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Near-field Ultra-wideband mmWave Channel
Characterization Using Successive Cancellation

Beamspace UCA Algorithm
Fengchun Zhang and Wei Fan

Abstract—Of the wide palette of 5G features, ultra-wide
bandwidth and large-scale antenna configuration are regarded
as the essential enabling technology components at millimeter
wave (mmWave) communication. Accurate knowledge of delay
and angle information of multipath components is essential for
many applications in mmWave systems. There is a strong need
for a low computation-cost channel estimation algorithm for
such systems, where typically adopted far-field and narrowband
assumptions might be violated. In this work, a generic yet
novel beamspace uniform circular array (UCA) beamforming
algorithm with successive cancellation scheme is proposed to
jointly detect the impinging angle and delay of the multipath
components. The proposed algorithm is computationally cheap
and it works for ultra-wideband (UWB) systems in the near-
field conditions. Both numerical simulations and experimental
validation results are provided to demonstrate the effectiveness
and robustness of the proposed algorithm, compared to the state-
of-art works.

Index Terms—Beamspace UCA, phase mode excitation, uni-
form circular array, near-field, ultra-wideband, mmWave channel
characterization, large-scale antenna systems

I. INTRODUCTION

The next generation wireless communication system, typ-
ically referred to as the fifth generation (5G), is currently
under intensive research and development. Millimeter wave
(mmWave) communication is regarded as one of the enabling
components for 5G cellular communication systems, thanks
to the large amount of available frequency spectrum [1]–[6].
However, mmWave transmissions suffer from high propaga-
tion loss and blockage, unlike sub-6GHz legacy frequency
band. High antenna gain (typically realized with a large-
scale antenna structure) is required to overcome the radio
propagation loss and achieve the good signal-to-noise ratio
(SNR) at mmWave bands. Therefore, mmWave transmissions
will be potentially ultra-wideband (UWB) (e.g. with an abso-
lute bandwidth larger than 500 MHz) and involve large-scale
antenna systems at both communication ends [7], [8].

It is of importance to understand how the radio signal
propagates in the given scenario. A new air interface system
design typically starts with the understanding of the deploy-
ment scenario, where channel models should be developed
to reflect the physical transmission. Accurate knowledge of
the delay and angle information of multipath components
is essential for many applications in mmWave systems. The
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extracted multipath components can be further utilized for
analysis, clustering and modeling of wireless channels, which
is fundamental for system design and performance evaluation
[9], [10]. A popular channel sounding setup at mmWave bands
is to utilize a nonreal-time channel sounder based on the virtual
antenna array concept [11]–[14]. This strategy is simple,
flexible and cost-effective, though it is not suitable for dynamic
propagation scenarios due to slow mechanical movement of
antennas and channel sounding time for each virtual array
location. Furthermore, the mutual coupling effects between
the array elements are not presented, which is beneficial
since it can further simplify the channel estimation. Virtual
uniform circular array (UCA) is particularly popular, since it
only requires radial mechanical movement of the positioner
and presents approximately constant beam patterns over 360o

azimuth angle, regardless of the steering angle [15], [16].

Channel estimation algorithms proposed in the literature
for power-angle-delay profile (PADP) estimation were mainly
under the far-field and narrowband assumptions. The far-field
assumption holds when the distance between the scattering
source and the antenna array is larger than the Fraunhofer
distance 2D2/λ, with D the antenna array aperture and λ
the wavelength. The far field assumption can be violated in
short-range mmWave propagation scenarios. The narrowband
assumption holds when the condition D/λ� f/B is satisfied,
where f is the frequency and B is the bandwidth. When the
system bandwidth becomes wide (e.g. in the mmWave context)
that the narrowband assumption does not hold anymore for a
given array aperture and frequency, the propagation delay of
each path can be resolved at different delay bins between array
elements. The existing algorithms in the literature would fail
to work under near-field and wideband scenarios, as briefly
summarized below.

1) Beamforming techniques such as classical beamforming
(CBF) and Capon beamforming. As demonstrated in [17],
The beam pattern of the CBF method is highly sensitive
to near-field conditions (which would introduce a power
loss in the target direction) and UWB bandwidth (which
would introduce a joint sidelobe in the delay and angle
domain and difficult to suppress [17]). Capon beamformer
degrades as well in near-field and UWB conditions, since
the steering vectors are typically calculated at the center
frequency and under far-field conditions.

2) Subspace methods. The conventional subspace angle es-
timation methods are based on the element-space covari-
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ance matrix, where the steering vector is the function
of center frequency. Thus, it implied the narrowband
assumption. UCA is attractive in angle estimation also
thanks to its circular symmetry, where beamspace trans-
form of UCA based on the phase mode excitation princi-
ple can be applied [18]–[20]. Basically, we can transform
the UCA array manifold (in the element space) into
uniform linear array (ULA) manifold (in the phase mode
space), which enables us to develop computationally
efficient and high-resolution subspace algorithms [21]–
[25]. However, the aforementioned beam-space multiple
signal classification (MUSIC) or estimation of singal
parameters by rotational invariance techniques (ESPRIT)
algorithms were only investigated under narrowband and
far-field assumptions. Subspace methods were also devel-
oped for joint angle-delay estimation (JADE). With the
JADE strategy, the JADE-MUSIC [26] and the JADE-
ESPRIT [27] algorithms exploited both space and time
properties by stacking the array element channel impulse
responses into a high dimension vector. After performing
the eigen-decomposition on the covariance matrix of the
constructed vector, JADE can be obtained either with
MUSIC or ESPRIT methods. However, both algorithms
are unfavorable for the UWB large-scale antenna sys-
tems, due to the high complexity introduced by the high
dimension of the stacked space-time vector.

3) High resolution parametric methods. Maximum likeli-
hood estimator (MLE) is a popular high resolution chan-
nel estimation algorithm. However, the MLE is well-
known for its high computational complexity due to
its joint estimation mechanism, particularly when the
channel parameter dimension is large. An attempt to
reduce the MLE computation complexity was proposed in
[28], [29]. The space-alternating generalized expectation-
maximization (SAGE) algorithm is a relatively low-
cost expectation-maximization (EM) algorithm, where the
multi-dimensional search is replaced with several one-
dimensional searches [30]. However, a prerequisite to
utilize the SAGE algorithm is that the likelihood function
needs to be independent between different parameter
spaces, which might be violated when narrowband and
far-field assumptions do not hold, e.g. for the UWB large-
scale antenna systems [30]. A general spherical wave
model, i.e. including the distance to the scatterer, can be
introduced in the MLE type algorithm implementation,
which would, however, further increases the computation
complexity.

There is a strong need for a low-cost and generic chan-
nel estimation algorithm for joint angle and delay profile
estimation, which works in practical propagation scenarios,
regardless of the antenna system scale (i.e. large or small) and
frequency bandwidth settings (i.e. narrow or wide). That is,
it can be applied for the near-field UWB scenarios without
increasing the algorithm computation complexity. However,
such algorithm is missing in the literature, to the best knowl-
edge of the authors. In this work, a novel low-cost beamspace
UCA beamforming algorithm with a successive cancellation

scheme is proposed to jointly detect the angle and delay of the
multipath components. The proposed algorithm is insensitive
to the system bandwidth and distance to the scatterers, making
it suitable for UWB large-scale antenna systems. In this
paper, we firstly demonstrated the performance deterioration
of CBF of the UCA in the element space when far-field
assumption does not hold. To solve the issue, we resort to the
beamspace transform of UCA based on the phase mode exci-
tation principle. The beamspace UCA is shown to be robust to
phase errors introduced by the spherical wavefront. A novel
beamspace UCA algorithm with the successive cancellation
of the detected paths is detailed. Both numerical simulations
and experimental results at mmWave bands are provided to
demonstrate the effectiveness and robustness of the proposed
method in channel parameter estimation for UWB large-scale
antenna systems.

II. PROBLEM STATEMENT

Assume a UCA is distributed in the x-y plane and its center
is located at the origin of the coordinate system. The UCA
consists of P isotropic antenna elements with radius r. The
angular position of the p-th element is ϕp = 2π · (p − 1)/P ,
p ∈ [1, P ]. Suppose there are N paths impinging at the UCA,
the channel frequency response at the p-th UCA element is
the superposition of the channel responses of the N paths,

Hp(f) =

N∑
n=1

αn exp(−j2πfτn) · ap(f,Θn), (1)

where αn and τn represent the complex amplitude and delay
of the n-th path, respectively. Θn = [Dn, θn, φn] denotes the
scatterer location vector of the n-th path, where Dn is the
distance between the n-th scatterer and the UCA center, θn
and φn the elevation and azimuth angle of the n-th path,
respectively. ap(f,Θn) is the transfer function between the
n-th scatterer and the p-th UCA element, which is normalized
by the transfer function between the n-th scatterer and the
UCA center, as

ap(f,Θn) = βp,n exp(−jkΨp,n). (2)

βp,n = Dn/dp,n denotes the relative path loss term at the p-th
element with respect to (w.r.t) the UCA center, where dp,n
represents the distance between the n-th scatterer and the p-th
UCA element. Under far-field assumption, we have βp,n = 1.
k = 2πf/c is the wave number with c denoting the speed of
light. Ψp,n indicates the relative propagation distance to the
p-th UCA element w.r.t UCA center, i.e.,

Ψp,n = dp,n −Dn, (3)

where the distance term dp,n is given by

dp,n =
√
D2
n + r2 − 2rDn sin θn cos(φn − ϕp). (4)

Following Taylor series expansion, we can approximate dp,n
as

dp,n = Dn − r sin θn cos(φn − ϕp) +∆p,n, (5)
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where ∆p,n is the term introduced by the near-field condition.
When the plane-wave assumption holds, we have ∆p,n = 0.
By substituting (5) into (3), Ψp,n can be simplified as

Ψp,n = −r sin θn cos(φn − ϕp) +∆p,n. (6)

In this paper, the objective is to detect path parameters
{αn, τn, φn} with arbitrary elevation angle θn present in the
near-field condition for n ∈ [1, N ]. The performance of CBF
and frequency-invariant beamforming (FIBF) based on UCA
for a general 3D multipath scenario under far-field assumption
has been discussed in [31]. Below, we limit our discussions on
the beamforming properties of CBF and FIBF under near-field
conditions, assuming that all impinging paths are confined
to the plane of the UCA, i.e. with elevation angle θn = π

2
for n ∈ [1, N ] for simplicity. Though the proposed algorithm
works for arbitrary 3D propagation scenarios as later discussed
in section IV and V.

A. CBF in the UCA element space

Using the CBF under plane-wave assumption, the steering
weight of the p-th UCA element can be written as

wp(f, φ) =
1

P
exp[−kr cos(φ− ϕp)]. (7)

Therefore, the UCA array beam pattern can be obtained by
taking the coherent summation of the element responses as

B(f, φ) =
1

P

P∑
p=1

wp(f, φ) ·Hp(f). (8)

By taking (1) into (8), we have

B(f, φ) =

N∑
n=1

αn exp(−j2πfτn) ·
P∑
p=1

wp(f, φ) · ap(f,Θn)/P

=

N∑
n=1

αn exp(−j2πfτn) · vn(f, φ)

=

N∑
n=1

Bn(f, φ),

(9)

where Bn(f, φ) represents the beam pattern of the n-th path,
i.e. the beam pattern of a single path. As seen from (9), the
linear superposition of the CBF beam patterns of all paths
gives the beam pattern of the multiple paths. |vn(f, φ)| denotes
the unit beam pattern term of the n-th path with CBF. In ideal
case, |vn(f, φ)| mimics a Dirac delta function in φ domain, i.e.
|vn(f, φ)| = δ(φ − φn). Thus the peak location of |vn(f, φ)|
gives the estimate of φn, αn and τn can be obtained via inverse
Fourier transform (IFT) of B(f, φ) at φ = φn. According to
(9), (7) and (2), vn(f, φ) can be given by

vn(f, φ) =
1

P

P∑
p=1

βp,n · exp(−jk∆p,n)

· exp{−jkr[cos(φ− ϕp)− cos(φn − ϕp)]}.
(10)
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Figure 1. The unit CBF beam pattern vn(f, φ) in the UCA element space
for different Dn with θn = π/2, φn = π, r = 0.5 m, f = 29 GHz and
P = 720 are set for the UCA. The calculated Fraunhofer far-field distance
Dfar = 2(2r)2/λ is around 193 m.

Under the far-field condition (i.e. βp,n = 1 and ∆p,n = 0), we
have |vn(f, φn)| = 1 and |vn(f, φn′)| < 1 with φn′ 6= φn, as
illustrated by the blue line in Fig.1. Thus the peak location in
the beam pattern gives the angle estimate of the n-th path.

To investigate whether |vn(f, φ)| can still maintain this
property under near-field condition, we reduce the distance
Dn and its effect on the beam patterns of vn(f, φ) is shown
in Fig. 1, i.e. the red and black curves, as examples. The results
show that the beam patterns are highly susceptible to phase
errors introduced by the spherical wavefront in the near-field
condition. The near-field condition results in the main beam
distortion of the beam pattern, including the power loss (the
red curve) and the concave pattern in the target direction (the
black curve). The power loss results in underestimating the
amplitude αn and the concave pattern would result in fake
path angle detection.

To further investigate the power loss in the target direction
under near-field condition, the distance from 3 m to 70 m was
set and the result is shown by the blue dotted line in Fig. 2.
The figure shows that with CBF method, a power loss more
than 35 dB might exist in the target direction for typical indoor
scenarios.

Therefore, besides the joint sidelobe problem introduced by
the UWB bandwidth in PADP as shown in [17], the CBF of
UCA in the element space would also suffer from significant
power loss in target directions or even failure of detecting the
true paths, due to phase errors introduced in the near-field
condition, which makes it unsuitable for channel parameter
estimation of mmWave UWB large-scale antenna systems.

B. Beamformer in the UCA phase mode space

The frequency response of the UCA element space can be
converted to phase mode space as

Hm(f) =
1

P

P∑
p=1

Ĝm(f) · exp(jmϕp) ·Hp(f), (11)
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where Hm(f) denotes the m-th mode response of the UCA
in the phase mode space. As discussed in [31], Hm(f) can
be approximated to Hm(f) = exp(jmφn) under far-field
condition and with all paths confined in the UCA plane, i.e.
θn = 90o, n ∈ [1, N ], where the compensation filter was
defined as Ĝm(f) = 1/[jmJm(kr)] with Jm(·) denoting the
Bessel function of the first kind with order m. However, in
practical propagation scenario, it is very unlikely that the inci-
dent paths are strictly limited to the UCA plane. Therefore, we
modified the compensation filter for 3D propagation scenarios
as [31],

1

Ĝm(f)
= 0.5jm[Jm(kr)− jJ

′

m(kr)], (12)

where (·)′ denotes the differential operator.
By taking equation (1) into (11) and changing the order of

the two summations, we have

Hm(f) =

N∑
n=1

αn exp(−j2πfτn)

·
{

1

P

P∑
p=1

Ĝm(f) exp(jmϕp) · ap(f,Θn)

}

=

N∑
n=1

αn exp(−j2πfτn) · am(f,Θn),

(13)

where am(f,Θn) is given by the {·} term in the above
equation. Comparing the above equation with equation (1), we
can see that for the n-th path, am(f,Θn) is the UCA manifold
of the m-th mode in the phase mode space and ap(f,Θn)
defined in (2) is the UCA manifold of the p-th element in the
element space.

The beam pattern of the FIBF can be written as

B(f, φ) =
1

2M + 1

M∑
m=−M

exp(−jmφ) ·Hm(f), (14)

where exp(−jmφ)/(2M + 1) is the steering weight of the
m-th phase mode. Substituting the array phase mode response
Hm(f) defined in (13) into the above equation and rearranging
the summation order, we have

B(f, φ) =

N∑
n=1

αn exp(−j2πfτn) · vn(f, φ)

=

N∑
n=1

Bn(f, φ),

(15)

where Bn(f, φ) represents the FIBF beam pattern of the n-th
path, i.e. the FIBF beam pattern of a single path. The FIBF
beam pattern of the multiple paths is obtained by the linear
superposition of the FIBF beam patterns of all paths. Similar to
the unit beam pattern term vn(f, φ) of CBF, vn(f, φ) indicates
the unit FIBF beam pattern term of the n-th path, which is
expressed by

v(f, φ) =
1

2M + 1

M∑
m=−M

am(f,Θn) exp(−jmφ), (16)

where am(f,Θn) is given in (13).
Similar to the discussions about the unit beam pattern term

vn(f, φ) of CBF in section II-A, we study the property of
|vn(f, φ)| for various distance Dn. With the same simulation
setting as for CBF in Fig. 1, we can plot the unit FIBF beam
pattern vn(f, φ) in Fig. 3. The results show that the beam
pattern is insensitive to phase error introduced by the spherical
wavefront in the near-field conditions, where an approximately
constant beam pattern is achieved for different distance Dn

within a large dynamic range.
We further investigate the power loss in the target direction

under near-field conditoins for FIBF and the results are shown
by the red dotted curve in Fig. 2. It shows that the power
values of the target direction are approximately unchanged
with different distances Dn.

The unit FIBF beam pattern peaks in the target direction and
the peak value keeps approximately constant (approximates to
1) for various distances setting, as shown in Fig. 2. It indicates
that the path can be accurately detected with FIBF method
under either near-field or far-field conditions.

As mentioned earlier, the beamformer in the UCA phase
mode space with the modified compensation filter works in 3D
propagation scenarios when the elevation angle is not restricted
to the UCA plane. As detailed in [31], the beam patterns are
approximately constant with different elevation angles. When
the elevation angle gets away from the UCA plane, i.e. with
∆θn = |θn − 90o| getting larger, the main beam peak drops
slightly and the sidelobes of the beamforming pattern at φ =
φn ± π becomes broader.

The simulation results indicate that the beamformer in the
UCA phase mode space with the modified compensation filter
Ĝm(f) can also be applied in near-field 3D scenarios, since
the beamformer pattern is insensitive to the introduced phase
errors. As discussed in [31], the joint PADP can be directly
obtained with the modified FIBF, which is simple, effective
and robust. However, the resulting PADP suffers from high
sidelobes, as shown in Fig. 3. In the next section, a FIBF
algorithm with the successive cancellation of the detected
paths is detailed, with the objective to eliminate the high
sidelobes of the dominant paths.

III. PROPOSED BEAMSPACE UCA WITH THE SUCCESSIVE
CANCELLATION SCHEME FOR NEAR-FIELD SCENARIOS

As discussed, the beamspace UCA with the modified com-
pensation filter Ĝm(f) can achieve constant beam patterns,
insensitive to the distances between the scatterers and the
UCA center, which makes it suitable for angle estimation in
near-field scenarios. In this section, a novel FIBF based on
successive cancellation principle to estimate azimuth angle,
delay and power of each multipath component is proposed for
near-field scenarios, where the paths are detected one by one
with the power values in a descending order.

As mentioned in paper [31], the PADP with modified FIBF
can be directly obtained by performing IFT of B(f, φ) in (15)
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Figure 2. The main beam peak varies with Dn for CBF and FIBF, where
θn = π/2 and φn = π, f = 29 GHz and P = 720 are set for the UCA.
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Figure 3. The unit FIBF beam pattern vn(f, φ) in the UCA phase mode
space for variant Dn with θn = π/2, φn = π, r = 0.5 m, f = 29 GHz and
P = 720. The calculated Fraunhofer far-field distance Dfar = 2(2r)2/λ is
around 193 m.

as,

b(τ, φ) =

fL∑
f=f1

B(f, φ) exp(j2πfτ)

=

N∑
n=1

fL∑
f=f1

vn(f, φ) · αn exp[j2πf(τ − τn)]

=

N∑
n=1

bn(τ, φ),

(17)

where bn(τ, φ) is the PADP of the n-th path.
In the ideal case, the PADP mimics the Dirac delta function

which peaks at the unique angle-delay positions, i.e. (φn, τn)
with desired power values. However, as discussed, vn(f, φ)
presents strong sidelobes at angle around φn±π for n ∈ [1, N ].
Therefore, weak desired paths might be buried by undesired
sidelobes of strong paths. Below, a novel algorithm following

the successive cancellation principle is proposed to tackle this
problem.

The array element response vector H(f) is defined as

H(f) = [H1(f); ...;HP (f)], (18)

where Hp(f) was defined in (1).
In the following algorithm description, we add the super-

script numbers to the array element response vector H(f) and
PADP b(τ, φ) to indicate that these terms need to update for
each iteration. The superscript number q denotes that q path(s)
are removed. For example, H1(f) denotes the array element
response vector with 1 path removed and b2(τ, φ) represents
the PADP with 2 paths removed. Typically, the original array
element response vector and PADP are represented with su-
perscript number q = 0, i.e. H0(f) and b0(τ, φ), respectively.

The procedure is detailed as below:
1. Based on the current array element response vector

H0(f), we apply equations (11), (12), (14) and (17) to
obtian the current PADP b0(τ, φ).

2. We find the peak location in the current PADP b0(τ, φ),
which gives the delay and azimuth angle estimation
of path 1, i.e. τ̂1 and φ̂1, respectively. By taking the
estimated delay and azimuth angle back to the original
PADP b(τ, φ), we can obtain the amplitude estimation of
path 1, i.e. α̂1 = |b(τ̂1, φ̂1)|.

3. We remove path 1 from the array element response vector
H0(f) to obtain the updated array element response
H1(f) as detailed below.

3.1. The frequency response vector of the UCA elements
corresponding to path 1, can be synthesized based
on the detected path parameters under plane-wave
assumption as:

Ĥ(f) = â(f, φ̂1) · α̂1 exp(−j2πfτ̂1), (19)

where {α̂1, φ̂1, τ̂1} are parameters estimated in step
2 and â(f, φ̂1) ∈ CP×1 is the array manifold under
plane-wave condition for path 1. The p-th entry of
â(f, φ̂1) is given by

âp(f, φ̂1) = exp[jkr cos(φ̂1 − ϕp)]. (20)

3.2. The synthetic channel impulse response (CIR) vector
ĥ(τ) corresponding to path 1 over array elements
and the current CIR vector h0(τ) can be directly
obtained via performing IFT of Ĥ(f) and H0(f),
respectively.

3.3. Generate a label vector s(τ) with the same size as
ĥ(τ), where the p-th entry is obtained as

sp(τ) =

{
0, |ĥp(τ)| > α̂1 · 10

−ηt
20

1, otherwise
(21)

where ηt denotes the threshold value in decibels and
ĥp(τ) the p-th entry of synthetic CIR vector ĥ(τ).
The entries of ĥ(τ) with dominant power values are
labelled to 0 in the label vector s(τ).
The objective of the label vector s(τ) is to mark
the trajectory of the estimated path in the CIRs
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over array elements. As explained in step 3.1 and
3.2, we can reconstruct the path trajectory over
array elements by using the estimated delay, azimuth
angle and amplitude of the path under plane-wave
assumption. The label vector would enable us to
remove the estimated path from the CIR over array
elements in Step 3.4.

3.4. Remove path 1 from the current CIR vector h0(τ)
to obtain the updated CIR vector h1(τ) by

h1(τ) = h0(τ)� s(τ), (22)

where � denotes element-wise multiplication.
3.5. By performing Fourier transform (FT) on the updated

CIR vector h1(τ), we can obtain the updated array
element response vector H1(f).

4. Repeat the above steps until the estimated power of the
path is not within the preset dynamic range.

Note that the superscript numbers of the array element
response vector and PADP increase 1 for each iteration. For in-
stance, in the n-th iteration, the current array element response
vector and PADP are Hn−1(f) and bn−1(τ, φ), respectively.
After step 3.5, we obtain the path parameters {α̂n, φ̂n, τ̂n} and
the array element response vector is updated to Hn(f).

It is also noted that in step 2, the amplitude estimation of the
path is based on the original PADP b(τ, φ) without superscript,
which is kept unchanged for all iterations. Therefore, the
amplitude estimations of all the paths are obtained based on
the origianl PADP instead of the updated PADP. The reason is
that, when the paths e.g. path n1 and n2 with n1 > n2, have
similar or same delays, the trajectories of the two paths are
overlapped. As a result, the trajectory of path n2 will be partly
removed as we intend to remove path n1 in step 3.4. Thus the
amplitude estimation of path n2 based on the updated PADP
will be underestimated. This will be further illustrated in the
simulation section.

The whole procedure of the proposed path estimation algo-
rithm is summarized in Algorithm 1. Note that η is the preset
dynamic range in decibel.

Algorithm 1: The proposed algorithm
Input : H(f)
Output: {α̂n, φ̂n, τ̂n}, n ∈ [1, N ]

1 n := 1;
2 α̂n−1 := 1 , α̂max := 1 ;
3 Hn−1(f) := H(f), hn−1(τ) := IFT (H(f));
4 while α̂n−1 > (α̂max · 10−η/20) do
5 Perform phase mode space beamforming based on

Hn−1(f) and obtain the PADP bn−1(τ, φ). // Eqs.
(11), (12), (14) and (17);

6 Detect the strongest path of PADP bn−1(τ, φ) and
obtain the path parameters {α̂n, φ̂n, τ̂n};

7 Remove the detected path from CIR vector hn−1(τ)
and update the CIR vector to hn(τ) ;

8 α̂max := α̂1, n := n+ 1.
9 end while

The basic principle of the low-cost successive cancellation
scheme is that the propagation delay value among UCA array
elements are insensitive to Dn (i.e. distance between the array
center and the n-th scatterer location) and elevation angles.
Therefore, we can remove the detected path based on the
azimuth and delay values under the plane-wave assumption. To
investigate the effectiveness of the idea, a single path scenario
is considered here. We can utilize the residual power rate Rp
to evaluate how effective the detected path is removed from
the CIR, which is defined as

Rp =

∥∥vec{h1(τ)
}∥∥2∥∥vec{h(τ)}∥∥2 × 100%, (23)

where vec{·} represents vectorization of a matrix and ‖·‖
indicates the Euclidean norm of the vector.

The high residual power rate means that the deviation
between the trajectory of the synthetic CIR vector ĥ(τ) and
the true CIR vector h(τ) is large, and the trajectory of the
detected path will not be properly removed in the updated
CIR vector h1(τ). The consequence is that we will estimate
the residual trajectory as the fake path if the residual power
is within the preset dynamic range.

Below, we simulate a single path case to illustrate the
residual power rate Rp w.r.t bandwidth, distance D and the
elevation angle θo. In the simulation, a single path with a
fixed incident azimuth angle φ0 = 180o impinging at a
UCA of radius r = 0.5 m is set. The UCA consists of 720
elements with half-wavelength spacing. Besides, we set the
center frequency to 29 GHz, the bandwidth from 400 MHz
to 3 GHz, distance D from 3 m to 30 m and elevation angle
from 90o to 120o.

The impact of system bandwidth, distance D and elevation
angle θo on the residual power rate is shown in Fig. 4.

• For a given bandwidth and elevation angle θo, Rp de-
creases as D increases due to the fact that the larger the D
is, the closer we approximate the plane-wave condition,
resulting in a smaller Rp.

• For a given distance D and elevation angle θo, Rp in-
creases as bandwidth broadens. The wider the bandwidth,
the higher the delay resolution we have. As a result, the
larger reconstructed CIR error will be detected as the
bandwidth becomes wider, which leads to a larger Rp.

• For a given bandwidth and distance D, Rp increases when
elevation angle θo gets further away from the UCA plane,
i.e. with ∆θ = |θo − 90o| becoming larger. This is due
to the fact that the synthetic CIR was calculated with
θ̂o = 90o in (19) and (20). The larger the elevation angle
away from the UCA plane is, the larger error will be
introduced to the reconstructed CIR. The maximum Rp
are 0.06%, 0.07%, 0.16% and 1.1% when elevation angle
θo are set to 90o, 100o, 110o and 120o, respectively.

For a practical measurement setting with bandwidth less
than 3 GHz, the scatterer distance larger than 3 m and the
elevation angle |θo−90o| 6 30o, the residual power rate is up
to 1.1%, as shown in Fig. 4. Therefore, the proposed algorithm
works well for practical measurement settings. The proposed
cancellation scheme is low-cost, since it only requires the
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Figure 4. The residual power rate Rp varies with bandwidth, distance D and
elevation angle θo, where fc = 29 GHz, φo = π and τo = 0 ns.

estimated delay and azimuth angle values to remove the
detected path. It is effective and robust, as demonstrated in
the numerical simulations.

As a summary, the basic principle of the low-cost successive
cancellation scheme is that the propagation delays among
the UCA elements are insensitive to the elevation angle of
the path and the distance between the UCA center and the
scatterer location. Therefore, we can effectively remove the
detected path based on azimuth angle and delay of the path
in the updated delay profile among elements. Due to the
sparsity of mmWave channels, typically only a few iterations
are needed to extract all multipath components. As shown,
for each iteration, we obtain the delay and azimuth angle
estimate based on the power spectra, which essentially is
calculated from the one-dimensional beamforming operation
in (14) and IFT operation in (17). Therefore, the computational
cost is significantly lower, compared to typical high resolution
algorithms, where expensive joint search in multiple parameter
domains is required.

IV. SIMULATION RESULTS

In the simulation, we consider a UCA composed of 720
isotropic antennas with radius 0.5 m and half-wavelength
element spacing. The frequency band is from 28 - 30 GHz
with 750 frequency points. We simulate a representative yet
critical scenario for the channel estimation algorithm, where
path 1 and path 3 have the same impinging azimuth angle φ
at 90o. Path 2 has an incident angle of 270o, yet it has the
same delay as path 3. In addition, the elevation angles are
not strictly confined to the UCA plane as detailed in Table
I. The critical scenario is intentionally set to demonstrate the
robustness of the algorithm.

Three beamforming algorithms, i.e. CBF [17], FIBF [31]
and the proposed algorithm, are compared in Fig. 5. As shown
in Fig. 5 (top), though target paths can be roughly detected
in the PADP, the CBF algorithm under far-field assumption

presents two major drawbacks as explained in Section II-A, i.e.
susceptible to strong joint side lobes and main lobe distortions.
The power loss of the main lobes up to around 13 dB and
the concave main lobe (path 1) can be observed in the figure
due to the far-field CBF applied in the near-field scenario. The
detailed of the concave main lobe can be observed in Fig. 1 for
Dn = 3m. Note that the joint side lobes for the weak path (i.e.
path 3) are not shown in the figure due to the limited dynamic
range (40 dB) set in the simulation. The PADP with the FIBF
algorithm is shown in Fig. 5 (middle). It shows that the main
lobes are not distorted and the peak values are accurate as
explained in Fig. 3. However, as discussed, the FIBF suffers
from strong side lobes around azimuth angle φn ± π for
n ∈ [1, N ] with a shifted delay. The estimated parameters
{α̂n, φ̂n, τ̂n}, n ∈ [1, N ] with the proposed algorithm are
shown in Fig. 5 (bottom). The estimated parameters agree well
with the targets, with a deviation in path power within 0.3 dB.
The small power deviation is caused by the power variance
over the UCA elements in the near-field scenario. Based on
the Friis free space propagation equation, the maximal power
deviation over the UCA elements for a single path case can
be evaluated by the ratio of the maximal and minimal power
across the UCA elements, i.e., ρ = D+r

D−r , where r denotes the
radius of the UCA and D the distance between the scatterer
and the UCA center with D > r. In the far-field case (i.e.
D � r), we have ρ ≈ 1. However, the power over the UCA
elements varies in the near-field case.

Below, we detail the procedure how the path parameters are
estimated with the proposed algorithm.

To detect the most dominant path, we can follow the
procedure below:

1. We can perform the phase mode beamforming based on
h0(τ) (i.e. the raw CIR vector h(τ)), as shown in Fig. 6
(top), and the obtained PADP b0(τ, φ) is shown in Fig. 7
(top).

2. From the PADP, we can detect the strongest path, i.e. path
1 as shown in Fig. 7 (top) with path parameters α̂1 = 0.2
dB, φ̂1 = 90o and τ̂1 = 16.6 ns.

3. Then, we remove path 1 from the original CIR vector
h0(τ) and obtain the updated CIR vector h1(τ) as shown
in Fig. 6 (upper-middle).

4. In the end, α̂max = α̂1 is set.
We can repeat the above procedure to detect the second and
third paths. The detected path parameters of path 2 and path
3 are {α̂2 = −2.8 dB, φ̂2 = 270o, τ̂2 = 40.1 ns } and {α̂3 =
−18.1 dB, φ̂3 = 90o, τ̂3 = 40.1 ns }, respectively. In the end,
a path with power value within 40 dB dynamic range can not
be found based on h3(τ) and therefore the channel estimation
procedure is complete.

We can clearly see that the detected path is removed in the
updated CIR, e.g. path 1 is removed in the updated CIR vector
h1(τ) as shown in 6 (upper-middle). Thus the influnce of the
path is also eliminated in the updated PADP b1(τ, φ) as shown
in 7 (upper-middle). In this simulation, path 2 and 3 have the
same delays and therefore the trajectories of the two paths
are overlapped, as shown in Fig. 6 (upper-middle). When we
remove path 2, the trajectory of path 3 will be partly removed,
as illustrated in Fig. 6 (lower-middle). As discussed in section
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Table I
PATH PARAMETERS

Path 1 2 3
α [dB] 0 -3 -18
φ [deg] 90 270 90
θ [deg] 90 95 100
D [m] 4.98 12 12
τ [ns] 16.6 40.0 40.0

Figure 5. The PADPs with CBF (top), FIBF (middle) and the proposed
successive FIBF (bottom).

III, to avoid underestimating the amplitude of path 3 α̂3, we
estimate the amplitude based on the original PADP b(τ, φ) as
shown in Fig. 5 (middle).

V. MEASUREMENT RESULTS

A. Introduction

To verify how well the proposed algorithm works in prac-
tice, we need to validate it with practical measurements.
The detailed description of the measurement campaign was
given in [17] and only outlined here. The measurements were
conducted in a typical indoor basement with the floor dimen-
sions of 7.7 m × 7.9 m. The basement was empty with few
objects including a metallic heater and a metallic ladder leaned
against the wall. Both line-of-sight (LOS) and obstructed LOS
(OLOS) scenarios were considered. The OLOS scenario was
created by placing a 1.2 m × 1.2 m metallic blackboard to
block paths in LOS directions.

A wideband biconical antenna with a gain of 6 dB at 28-30
GHz was used at the transmit (Tx) side. The Tx antenna was
mounted 0.84 m above the floor. While an identical biconical
antenna was exploited at the receive (Rx) side. The Rx antenna
was mounted on a turntable with the same height as the Tx
antenna. The distance between the Rx antenna and the rotation

Figure 6. The CIR vectors of hn−1(τ), n ∈ [1, 4], where the superscript
denotes the (n− 1) path(s) are removed.

Figure 7. The PADPs based on hn−1(τ), n ∈ [1, 4], where the superscript
denotes the (n− 1) path(s) are removed.
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center was adjusted to 0.5 m. Then a virtual UCA of radius
r = 0.5 m at Rx side were obtained by rotating the Rx antenna
on the turntable. The frequency response of the p-th UCA
element was measured when the Rx antenna was rotated to the
angular position ψp = 2π ·(p−1)/P, p ∈ [1, P ] with P = 720.
For each virtual UCA element, the frequency response was
measured with a vector network analyzer (VNA) from 28-30
GHz with 750 frequency points.

The rotational horn antenna measurements were used as a
reference. In the rotational horn antenna measurements, the
biconical antenna at the Rx side was replaced by a horn
antenna with a gain of 19 dB at 28-30 GHz. The horn antenna
was positioned at the rotation center of the turntable (i.e.
r = 0 m) with the same height as the Tx antenna (i.e.
0.84 m above the floor). The same measurement settings (the
same Tx antenna, the same frequency sweep and orientation
sweep) adopted in biconical antenna UCA measurements were
used in rotational horn antenna measurements for comparison
purpose.

Note that mutual coupling effect is not present with the
virtual array measurement, which is desirable for the channel
characterization purpose. The distance between the Tx and
the center of the Rx array is around 5 m, while the far-field
distance at 30 GHz for the UCA is around 200 m. The system
bandwidth in the measurement is larger than 500 MHz and
the UCA array aperture (i.e. 1m) is much larger than the
delay resolution multiplied by the speed of light (i.e. 0.15
m). Therefore, for the measurement data, both the far-field
assumption and narrowband assumption are violated. Note that
the antenna gains of both Tx and Rx antennas are de-embedded
in measured CIRs. Further, to focus on the specular and
dominant multipath components detection, a dynamic range
of 30 dB is set in the measurement section.

B. Measured results

The measured CIRs over virtual UCA elements (i.e. mea-
sured locations) for the LOS scenario are shown in Fig. 8 (top),
where a few specular paths can be clearly detected besides the
dominant LOS path. The mmWave channels are more sparse
compared to sub-6GHz channels. In our measurements, the
measurement was performed in an empty indoor basement,
with no furniture, which also results in sparse channel profiles.
The synthetic CIRs over UCA elements for the LOS scenario
are shown in Fig. 8 (below). The synthetic CIRs over virtual
UCA elements are reconstructed based on detected multipath
component parameters {α̂n, φ̂n, τ̂n} for n ∈ [1, N ] under the
plane-wave assumption. The synthetic results agree well with
the measured data, indicating a consistent estimation result.
The trajectories of the paths over UCA elements match well
with the measured ones, even for weak multipath components.
The measured PADP with rotational horn antenna is shown in
Fig. 9 (top). As shown in the measured results, paths having
the same impinging angle yet different delays exist due to
the path bouncing in the LOS direction. The estimated PADP
based on the virtual UCA with the proposed algorithm for the
LOS scenario is shown in Fig. 9 (below), where in total 10
paths are detected. An excellent match of the measured PADPs

between the rotational horn antenna and virtual UCA in terms
of the number of propagation paths, azimuth angle, delay and
power of each path can be observed. However, the measured
results based on rotational horn antenna suffer from wide
antenna beam-width, as expected. The proposed algorithm
presents consistent parameter estimation, with high resolution
in the angle and delay domains. Note that the antenna gains
of the horn antenna and biconical antenna are calibrated out in
the power spectra. Thus within the same power range, the same
number of paths and approximately same path parameters can
be observed in the plots. Furthermore, the estimated power of
the LOS path (strongest path) is −76.5 dB, which matches
well with the calculated path loss according to Friis equation
with D = 5 m and fc = 29 GHz, i.e. −75.7 dB. The deviation
might be introduced by the inaccureate data in antenna gains
and measurement uncertainties.

The measured CIRs and synthetic CIRs over virtual UCA
elements for the OLOS scenario are shown in Fig. 10. A
good agreement between the synthetic and measured CIRs
can still be observed, though there exists many weak multipath
components in the measured CIRs. The measured PADPs with
rotational horn antenna and virtual UCA with the proposed
algorithm for the OLOS scenario are shown in Fig. 11, where
27 paths in total are detected within the dynamic range of 30
dB. Within the same power range, the channel parameters, e.g.
the number of paths and path paramters, agree well between
the rotational horn and the virtual UCA for the more critical
OLOS scenario.

As observed in the measured CIRs over array elements,
channel non-stationarity exists where different channel profiles
can be observed by different array elements. This can be
caused by several reasons, e.g. the power variation over the
UCA elements in the near-field scenarios as explained; the
coherent summation of unresolved multipath components due
to limited system bandwidth; limited angle of view from
the near-field scatterers and the measurement system non-
idealities. The channel non-stationarity is not addressed in
the proposed algorithm, as seen in the synthetic CIRs over
UCA elements. Though channel non-stationarity has been
considered in channel modeling works, e.g. [32], it has not
been considered in the channel estimation in the literature so
far due to high computation complexity.

VI. CONCLUSION

Accurate knowledge of the radio propagation parameters
is important for system design, applications and performance
evaluation of the 5G systems. However, multipath parameter
estimation for UWB large scale antenna systems are chal-
lenging, due to the fact that the well adopted plane-wave
and narrowband assumptions might not hold. In this paper,
a novel beamspace UCA algorithm based on phase mode
excitation principle is proposed. The proposed beamformer
can maintain approximately same beam patterns, independent
of distance between the array and scatterer location, and of
the system bandwidth, making it suitable for UWB near-
field scenarios. The proposed algorithm has low computational
cost since it avoids expensive joint estimation in multiple
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Figure 8. Measured CIRs (top) and synthetic CIRs (below) over virtual UCA
elements for the LOS scenario.

Figure 9. Measured PADPs with rotational horn antenna (top) and virtual
UCA with the proposed algorithm (below) for the LOS scenario.

Figure 10. Measured CIRs (top) and synthetic CIRs (below) over virtual
UCA elements for the OLOS scenario.

Figure 11. Measured PADPs with rotational horn antenna (top) and virtual
UCA with the proposed algorithm (below) for the OLOS scenario.

parameter domains. To remove the strong sidelobes of the
proposed beamspace beamformer, a novel algorithm based on
the successive cancellation principle is proposed. The path
cancellation is based on the fact that propagation delays
among array elements are insensitive to system bandwidth
and near-field effects for a given elevation angle range, i.e.
∆θ = |θ − 90o| ≤ 30o. The cancellation scheme is effective
and robust. For example, the residual power rate of less than
0.2% can be achieved for the UCA with radius r = 0.5m,
system bandwidth 2 GHz and measurement range D > 3 m.
To demonstrate the proposed algorithm, a critical scenario is
selected in the numerical simulation with frequency band set
the same as in the measurement campaign, i.e. 28-30 GHz, and
the results showed that all the paths can be accurately detected
with less than 0.3 dB deviations for the path powers. To
validate the algorithm, we applied the proposed algorithm in
the practical virtual UCA measurement data in both LOS and
OLOS scenarios. The synthetic CIRs obtained based on the
detected multipath parameters matched well with the measured
CIRs for both measurement scenarios. The detected parameters
were further validated against the horn antenna reference
measurements. As a summary, both numerical simulations
and experimental measurements demonstrated the effective-
ness and robustness of the proposed algorithm. The proposed
algorithm is a general low-cost channel estimator, since it
works in both near-field scenario and UWB system.

Further, due to the fact that the proposed beamformer
pattern is not sensitive to the elevation angle and scatterer
location, the proposed algorithm would fail to detect the eleva-
tion angle and scatter location. A high resolution propagation
parameter estimation algorithm, which is capable of estimating
all propagation parameters in the 3D near-field conditions is
missing in the literature due to the fatal computation com-
plexity. Our proposed algorithm, which offers high resolution
azimuth angle, delay and complex amplitude estimation in a
low-cost manner, can be utilized in the initial stage of the full
parameter estimation algorithm, e.g. the maximal likelihood
estimator, which can significantly reduce the computation
complexity due to the reduced searching space. This work
will be carried out in a future work.
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