order to describe the
statistical distribution of behavioral-related parameters of EV
drivers, such as load profile, starting and finishing time of EV
trip and EV connection and charging times. Most of these
models have been presented based on the driving patterns of
internal combustion engine vehicles (ICEVs) without consid-
ering the EV drivers’ charging habits. The critical issue is that
these models cannot be generalized for systems with different
EV specifications and increased EV population in the future,

especially when CSs could not serve all the EVs because of
congestion.

In some studies of EV charging navigation, the EV con-
nection and charging times are analyzed based on real-time
power grid and traffic data without developing any behavioral
model to describe the EV drivers’ charging habits [20], [21].
In [20], the EV terminal estimates the driving, waiting and
charging times for different CSs in order to guide the EV driver
to be navigated to the proper CS. The charging navigation
framework of EVs to fast CSs is formulated by a hierarchal
game approach in [21].

On the other hand, there exists many studies in the related
literature concerning various aspects of design, development
and deployment of CSs, focusing on issues like scheduling the
charging of EVs [22], [23], congestion management and re-
source allocation at CSs [24]–[27], determining the appropriate
sites [27]–[29], the role of urban planning [4] and economic
aspects of investment planning [30], [31]. However, the impact
of the random characteristics of EV drivers’ behavior on the
distribution characteristics of the behavioral-related parameters
in the models have not been addressed explicitly rather some
simplifying assumptions have been made. For example, the
EV arrivals to a CS are typically modeled as a fixed rate
Poisson process, while the charging and parking times are
characterized as exponential or Gaussian distributions [19],
[25]–[28], [32]–[34]. Such simplifying assumptions about
these statistics cannot be generalized to common case. In fact,
the different behavioral distributions in the studied models in
the literature are because of the different behaviors of the EV
drivers in different communities. Furthermore, the EV drivers’
behavior affects many aspects of the design challenges of
CSs including resource provisioning and investment planning,
especially when the EV population grows in the future. To
the best of the authors’ knowledge, the impact of the EV
drivers’ behavior on these two critical components have not
been addressed in the literature.

To address the above problems, in this paper we use a
stochastic model for the EV driver’s behavior based on EV
battery specifications, the initial battery charge level and the
driver’s habits. Accordingly, the parameters of this model
depend on the behavioral characteristics of a typical driver
from the community. The proposed model is assessed through
mathematical analysis, case study simulations and comparing
the results with the real field data obtained at a major North
American university campus network [35] and part of London
urban area [36]. By adjusting the parameters, the simulation
results taken from the model match the real field data. Fur-
thermore, we show that our model can be adjusted to cover
different EV driver’s behaviors. We assume that most of the
EV drivers have a similar charging behavior in a way that the
effect of the minority on the overall system behavior can be
ignored. Based on this assumption, we estimate the parameters
of a typical driver using the real field data. Subsequently, we
run the model by applying these parameters to assess the CS
congestion status. Specifically, this method can be utilized for
CS development and calculating the number of charging points
(CPs) that can provide a certain level of service quality, when
the number of EVs grows in the future. The customer blocking
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Fig. 1: The proposed stochastic model describing the EV
driver’s charging behavior

probability can be a good measure of the service quality.
Compared to the existing literature, this is the first study that

considers the drivers’ behavioral characteristics regarding the
charging of the EVs. Furthermore, our proposed behavioral
model provides a method for predicting the required power
capacity of the CPs with respect to the increase of EVs in the
future to prevent congestion in CPs. Therefore, its purpose and
practical application would be different. Such a study can help
the station owners to develop the CSs in a profitable manner
and estimate the investment costs.

The main contributions and results of this work are:
• Proposing a new model to describe a typical EV driver’s

charging behavior in a given community at CPs, where
the model parameters depend on the behavioral charac-
teristics of the vehicle owner, the vehicle specifications
and the EV battery level of charge.

• Applying the proposed model to predict the congestion
status of CSs by increasing the number of EVs, and
to predict future station requirements to achieve the
appropriate level of service quality.

• Adjustment and sensitivity analysis of the model’s pa-
rameters and assessing the system performance by fitting
the simulation outputs to real field data.

• Reducing the required number of CPs for a certain level
of service quality by encouraging the drivers to modify
their EV charging behavior via dynamic pricing.

The remainder of this paper is organized as follows: The
system components and the proposed model to describe EV’s
charging behavior are presented in Section II. The results of
the model simulation and its comparison with actual data are
provided in Section III. In Section IV, a sensitivity analysis is
performed to assess the influence of the new model parameters
on the charging behavioral-related parameters of EV drivers.
The influence of the model parameters on occurrence of
congestion at the CPs and their impact on the future CS
requirements are discussed and analyzed in Section V. In
Section VI, we have a discussion on the results and Section
VII concludes the paper.

II. STOCHASTIC MODEL FOR EV DRIVERS’ CHARGING
BEHAVIOR

In order to model the charging behavior of an EV driver as a
statistical sample of a community, we consider the behavioral

reaction of the driver to the battery level of charge. The EV
driver usually decides when to connect/disconnect the EV
to/from charger based on the current battery level of charge,
which is monitored by the dashboard screen. Battery level of
charge is an indicator of the available charge stored in the
battery. Accurate measurement of this level is necessary for
charge/discharge safety and battery health [37]. When the EV
battery level of charge drops below a minimum threshold, the
driver tends to connect the EV to the charger with a high
probability. This minimum threshold is described as SoCmin.
Similarly, if the EV is connected to CP and the battery level of
charge goes beyond a maximum threshold, named SoCmax,
driver decides to disconnect the EV with a high probability.
SoCmin and SoCmax depend on the behavioral characteristics
of the driver and his/her driving habits. Moreover, a driver
with a higher level of range anxiety tends to connect (resp.
disconnect) the EV almost exactly when the battery level of
charge reaches to SoCmin (resp. SoCmax) while others may
ignore to connect (resp. disconnect) the EV at right time.
Based on these descriptions, we will introduce our proposed
model and its parameters in such a way to describe the
charging behavior of an EV drivers’ community properly.

Now, we explain the details of the proposed stochastic
model as follows. Every EV driver can be either in charging,
moving or parking situations. When the EV is connected to
the CP, the driver decides to remain connected depending on
the current energy level of the EV battery. When the EV is
disconnected, the driver continues driving towards his destina-
tion. The time spent at any CP is generally random but it also
depends on the charge level. Assume that the EV dashboard
screen displays the battery energy at N levels. In this case, the
amount of remaining energy in the battery can be quantized
into integer numbers, that is, i = 0, 1, 2, ..., N . The level i = 0
indicates an empty battery and the level i = N indicates a fully
charged battery. Based on these assumptions, any EV driver’s
behavior in choosing either of the above mentioned situations
is modeled as a non-homogeneous Markov chain in terms of
the energy level of the EV battery. The proposed model has
2(N + 1) states: N + 1 states correspond to the charge level
while the EV is connected to the CP and is receiving power
from the grid and the other N + 1 states correspond to the
charging level when the EV is on the road, or stopped but is not
connected to the CP. State transition diagram for the proposed
model is presented in Fig. 1. Accordingly, the proposed non-
homogeneous Markov chain is defined with a discrete state
space S and transition probability matrix P (t), as:

S =
{
si
}2N+1

i=0
=
{
ci
}N
i=0

∪
{
di
}N
i=0

,

P (t) =
[
psisj (t)

]
si, sj ∈ S.

(1)

psisj (t) is the conditional probability of transit from state
si to state sj at time t. The row sum of the transition proba-
bility matrix is equal to 1. The transition probabilities of the
proposed model have been defined based on the behavioral
parameters pi, qi and εt.

The transition between states will happen as shown in Fig
1. When EV is connected to the CP in the state ci, the driver
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Fig. 2: Logistic functions pi and qi Parameter values : xp=75
, kp=0.3, xq=30, kq=0.15.

decides to continue charging and increasing the battery energy
level with the probability of 1−pi. After being in this state for
a specific duration of time, the EV dashboard screen displays
an increment in the battery level of charge. Therefore, EV
leaves the state ci towards ci+1. Hence, pi is the probability of
EV disconnecting from the CP and leaving the state ci towards
di. When the EV is disconnected from the CP in state di, the
driver decides to park (resp. drive) the EV with the probability
of εt (resp. (1− εt)(1−qi)). Accordingly, a transition from di
towards di−1 results in decreasing in the level of charge. The
probability of connecting the EV to the charger and transition
from the state di towards ci is (1− εt)qi. Therefore, qi is the
probability of connecting to CP while the EV is on the road.
The battery level of charge in ci and di states are equal to i.

A. Model Parameters

In order to match the model to actual EV mobility, the pi
and qi transition probabilities must be properly defined. pi and
qi are subject to the amount of the battery charge level in ci
and di, respectively. The logistic functions are applied here to
properly define the transition probabilities pi and qi, as:

pi =
1

1 + e−kp(i−xp)
and qi =

1

1 + e−kq(−i+xq)
(2)

where xp, xq , kp, and kq can be used to define and adjust the
driver’s behavioral-related parameters. The value of xp (resp.
xq) depends on SoCmax (resp. SoCmin) and the value of kp
(resp. kq) depends on the level of range anxiety of the driver in
deciding about disconnecting (resp. connecting). For example,
a driver who is subject to a high level of range anxiety, will
be described with a larger xp and/or xq and a larger kp/kq .
Moreover, the parameter εt must be set appropriately at all
times, in order to determine the driver’s tendency to park
his/her vehicle for any purpose anywhere without connecting
to a CP. For example, if the CPs are located at a university
campus, vehicle drivers may have more willingness to connect
their vehicle to CPs at class time or lunch hours, while they
leave the campus at the end of the day.

The model parameters are defined in a proper manner to
characterize a typical driver’s charging behavior. This kind of

definition has been used in literature. In [21] and [38], the
EV charging probability has been described by an exponential
function dependent on the battery SoC. Fig. 2 shows pi and
qi as the functions of the battery level of charge for some
values of system parameters to describe such a driver. Every
EV drivers’ charging decision depends on the current buttery
level of charge. When the driver decides to connect the EV
to the CP in a given level of charge with high probability, the
probability of disconnecting in the same level of charge will be
very low and ignorable, and vice versa. Therefore, the upper
levels (resp. lower levels) of pi and qi do not overlap. Although
there may always be some hasty people who decide to recharge
the EV battery more frequently or disconnect the EV when
the level of charge is not high enough, but as mentioned
before, we only model the behavior of the common case
drivers in the community with common driving and charging
habits. In the next section, we will analyze the proposed model
mathematically to assess the effect of these parameters on the
state probabilities, which indicates the strength of the proposed
model in describing the statistics of EV behavioral-related
parameters in a CS environment.

B. Mathematical analysis

In this subsection, we formulate the state probabilities and
the probability mass function (pmf) of vehicles’ connection
time. Let Ps(ck) and Ps(dk) represent the probability of states
ck and dk respectively, i.e.,

Ps(ck) , Pr{s = ck}
Ps(dk) , Pr{s = dk}.

(3)

The state probabilities based on the Bayes’ rule and the
transition probabilities of the model (i.e., pi, qi and εt), can
be written as,

Ps(ck) =


(1− pk−1)Ps(ck−1) + (1− εt) qk Ps(dk)

for 1 ≤ k ≤ N,
(1− εt) Ps(d0) for k = 0

(4)

Ps(dk) =


Ps(ck)pk + Ps(dk+1)(1− εt)(1− qk+1)

+Ps(dk)εt

for 0 ≤ k ≤ N − 1,

Ps(cN )pN + Ps(dN )εt for k = N

and

N∑
k=1

{Ps(ck) + Ps(dk)} = 1. (5)

Note that we have: q0 = 1, p0 = 0 and pN = 1. According to
the above equations, each one of the state probabilities Ps(dk)
can be calculated based on the probabilities of the previous
states, dk−1, dk−2, ..., d0, that is,
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Ps(d1) =
1− p0
1− q1

Ps(d0)

Ps(d2) =
−p1(1− p0)

1− q2
Ps(d0) +

1− p1q1
1− q2

Ps(d1)

...

Ps(dk) =
−pk−1

1− qk

k−2∑
i=0

{
k−2∏
j=i

(1− pj) qi Ps(di)}

+
1− pk−1 qk−1

1− qk
Ps(dk−1),

for 2 < k ≤ N
(6)

In a similar manner, Ps(ck) is calculated for each state ck:

Ps(ck) = (1− εt)
k−1∑
i=0

{
k−1∏
j=i

(1− pj) qi Ps(di)},

for 1 ≤ k ≤ N
(7)

Moreover, the probability of being in a sequential connection
states is calculated for a ∈ {1, 2, ..., N} as:

Pr{k = a} =
N−a∑
j=0

{Ps(dj)qj(1− εt)pj+a

j+a−1∏
m=j

(1− pm)},

for 1 ≤ a ≤ N
(8)

where Pr{k = a} is the probability of being in a sequential
connection states from cj to cj+a for some j. The probabilities
Ps(ci), Ps(di) and Pr{k = a} are solved numerically and
depicted in Fig. 3 for εt = 0.4 and pi and qi as shown in Fig.
2.

The effect of different sets of model parameters on Ps(ci)
and Ps(di) have been assessed and the results are depicted in
Fig. 3d: The amounts of e1 (resp. e2) in Ps(ci) and Ps(di)
depend on xq (resp. xp ). kq (resp. kp) affects on the increasing
(resp. decreasing) gradients of these functions. Moreover,
a decrease in εt leads to increasing (resp. decreasing) the
maximum probability value in Ps(ci) (resp. Ps(di)) (i.e., m).
Therefore, the EV connection and disconnection times can be
controlled by changing the model parameters. On the other
hand, it is observed that the shape of Pr{k = a} changes
with parameters pi and qi. By considering the constant amount
of charge speed, Pr{k = a} describes the duration of being
in the connection states. Therefore, the effect of parameters
pi and qi on this function is equivalent to their effect on the
pmf of charging time, which will be studied in Section IV.
As a result, it is expected that the proposed model describes
different EV drivers’ behaviors in different places by adjusting
the model parameters appropriately, which has a direct effect
on the statistics of behavioral-related parameters of the system.
Therefore, a case study will be assessed in Section III to ensure
this ability.

III. CASE STUDY

In this section, we validate the proposed stochastic model
by adjusting the model parameters in two separate case studies
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Fig. 3: (a) Ps(ci), (b) Ps(di), (c) pr{k = a} in terms of the
state number, for εt = 0.4 and pi and qi shown in Fig. 2
(d) a typical Ps(ci) or Ps(di)

and fitting the model to real data. In these two case studies,
the data obtained from the public CPs located at a univer-
sity campus and part of London urban area are considered,
receptively. In both cases, the distance between the CPs is
short enough that any EV will have access to a CP if it needs
to be charged. There will be no queuing service at the CPs
because of long lasting charging periods. If all the chargers
are occupied, the driver decides to drive to nearest charger. It
is assumed that each CP delivers a constant amount of power
during the charging, which is common in EV modeling [39]–
[41]. Also when driving, the EV level of charge decreases with
a certain discharging rate, which is determined by the energy
consumption coefficient and the average driving velocity of
vehicles [13], [41]. Since the data sets are gathered from urban
areas, the average driving velocity is considered 44 km/s in
calculating the EVs’ discharging rate. The type of EVs are
assumed to be personal vehicles with similar characteristics
as Nissan Leaf [42].

TABLE I: Simulation parameters [42]–[44]

Parameters Case 1 Case 2

Battery capacity C,(kWh) 30 24

Energy consumption coefficient
Ec (kWh/km)

0.186 0.155

Average speed v (km/s) 44 44

Battery efficiency (ηc) 0.97 0.93

Charging rate Pc (kW ) 6.5 2.35 / 3.7

Type of CP SAE J1772
AC-level2

IEC62196
Mode 1

On board charger output Po (kW ) 3.6 3.3

Full charge time (h) 8.59 11 / 7.8

Full discharge time (h) 3.6 3.5

The presented model is used to simulate EV drivers’ charg-
ing behavior in two cases based on real charging events.
The simulation procedure is presented in Fig. 4. The key
parameters and charging characteristics of the EVs and CPs
in these cases are provided in Table I. The number of states
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Algorithm 1: The simulation procedure for studying the EV drivers’
charging behavior

input : EV parameters, ǫt, pi, qi, Number of EVs, initial EVs’ SoC
input : Simulation time interval and length

1 repeat
2 for every EV do
3 calculate the transition probabilities based on current SoC;
4 determine the EV driver’s decision in current interval;
5 free the CP for newly disconnecting EV ;
6 record the new charging request;
7 update the EV charging status;

8 end
9 if (the number of charging requests ≤ the number of available CPs)

then
10 dedicate the required number of CPs;
11 update the number of free CPs;

12 else
13 dedicate the free CPs ;
14 record the number of blocked EVs;
15 determine the blocked EV drivers’ decision;

16 end
17 update the EVs’ SoC;
18 update the EV charging status for newly accepted requests;

19 until The simulation length is reached ;
output: the pmf of EV cahrging time, the pmf of connection time and

load profile

1

Fig. 4: The simulation procedure using the proposed model

in proposed model is set to N = 100. The study in Case
1 is described based on the data set obtained at a major
North American university campus network [35]. This local
EV charging station consists of 11 CPs for public and 6
CPs for fleets all physically located in vehicle parking lots,
equipped with AC-level 2 slow chargers with SAE J1772
connectors. The data is recorded from Nov. 2011 to Jan. 2015
containing 6800 charging events. In Case 2, the utilized data
set is collected from on-street CPs in a local urban area of
London, equipped with slow chargers with IEC62196 mode 1
connectors [36]. This data is provided by UK power networks
and collected between Oct. 2012 and Feb. 2014, containing
more than 14000 records. Two charging power levels 2.35
kW(10 A) and 3.7 kW(16 A) are considered in Case 2. The
maximum attainable charging power not only depends on
power rating of the CPs but also associates with the EVs’ on-
board chargers. Based on the simulation parameters indicated
in Table I, the EVs’ charging rate is calculated by multiplying
ηc by the minimum of Pc and Po. The EVs’ discharging rate
is calculated by multiplying Ec and v.

In order to validate the proposed Markov model and cal-
ibrate its parameters, it should be checked if the charging
patterns randomly generated by the simulation process are
close to the ones in available field data. The charging patterns
include EV charging time, EV connection time and EV load
profile. An attempt is made to obtain the best match between
the simulation outputs and actual data by adjusting the simu-
lation parameters through a search approach inspired by [45].
Prior to beginning the search process, an initial simulation
run is performed using the predefined estimates of pi, qi
and εt. These initial values are estimated based on the shape
and statistical mean and variance of the pmf of EV charging
time, the pmf of EV connection time and EV load profile
obtained from historical data. The results of this initial run is
checked for general resemblance to data. In every iteration of

the search process, an incremental change to the simulation
parameters is made in the neighboring area of the previously
tuned parameters to find a better similarity between simulation
outputs and data. If this change produces a better result,
another incremental change is made in the next iteration,
otherwise the direction of the change will be reversed. This
iterative process continues until no further improvement can
be found and the best acceptable accuracy has been reached.
The goal is to gradually change and fine-tune the simulation
parameters until the outputs have acceptable fit. This is a
modified version of hill climbing technique. Two well−known
goodness-of-fit tests are used as a tool for comparing the pmfs
of the EV charging time and EV connection time derived from
simulation with their equivalents derived from data, namely,
two-sample Kolmogorov−Smirnov (KS) test and two-sample
Anderson−Darling (AD) test [46]. These statistical procedures
compare the two sets of data for a close match through a
hypothesis test. In these tests, the null hypothesis that two
empirical cumulative distribution values come from the same
underlying distribution is accepted if the test statistic is smaller
than the critical value of that test at a given significance level α
or the p-value is greater than the significance level. The main
advantage of the KS test is its sensitivity to the shape and
scale of a distribution. Additionally, the AD test has two extra
advantages over the KS test. First, it is much more sensitive
towards differences at the tails of distributions. Second, the
AD test is better capable of detecting very small differences,
even between large sample sizes [46]. Utilization of these two
statistical measures firmly confirm the resemblance between
the simulation output distributions and the data.
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Fig. 5: The adjusted εt values in case studies (a) Case 1 (b)
Case 2

In order to have a good estimate of the fit degree between
the simulated EV load profile and the ones derived from the
data, Mean Absolute Percentage Error (MAPE) is used as
the error measure [47]. MAPE has been used to measure the
accuracy of the proposed EV load modeling in [48]. MAPE
is defined as

1

n

n∑
i=1

∣∣∣∣(yi − xiyi

)
×100

∣∣∣∣ (9)

where xi is the simulated EV load value at time i and yi is
the EV load value derived from the data at time i.
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Fig. 6: pmf of EVs’ connection time resulted from the field data and simulation
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Fig. 7: pmf of EVs’ charging time resulted from the field data and simulation
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Fig. 8: EVs’ load profile resulted from the field data and simulation

The tuned pi and qi parameters of the proposed Markov
model for achieving the acceptable match between the sim-
ulated outputs and the data are obtained as described. These
outputs, namely, the pmf of EVs’ connection time, the pmf of
EVs’ charging time and EV load profile are shown in Figures
6 to 8. The values of the obtained εt for every hour of a day in
two case studies are shown in Fig. 5. In Case 1, the values of
parameters pi and qi are tuned to xp = 70, kp = 0.3, xq = 38,
kq = 0.11 by our iterative search method. In Case 2, the
community of EV drivers consists of two different behavioral
groups due to the use of two types of CPs with different
charging rates. 35% of EV drivers in the first group use the
CPs with 3.7 kW charging rate and the others in the second
group use slower 2.35 kW CPs. The values of pi and qi in first

group are tuned to xp = 80, kp = 0.16, xq = 35, kq = 0.13
and the corresponding tuned values of parameters in second
group are xp = 75, kp = 0.21, xq = 22, kq = 0.08. The
drivers in the second group tend to charge their EVs more
completely compared to the first group. They have enough
time to leave their EVs at slower CPs. The drivers in the first
group have a higher level of range anxiety.

The results of the goodness-of-fit tests over the outputs in
Figures 6 and 7 are shown in Table II. The MAPE values
obtained for the load profiles in Fig. 8 are 12.6% and 11.74%
for cases 1 and 2, respectively. The MAPE is less than 13%
and the calibration accuracy is satisfactory. The results of these
tests well justify the accuracy of our Markov model for driver’s
charging behavior.
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TABLE II: The results of goodness-of-fit tests for Figures 6
and 7 (α = 5% and AD critical value =2.492).

Test results pmf of connection time pmf of charging time
Fig. 6 Fig. 7

Case-1 Case-2 Case-1 Case 2
KS p-value 0.5424 0.6195 0.2357 0.3982

AD statistics 1.0723 0.8162 1.8072 1.5248

The εt setting and the shape of EV’s connection time pmf
confirm the behavioral characteristics of EV drivers in these
simulated case studies. In Case 1, the drivers tend to connect
the EVs to chargers mostly at 9 a.m., 12 noon and 4 p.m., as
shown in Fig. 6a. In Case 2, the pmf of connection time fits
well to a normal distribution and most of the connections occur
between 9 a.m. and 19 p.m. with slightly more connections
at 15 and 18 p.m., as depicted in Fig. 6b. These behaviors
suggest that the charging process of EVs in these case studies
mostly take place in urban areas, where the drivers leave their
vehicles in parking lots for their daily activities, and naturally,
parking lots will be empty from the late night until the early
morning. The load profiles in Fig. 8 indicate that the number
of daily charging events are very limited.

It is concluded that the simulation results acceptably justify
the data analysis results in the two case studies. Therefore, the
model parameters can be adjusted properly to predict the EV
drivers’ behavior in a small area. This achievement can help to
predict the required capacity of CSs as well as to control the
congestion in the stations and promote consumer satisfaction,
thus, improving the profitability of the station owners. This
idea will be assessed in Section V.

IV. SENSITIVITY ANALYSIS

In this section, a sensitivity analysis is performed to assess
the influence of the proposed model parameters on the charg-
ing behavior by studying the pmf of EVs’ charging times and
connection times. xp (resp. xq) is changed from 65 to 85 (resp.
20 to 40) and kp is increased from 0.13 to 0.63. The pmf of
charging times for 3 different values of these parameters are
depicted in Fig. 9. It is observed that an adequate increase
in xp (resp. decrease in xq) leads to increasing the mean and
variance and decreasing the skewness of the pmfs such that the
shape of charging time pmf changes from nearly exponential to
normal. Moreover, increasing the kp value leads to an increase
in mean and variance of the charging time pmfs so that the
shape of the pmf varies from exponential to normal distribution
approximately. It can be shown that increasing the kq value has
a similar effect on the charging time pmf with more sensitivity.

The results indicate that the charging time is distributed
according to exponential distribution for some values of pa-
rameters, for example xp = 65 and/or xq = 40, which is
similar to the assumptions made by [49]. While the charging
time is distributed according to normal distribution for some
other values of parameters similar to [32]–[34]. Although these
assumptions seem to be contradictory, our result shows that
they only differ because of the differences in the drivers’
behaviors in different statistical communities. In a community
whose EV drivers tend to connect when the initial battery

level of charge is high and/or disconnect the EV with low
battery level of charge, the charging time fits an exponential
distribution very well. Decreased xp indicates the behavior
of these drivers who do not stop at the parking lot for a
long time and are unwilling to increase their vehicle’s battery
level of charge or they are more in a hurry to leave the
parking lot. This is while, the behavior of EV drivers in an
opposite way results in charging time with normal distribution.
Decreased xq identifies the behavior of these kind of drivers
who tend to connect when the battery level of charge reaches
a smaller amount due to long-distance driving before entering
the parking lot or having no access to a home charger.
Furthermore, increased kp and kq represent the behavior of
some drivers with a higher level of range anxiety in the latter
community with a quick decision to connect or disconnect at
a specific battery level of charge.

In our model, it is assumed that most of the drivers of a
community have a few typical behaviors and the effect of
minority on the overall system behavior can be ignored. In
the first case study (i.e., Case 1), such a community with one
typical behavior has been modeled. In the second case study
(i.e., Case 2), we considered a community with two typical
behavioral patterns. The results confirm that our model can
be applied on a community where one or more typical behav-
ioral patterns can be recognized. These behavioral groups are
recognizable due to a variety of factors including the drivers’
social habits, purpose of EV trips and type of EVs and CPs.
To further emphasize this ability, we assessed the reported
analysis on the data obtained from a community of electric
taxi drivers operating in suburban areas of Beijing in [50].
This community belongs to one of the studied taxi platforms
consisting of an EV fleet with 21 kWh battery capacity and
0.15 kWh/km energy consumption coefficient. This platform
is equipped with slow CPs that have 2.5 kW charging power.

The shape of EV charging time pmf of this community
shows that it can be consisted of two distinct behavioral
groups. In order to justify this idea, we simulated our model
and adjusted its parameters in such a way that our resulted
pmf of charging time nearly matches the outcome in [50], as
depicted in Fig. 10. The adjusted model parameters in this
simulation are as follows. Type 1 community members are
75% of the population and xp, kp, xq , and kq are set as 85,
0.6, 25, and 0.18, respectively. Type 2 members are 25% and
the same parameters, xp, kp, xq , and kq , are set as 60, 0.47,
20, and 0.14, respectively. This result reveals that the studied
community of electric taxi drivers consists of two groups, as
we guessed. 75% of the community members in group 1 have
a higher level of range anxiety who tend to disconnect when
the level of charge reaches near 85%, while the EV drivers in
group 2 have a lower level of range anxiety and disconnect
earlier with 60% of charge level. Later we will show that
the driven model can be helpful in predicting and managing
congestion in CSs.

Till now, the effect of pi and qi on the charging time pmf
have been studied. Now we assess the effect of εt on the pmf of
connection time by performing two different scenarios named:
ep-sample and ep-parking. The values of εt in these scenarios
are assigned as shown in Fig. 11a and other parameters are
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Fig. 9: PMF of charging time for 3 groups of parameters a)
xp = 65, 75, and 85 b) xq = 20, 30, and 40 c) kp = 0.13,
0.43, and 0.63
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Fig. 10: The pmf of charging time in a complex community.

chosen from the first simulated case study in sec. III.
As it is mentioned earlier, εt describes the probability

of parking the EV in time t when the EV is disconnected
from the CP. It is observed from Fig. 11 that εt affects the
drivers’ behavior in deciding about the EV connection time in
different places. The scenario ep-sample describes a relatively
idle station which only gets busy at 13 p.m. and there is
no connections at the early hours of the day. On the other
hand, ep-parking presents a busy public parking lot which is
crowded more at 7 a.m., 12 noon and 16 and 20 p.m.. The
pmfs of connection time in these scenarios verifies the above
assumptions, as depicted in Fig. 11b.

In summary, our analysis reveals that the different assump-
tions about the statistical characteristics of EV behavioral-
related parameters in the studied models are due to different
EV drivers’ behavior in different communities. In our pre-
sented model, we parameterize the charging behavior of EV
drivers in such a way that all of their possible statistics can be
produced. Furthermore, we suggest that our model will help
researchers plan the future expansion of the CS and control
the CS load profile by encouraging the drivers to change
their EV charging behavior. In the next section, we will show
how the CS congestion level can be managed and controlled
by adjusting the behavioral parameters using the proposed

Fig. 11: a) εt for two test scenarios: ep-sample, ep-parking b)
pmf of connection time for the test scenarios

model. To do so, we study the effect of the parameters on
predicting the congestion event in a CS environment, when
the number of EVs increases as it is foreseen.

V. PREDICTING AND MANAGING CONGESTION IN CS
DEVELOPMENT USING THE PROPOSED MODEL

Congestion is a natural phenomenon when traffic is a matter
of concern. An increase in the number of EVs in CSs increases
the probability of service blocking, i.e., when an EV cannot
connect to CPs because all CPs are in use. The blocking
probability depends on the number of CPs and traffic intensity.
In this case a driver has no choice but to leave the station and
get the service later or in another CS. In the worst case, the
EV battery is completely discharged before the driver gets the
opportunity to find a free CP and he/she will become more
discontent. We assume that the required power of CS is always
and completely supplied by the power network for the sake
of model simplicity. In Subsection V-A, the required number
of CPs are predicted as the number of EVs increases in the
future, for a predefined level of Quality of Service (QoS).
In Subsection V-B, the effect of changing the behavioral
parameters of the proposed model on the congestion status
is assessed.

A. Predicting the required station capacity subject to blocking
probability constraint

One of the important considerations in the development of
the CSs and predicting their future capacity with the objective
of limiting the blocking probability is studying the drivers’
behavior in choosing the connection time of the day and
charging durations. Specifically, introducing an appropriate
level of QoS results in more consumer satisfaction and as
a result more profit for station operators. Accordingly, two
groups of scenarios are assessed to predict the number of
CPs by increasing the number of EVs, while guaranteeing a
certain level of QoS. Subsequently, the blocking probability
is assessed with respect to the increased number of CPs by
considering a fixed number of EVs in those scenarios.
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1) The effect of pi and qi on the predicted number of CPs:
As indicated in Section IV, an increase in xp, kq and kp
and a decrease in xq lead to an increase in the average EV
charging time. Therefore, drivers’ behavior change is expected
to have an effect on predicting the number of CPs. In order to
study this effect, a group of scenarios are defined according to
Table III. The εt vector is taken from Fig. 5a for all scenarios.
Scenario 1 defines the behavior of the drivers in Case 1 based
on real data, as described in Section III. In Scenario 2, EV
drivers are used to partially charge their EVs with less duration
of charge because they plan for a short travel distance or
have a limited time. Conversely, drivers in Scenario 3 tend to
completely charge their EVs. They connect the EV to the CP
with a lower level of charge and disconnect with a higher level
of charge. EV drivers in Scenario 4 (resp. Scenario 5) have a
higher level of range anxiety compared to Scenario 2 (resp.
Scenario 3) but their charging habits are similar. The blocking
probabilities are computed by using the proposed model in
the system simulation, and the behavioral parameters of the
drivers determine the EV arrival times and charging durations.

The minimum number of required CPs in terms of the
number of the existing EVs is determined while blocking
probability of the fully depleted EVs is constrained to 0.05,
as shown in Fig. 12a. The obtained results indicate that only
one CP is required in Scenario 4 even when the number of
EVs is increased to 90. This observation can be explained by
considering the EV drivers behavior: 1) The drivers tend to
connect to the CPs with higher battery level of charge to ensure
the EV battery will not get out of charge in their next trip
and continue charging until a lower level of charge is reached
because they do not have enough time or do not want to spend
more money and 2) The drivers have a higher level of range
anxiety and decide to connect/disconnect to/from the CPs as
soon as the EV battery reaches the predefined level of charge.
Consequently, the EVs’ charging time is decreased. This
situation decreases the likelihood of EV blocking leading to
complete battery depletion, despite the fact that the number of
charging events increases. In contrast to the previous scenario,
the largest number of CPs is required in Scenario 3 to meet
the upper threshold requirement of the blocking probability.

TABLE III: pi and qi parameters for test scenarios

Scenario No. xp kp xq kq

Scenario 1 70 0.3 38 0.11

Scenario 2 60 0.3 45 0.11

Scenario 3 90 0.3 20 0.11

Scenario 4 60 0.45 45 0.2

Scenario 5 90 0.45 20 0.2

In the next simulation, we assess the effect of pi and qi
on the congestion status in the CS, which leads to fully
discharging the EVs. Therefore, the blocking probabilities of
completely discharged EVs in previous scenarios are obtained
with respect to the increased number of CPs from 2 to 30
by considering a fixed number of existing EVs equal to 50,
as shown in Fig. 12b. Similar to the previous results, it is
observed that there will never be any service blocking leading
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Fig. 12: Assessment 1: Minimum number of required chargers
in terms of EV count with congestion constraint: Pblock =
0.05. Assessment 2: The blocking probability of completely
discharged EVs in terms of CPs count. The number of com-
muting EVs is 50.

to zero battery charge in Scenario 4, even when there is only
one CP. This feature depends on the conservative behavior of
EV drivers and shorter charging duration, as mentioned before.
Every scenario with a higher xq and lower xp results in a lower
number of CPs in order to limit the blocking probability to a
certain level. The blocking probability in Scenario 4 is lower
than its equivalent amount in scenario 2. The reason is that the
EV drivers have a higher level of range anxiety in this scenario
in the sense that they want to connect the EVs when their
EVs’ battery level of charge reaches almost exactly xq level
and disconnect it almost exactly at xp level. Therefore, the EV
connection/disconnection takes place based on these amounts
with less flexibility compared to the previous scenario. This
result holds true in comparing Scenarios 5 and 3. Figure 12b
shows that the blocking probability of completely discharged
EVs can be restricted to 20% when the minimum number of
CPs in Scenario 2, Scenario 1, Scenario 5, and Scenario 3 are
equal to 3, 7, 8, and 12 respectively.

2) The effect of εt on the predicted number of CPs: In
order to assess how a change in εt affects the congestion
status, we simulate 4 scenarios, as shown in Fig. 13. In these
scenarios, εt change frequency increases from scenario Busy
Day Light (BDL) to Random ε (Rε) while its average is
0.4. The minimum number of CPs required to constrain the
blocking probability of the fully depleted EVs to the upper
threshold level of 0.05 is shown in Fig. 14a.

According to these results, BDL requires the maximum
number of CPs, since the CS is busy for a long continuous
time and EV drivers are equally willing to connect to CPs
with a high probability. In scenarios Busy Morning Afternoon
(BMA) and Rε, the number of required CPs decreases while
εt changes more frequently. It is noticeable that the effect
of changes in εt on the congestion status depends on the
battery capacity of EVs and the rate of battery depletion while
driving. Therefore, BMA and Rε act similarly since the rush
hours in these scenarios are long enough to let some EVs get
out of charge. On the other hand, scenario Constant ε (Cε)
requires the minimum number of CPs because EV drivers are
equally willing to visit the CS at all times with the probability
of 0.4, thus congestion is less likely to happen. Of course,
the occurrence of such situation is unlikely in practice. It is
concluded that the less the length of CS’s busy periods and the
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Fig. 13: εt values for test scenarios: Busy Day Light (BDL),
Busy Morning Afternoon (BMA), Random ε (Rε) and Con-
stant ε (Cε)

more they are scattered over the day, the less number of CPs
are required. Moreover, the assumption of EV arrivals based
on a fixed rate leads to resource underprovisioning.

In the last simulation, the blocking probability is calculated
in terms of the number of CPs with 50 EVs in the area. The
blocking probability for EVs getting fully discharged due to
congestion is shown in Fig. 14b. As observed in this figure,
BDL has the highest blocking probability among all, while
Cε has the lowest probability. By decreasing the blocking
probability to less than 0.6, the number of required CPs in
BMA and Rε decreases with respect to BDL. It is deduced
that the more crowded BDL scenario increases the chance
of EV service blocking, especially when the drivers tend to
connect to CPs with a high probability in a long time period.
Figure 14b shows that the blocking probability of completely
discharged EVs can be restricted to 20% when the minimum
number of CPs in BDL to Cε are equal to 26, 24, 22 and 16,
respectively. After these points, an increase in the number of
CPs by one unit decreases the blocking probability faster.

In the above scenarios, the blocking probability is defined
as the probability of completely discharging the batteries
because of congestion. This definition can be replaced by the
probability of unsuccessful charge request, whether the battery
is fully discharged or not. The new definition yields some
changes in the results, e.g., the drivers with a higher level
of range anxiety (larger kp and kq) cause an increase in the
blocking probability.

Accordingly, the major result is that the proposed model is
suitable to apply in the capacity planning of CSs and control
the blocking probability, when the number of EVs increases
in the future. The CS operator can estimate the parameters of
the model based on existing data to complete the model. Then,
the required number of CPs will be predicted by the model
simulation in order to guarantee a certain level of blocking
probability. Furthermore, using the results of this model, by
adjusting the pi and qi parameters appropriately the drivers’
behavior can be manipulated and as a result the blocking
probability in an existing CS can be controlled and its usage
can be maximized. In the next section, we will study the effect
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Fig. 14: Assessment 1: Minimum number of required chargers
in terms of EV count with congestion constraint: Pblock =
0.05. Assessment 2: The blocking probability of completely
discharged EVs in terms of CPs count. The fixed number of
commuting EVs is 50.

of changing pi and qi dynamically on the blocking probability
in busy times in a typical CS and propose how to make use
of the model to plan the CS.

B. Congestion reduction by dynamically changing the model
parameters

Controlling the CS congestion is an important considera-
tion in planning and developing a CS. In this regard, the
EV drivers’ behavior has a significant role. Therefore, it is
suggested that smart pricing methods is used to encourage
the drivers to change their behavior during the busy periods.
Consequently, we run a simulation to study how dynamically
changing the EV drivers’ behavioral parameters in busy
times in a CS will affect the blocking probability. We expect
that these parameters can be adjusted by choosing a properly
defined pricing scheme. In our simulation, the parameters of
typical EV drivers in a typical CS with 30 CPs are assumed
to be: xp=80, kp=0.45, xq=30, kq=0.20 and εt is defined as
shown in Fig. 5a. Based on these parameters, the busy period
in the CS is known priorly which is from 11 am to 18 pm. The
blocking probability is measured by increasing the number of
EVs while the behavioral parameters are changed in the
busy period. This is measured for each parameter individu-
ally, as shown in Fig. 15. The simulation results show that
decreasing xp for the connected EVs and xq for disconnected
EVs in busy periods will decrease the blocking probability but
reducing kp and kq is less effective. The results obtained in
Fig. 15a indicate that the effect of decreasing xp will reverse
when the number of EVs increases above 85 because more
EVs get the chance to connect in non-busy periods. This
reverse effect is observed in Fig. 15d when kq is reduced
similarly. The blocking probability decreases by 15% at most
when the number of EVs reaches to 65 and xp is reduced
by 30%. In Fig. 15b, decreasing xq becomes effective when
the number of EVs goes beyond 60. The blocking probability
decreases by 5% when the number of EVs reaches to 85 and
xq is reduced by 40% which indicates that xq reduction is less
effective in comparison to xp.

The outcome of the last simulation confirms that our pro-
posed model can describe the charging behavior of EV drivers
by the parameters pi and qi properly. As we expect, the driver
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Fig. 15: The effect of reducing behavioral parameters in the CS busy period.

can be encouraged to connect the EV later with less initial
level of charge or disconnect the EV by less final level of
charge in busy periods. Reducing xq for disconnected EVs and
xp for connected EVs in busy periods shows the effect of this
behavioral change on blocking probability. Consequently, the
proposed model can be applied in planning and developing the
CS in congestion status by changing the charging EV drivers’
behavior properly. In this regard, developing peak power
electricity pricing schemes is a key factor that incentivizes
behavioral changes. In peak power electricity pricing, increas-
ing the electricity price during busy periods will encourage the
drivers to decrease xp, xq , kp and kq proportionally and the
responsive drivers can benefit from cost reduction. In order to
reach this goal, the proposed model can be used to analyze
the CS to define the busy periods and the required changing
amounts of behavioral parameters to reach the best level
of blocking probability. It is noteworthy that over-increasing
the electricity price in busy periods will have a reverse effect
because EV drivers will decide to connect when the charging
price is cheaper which increases the blocking probability again
or they select a neighboring CS which decreases the CS
profitability.

VI. DISCUSSION

In the literature, several research efforts have been made
in order to study the EVs charging demand, attempting to
formulate the charging behaviors based on some generalized
assumptions. Some of these assumptions fail to take into the
account of real world EV charging patterns, while others are
consistent with the analysis of real field data of EV charging
events. For instance, authors in [18] assume that all vehicles
leave home at the beginning of the day with their batteries fully
charged. The parking duration, plug-in time and initial SoC are
considered to follow a given normal distribution in [19], [23]
and [41], respectively. Authors in [51] assume that the required
charging energy for each parking event is proportional to the
consumed energy during driving. However, a recent study on
the historical data related to EV charging events shows that EV
drivers appear considerably free to choose whether to charge
their vehicles at home, workplaces or on-street parking lots
[52]. Furthermore, they do not always start their day at full
battery capacity. We have introduced a model to capture the
stochastic nature of EV drivers’ charging behavior without
the above restrictive assumptions. In our case studies, we
consider a constant charging power depending on the type
of the CP which is one of the common assumptions in EV

demand modeling [39]–[41]. This is compatible with constant-
current constant-voltage (CCCV) battery charging behavior
[52], especially when EVs are not allowed to be recharged
once the SoC reaches 80%. Moreover, we assume that the
energy consumption during driving is proportional to the
average EV velocity in the area of interest [13], [41]. While
authors in [40] have further assessed the energy consumptions
by taking into account the EV travel patterns and purpose of
the trip, which is a more comprehensive assumption.

From the methodology point of view, we have proposed a
Markov-based probabilistic model to emphasize the influence
of EV drivers’ charging behaviors on the statistical distri-
butions of behavioral-related parameters and CS congestion
management, and validated the model by real field EV data in
various scenarios. Many studies have developed MCS based
probabilistic models using transportation surveys or data col-
lected from ICEVs. An agent based approach is employed in
[15] to emulate the human aggregate behavior by considering
predefined PDFs for some of decision variables. In [40] an EV
driving pattern model based MCS is developed by defining
three types of trips. Then EV transition probabilities are mod-
eled using a Markov chain. Finally, expected charging profile
is estimated using MCS based EV charging usage. A Markov-
based analytical approach for modeling EV travel behavior and
charging demand is presented in [41]. However, the EV travel
behaviors are represented in several scenarios through MCS
considering SoC and travel purposes. None of these models
are validated using EV charging data. In other Markov-based
models, the estimation of the transition state probabilities can
be very time consuming due to considering the need for a high
temporal resolution [13], [16]. The inhomogeneous Markov
model introduced in [16] describes the driving pattern of
one EV without considering the EV’s characteristics and its
driver’s habits. The complication of this model prevents its
applicability for studying the charging behavior of an EV fleet.

In author’s opinion, modeling a typical EV driver’s charging
behavior in a statistical community of drivers is an applicable
approach for studying the charging profile and aggregated
behavior of the community. Our proposed model well intro-
duces the driver’s charging habits, especially by describing
the dependency of charging decision to the battery level of
charge and specifying the probability of parking the EV in 24
hours of the day which have direct influence on connection
times and charging duration. Moreover εt can implicitly reflect
the purpose of the Ev drivers’ trip. Therefore, our model is
flexible to describe the aggregated charging behavior of a
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statistical EV community while considering the type of CPs
(i.e., slow or fast CPs), type of area under study and type
of EVs (i.e., personal cars, company cars, taxis or buses).
Furthermore, this model can be easily utilized to describe
communities consisting of several groups of EV drivers with
different behavioral characteristics. Another important aspect
of the proposed model is that it provides an easy and applicable
method for predicting required power capacity of the CS in
terms of the number of CPs with respect to the increase of
EVs in the future to prevent congestion in CPs.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new model to describe the
charging behavior of an EV driver. The sensitivity analysis
of the model indicated that the different assumptions about
the statistical distributions of EVs’ charging and connection
times in the literature are because of the differences in
the drivers’ behaviors in different communities. This result
confirms the ability of the model to differentiate the EV
drivers’ communities by reflecting their different behavioral
characteristics. Moreover, we studied the effect of the model’s
behavioral parameters on the predicted number of CPs
subject to the blocking probability constraint. The results
showed that the required number of CPs decreases when EV
drivers with a higher level of range anxiety tend to connect
with a higher level of charge and disconnect faster with a
lower level of charge and when the rush time periods are
short and scattered over the day. Finally, we assessed the
effect of changing our model parameters on the CS blocking
probability in the busy periods. Reducing xq for disconnected
EVs and xp for connected EVs in busy periods reduced the
blocking probability which indicates the effect of changing the
EV drivers’ behavior on the CS congestion status. As a result,
the behavioral parameters of the model can be changed by
choosing a properly defined pricing scheme in order to control
the CS congestion. Therefore, the proposed model facilitates
the analysis of congestion status and predicting the required
number of CPs to guarantee a required level of quality of
service in CSs as the number of EVs increases in the future.
This model can be applied to describe the real field data
from any CS environment by adjusting the behavioral model
parameters. Therefore, adopting this new model and studying
the behavioral characteristics of different groups of drivers
helps in planning the CSs to meet the increasing demand
resulted from the increasing number of EVs.

In the future, a number of directions are considered worth
further research effort. This work adopted a Markov-based
probabilistic model to emphasize the influence of EV drivers’
charging behavior on the CS congestion management due to
its occupancy. The proposed model can be further extended
and mathematically analyzed to consider the power constraints
and congestion management of the CSs due to energy supply
shortage when the penetration of EVs increases. Moreover, this
model can be further utilized to investigate the effect of EV
drivers’ charging behavior on behavioral-related parameters
covering a broad range of field statistical factors, e.g. purpose
of EV trips, the service area of the CPs and usage type of EVs.

Furthermore, the proposed model can be utilized to study the
effect of behavioral parameters on the congestion in a CS
equipped with solar panels and battery storage units. Finally,
the Bayesian inference and machine learning can be used to
estimate the parameters of the proposed model in order to
enhance the parameter estimation.
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vehicle missions using a stochastic markov model for optimal powertrain
sizing,” IEEE Trans. Veh. Technol., vol. 61, no. 8, pp. 3454–3465, 2012.

[18] B. Da Lio, A. V. Guglielmi, and L. Badia, “Markov models for electric
vehicles: the role of battery parameters and charging point frequency,”
in 20th IEEE Int. Workshop on Computer Aided Modelling and Design
of Communication Links and Networks. IEEE, 2015, pp. 207–210.

[19] D. Tang and P. Wang, “Probabilistic modeling of nodal charging demand
based on spatial-temporal dynamics of moving electric vehicles,” IEEE
Trans. Smart Grid, vol. 7, no. 2, pp. 627–636, 2016.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. ??, NO. ???, ???? 20?? 14

[20] Q. Guo, S. Xin, H. Sun, Z. Li, and B. Zhang, “Rapid-charging navigation
of electric vehicles based on real-time power systems and traffic data,”
IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1969–1979, 2014.

[21] J. Tan and L. Wang, “Real-time charging navigation of electric vehicles
to fast charging stations: A hierarchical game approach,” IEEE Trans.
Smart Grid, vol. 8, no. 2, pp. 846–856, 2017.

[22] S. Deilami, A. S. Masoum, P. S. Moses, and M. A. Masoum, “Real-
time coordination of plug-in electric vehicle charging in smart grids to
minimize power losses and improve voltage profile,” IEEE Trans. Smart
Grid, vol. 2, no. 3, pp. 456–467, 2011.

[23] W. Su and M. Y. Chow, “Performance evaluation of an eda-based large-
scale plug-in hybrid electric vehicle charging algorithm,” IEEE Trans.
Smart Grid, vol. 3, no. 1, pp. 308–315, 2012.

[24] I. S. Bayram, G. Michailidis, M. Devetsikiotis, S. Bhattacharya,
A. Chakrabortty, and F. Granelli, “Local energy storage sizing in plug-
in hybrid electric vehicle charging stations under blocking probability
constraints,” in IEEE Int. Conf. Smart Grid Commun. IEEE, 2011, pp.
78–83.

[25] I. S. Bayram, G. Michailidis, M. Devetsikiotis, and F. Granelli, “Electric
power allocation in a network of fast charging stations,” IEEE J. Sel.
Areas Commun., vol. 31, no. 7, pp. 1235–1246, 2013.

[26] I. S. Bayram, A. Tajer, M. Abdallah, and K. Qaraqe, “Capacity plan-
ning frameworks for electric vehicle charging stations with multiclass
customers,” IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 1934–1943, 2015.

[27] C. Kong, R. Jovanovic, I. S. Bayram, and M. Devetsikiotis, “A
hierarchical optimization model for a network of electric vehicle
charging stations,” Energies, vol. 10, no. 5, 2017. [Online]. Available:
https://doi.org/10.3390/en10050675

[28] X. Dong, Y. Mu, H. Jia, J. Wu, and X. Yu, “Planning of fast EV charging
stations on a round freeway,” IEEE Trans. Sustain. Energy, vol. 7, no. 4,
pp. 1452–1461, 2016.

[29] H. C. Liu, M. Yang, M. Zhou, and G. Tian, “An integrated multi-
criteria decision making approach to location planning of electric vehicle
charging stations,” IEEE Trans. Intell. Transp. Syst., no. 99, pp. 1–12,
2018.

[30] P. J. Tulpule, V. Marano, S. Yurkovich, and G. Rizzoni, “Economic
and environmental impacts of a pv powered workplace parking garage
charging station,” Applied Energy, vol. 108, pp. 323–332, 2013.

[31] C. Lu, H. C. Liu, J. Tao, K. Rong, and Y. C. Hsieh, “A key stakeholder-
based financial subsidy stimulation for chinese EV industrialization:
A system dynamics simulation,” Technological Forecasting and Social
Change, vol. 118, pp. 1–14, 2017.

[32] T. Oda, M. Aziz, T. Mitani, Y. Watanabe, and T. Kashiwagi, “Mitigation
of congestion related to quick charging of electric vehicles based
on waiting time and cost–benefit analyses: A japanese case study,”
Sustainable Cities and Society, vol. 36, pp. 99–106, 2018.

[33] A. Mohamed, V. Salehi, T. Ma, and O. Mohammed, “Real-time energy
management algorithm for plug-in hybrid electric vehicle charging parks
involving sustainable energy,” IEEE Trans. Sustain. Energy, vol. 5, no. 2,
pp. 577–586, 2014.

[34] N. Liu and M. Cheng, “Effectiveness evaluation for a commercialized
pv-assisted charging station,” Sustainability, vol. 9, no. 2, p. 323, 2017.

[35] I. S. Bayram, V. Zamani, R. Hanna, and J. Kleissl, “On the evaluation
of plug-in electric vehicle data of a campus charging network,” in IEEE
Int. Energy Conf. IEEE, 2016, pp. 1–6.

[36] U. P. Networks, Low Carbon London Electric Vehicle Load
Profile. Greater London Authority, 2016. [Online]. Available:
https://data.london.gov.uk

[37] X. Hu, C. Zou, C. Zhang, and Y. Li, “Technological developments in
batteries: a survey of principal roles, types, and management needs,”
IEEE Power Energy Mag., vol. 15, no. 5, pp. 20–31, 2017.

[38] T. Zhang, X. Chen, Z. Yu, X. Zhu, and D. Shi, “A monte carlo simulation
approach to evaluate service capacities of ev charging and battery
swapping stations,” IEEE Trans. Ind. Informat., vol. 14, no. 9, pp. 3914–
3923, 2018.

[39] A. Ashtari, E. Bibeau, S. Shahidinejad, and T. Molinski, “PEV charging
profile prediction and analysis based on vehicle usage data,” IEEE Trans.
Smart Grid, vol. 3, no. 1, pp. 341–350, 2012.

[40] A. Ul-Haq, C. Cecati, and E. El-Saadany, “Probabilistic modeling of
electric vehicle charging pattern in a residential distribution network,”
Electric Power Systems Research, vol. 157, pp. 126–133, 2018.

[41] S. Sun, Q. Yang, and W. Yan, “A novel markov-based temporal-soc
analysis for characterizing PEV charging demand,” IEEE Trans. Ind.
Informat., vol. 14, no. 1, pp. 156–166, 2018.

[42] Nissan Leaf. (2018) Range and charging. [Online].
Available: https://www.nissan.co.uk/vehicles/new-vehicles/leaf/range-
charging.html

[43] M. Yilmaz and P. T. Krein, “Review of battery charger topologies,
charging power levels, and infrastructure for plug-in electric and hybrid
vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151–2169,
2013.

[44] Scame electrical solutions for charging systems, “Ecomobility general
catalogue 2015-2016”, Tech. Rep. ZP00910-GB-3, 2016. [Online].
Available: www.scame.com

[45] J. Hourdakis, P. Michalopoulos, and J. Kottommannil, “Practical proce-
dure for calibrating microscopic traffic simulation models,” Transporta-
tion Research Record, no. 1852, pp. 130–139, 2003.

[46] S. Engmann and D. Cousineau, “Comparing distributions: the two-
sample anderson-darling test as an alternative to the kolmogorov-
smirnoff test,” Journal of Applied Quantitative Methods, vol. 6, no. 3,
pp. 1–17, 2011.

[47] N. Daiheng, L. John, G. Angshuman, and W. Billy, “Systematic ap-
proach for validating traffic simulation models,” Transportation Re-
search Board, vol. 1876, pp. 20–31, 2004.

[48] S. Yang, M. Wu, X. Yao, and J. Jiang, “Load modeling and identification
based on ant colony algorithms for EV charging stations,” IEEE Trans.
Power Syst., vol. 30, no. 4, pp. 1997–2003, 2015.

[49] M. Aunedi, M. Woolf, M. Bilton, and G. Strbac, “Impact
and opportunities for wide-scale electric vehicle deployment,”
Report B1 for the ”Low Carbon London LCNF project,
Imperial College London, Tech. Rep., 2014. [Online]. Available:
”http://www.ukpowernetworks.co.uk/innovation”

[50] Y. Zou, S. Wei, F. Sun, X. Hu, and Y. Shiao, “Large-scale deployment
of electric taxis in beijing: A real-world analysis,” Energy, vol. 100, pp.
25–39, 2016.

[51] Q. Huang, Q. S. Jia, Z. Qiu, X. Guan, and G. Deconinck, “Matching
EV charging load with uncertain wind: A simulation-based policy
improvement approach,” IEEE Trans. Smart Grid, vol. 6, no. 3, pp.
1425–1433, 2015.
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