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Abstract—One of the challenges related to the investigation of
vehicular networks is associated with predicting a network state
regarding both short-term and long-term network evolutionary
changes. This paper analyzes a case in which vehicles are located
on a straight road, and the connectivity state between two
consecutive cars is determined by the Markov chain model
with two states. The transition probabilities of the considered
model are explicitly expressed in terms of known parameters
of the network using the Wang-Moayery model. Within the
presented model, the network evolution is described in terms of
determinative parameters, such as average link duration, average
cluster lifetime, and a clusters existence probability between two
fixed moments of time. In support of the theoretically obtained
probabilistic distributions, the results of numerical simulations
are provided.

Index Terms—Vehicular network, clustering, network evolu-
tion, link duration.

I. INTRODUCTION

Vehicular Adhoc Networks (VANETs) have become one of

the frontier topics of research [1]–[19] over the last decade due

to the anticipated mass deployment of self-driving vehicles. A

VANET consists of a set of fast moving vehicles equipped with

sensing, communication and infotainment systems. This turns

the neighboring connected vehicles into a moving wireless

network, that enables vehicles to connect with each other and

share safety and entertainment related content. Self-driving

vehicles are expected to significantly reduce the number of

road accidents and traffic congestion, improve road safety, and

further enable intelligent transportation.

Vehicle networking is a relatively new field that allows for

the application of emerging technologies such as machine

learning, which is widely used in many areas from image

processing to financial data analysis. Based on extensive

statistics, a neural network is capable of predicting and clas-

sifying data, and therefore, it is a powerful tool for solving

a variety of different problems. Machine learning techniques

have applications in optimization of information transmission

between vehicles [1], [2], improving transportation safety [3],

and reducing transmission delays [4]. The applications of

machine learning in the aforementioned areas, as well as for

network congestion control, wireless resource management,

and load balancing are discussed in a comprehensive survey

[5]. It includes not only classical deep learning algorithms used

for the systems state prediction from available data, but also

modern developments in the field of reinforcement learning,

that makes it possible to find strategies leading to long-term
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rewards in the cases, where a problem can be reformulated

as a game. Reinforcement learning algorithms demonstrate

their superiority in comparison to the previous approaches in

resource management and resource allocation tasks, and allow

for a reduction in computational complexity.

In recent years, significant progress has been made in the

area of MAC protocols for vehicular networks [6]–[11]. Due

to the dynamic topology of the network, the development of

robust and efficient transmission of information in Vehicle-to-

Vehicle (V2V), and Vehicle-to-RSU (V2R) scenarios becomes

highly significant. One important issue here is avoiding colli-

sions where more than one node transmits at the same time

interval, because resending the same packages causes delays,

which is not acceptable for delay-sensitive applications. For

overcoming the problem, near collision free MAC protocols

adapting to different densities of traffic flow have been pro-

posed.

MAC protocols are intrinsically complicated, which makes

them almost impossible to analyze analytically from a sta-

tistical point of view. For practical applications, it is impor-

tant to estimate the average cluster size of the network and

probability of multihop connectivity between two vehicles. To

address these challenges, in the case of a straight road (see

articles [12]–[16]), simplified models are proposed, making it

possible to derive explicit expressions for the aforementioned

fundamental network characteristics, and the probability of full

connectivity. In [17], the authors consider a more complicated

case, where vehicle networks are moving along two perpen-

dicular roads towards the intersection. They derive formulas

for the outage probability and the transmission probability,

assuming that intervehicle distance has Poisson distribution.

However, these studies are limited to a current moment,

while it is important to investigate how connectivity changes

over time. In particular, it is important to know what the

average link duration is. In the articles [18] and [19], the

explicit formulas for the link duration are obtained under

different assumptions. In [18], the average link duration is

investigated assuming a two-way road, and that vehicles only

transmit messages to other vehicles moving in the opposite

direction. In [19], the average link duration is calculated in

the case of one-way traffic under the assumption that speed

increases linearly until it reaches the speed limit and then

remains constant.

Network evolution is a stochastic process. Therefore, we

can predict the state of the system for the next moment of

time only with certain probability. It explains the application

of the probability theory to the analysis of network evolution.

The channel interruption probability is small, but positive,

leading to an increase in the probability of disconnection

over time. This article is aimed at describing the evolution
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of the network in terms of the probability of maintaining a

connection between two consecutive vehicles and the vehicles

forming a cluster, and investigating how rapidly the probability

decreases. We derive explicit expressions for the probabilities

of link duration, cluster existence over a certain amount of

time, and the probability of cluster existence between two

fixed moments of time. The obtained results related to cluster

evolution are new, and they provide an insight into dynamical

changes in the network.

It is convenient to investigate the connectivity properties

of the system not at every moment, but only on a discrete

uniform time mesh. It means that the difference between

two consecutive moments of time has a fixed duration ∆t.
Let t be the current moment of time. The Markov model

determines the probability of an event that at the moment

of time t + ∆t, the consecutive vehicles could establish a

connection based on the communication state at the time

moment t. This probability is explicitly expressed in terms of

macro parameters of the system [20], [21]. Using the state-

transition matrix of the Markov process, it is possible to

express the desired connection probabilities in terms of the

matrix coefficients, and thereby, allows the calculation of the

required connectivity characteristics.

Also, we consider such a stability characteristic of the

connection between two consecutive cars as ω-stable con-

nection. This type of connection guarantees that the time

between consecutive connections does not exceed ω∆t (∆t
is a timestep). In other words, this weakened condition means

that at some moments of time the vehicles may fail to establish

a connection, but they connect at least once at each time

interval that has length ω∆t. This type of communication is

closer to the actual operating conditions, where connection

may disappear for short periods of time, but it is important

to ensure that it is regularly reestablished. We derive recurrent

equations for calculating the probabilities and verify the results

using simulations.

The article is organized as follows. Section II describes the

parameters and the structure of a considered network model.

Section III investigates the statistics of node-to-node connec-

tivity between cars assuming a fading channel between the

nodes.The detailed mathematical derivations are summarized

in Section V, and a brief summary is given in IV. The derived

expressions are verified through a number of simulations in

Sections VI, VII.

II. NETWORK MODEL

We consider the following probabilistic model that describes

the evolution of the network over time. It is assumed that

there are two states of connection Good and Bad. In the Good

state, neighboring cars can establish a connection, while the

Bad state corresponds to the case where neighboring cars

cannot connect with each other. We suppose that initially the

system is in the equilibrium state; the initial probabilities of

connection are calculated in the section V. We consider the

system evolution process with timestep ∆t (introduced at the

end of the previous section). Let p be the probability that

connected neighbouring cars cannot establish a connection at

the next moment of time, in other words, p is the probability

that at the next moment of time the system moves from the

Good state to the Bad state. By analogy, let q be the probability

that at the next moment the system moves from the Bad

state to the Good state. Therefore, connectivity between two

consecutive cars can be described by two-state Markov Model

depicted below (letters G and B denote the Good and the Bad

states, respectively). The explicit values of the parameters p
and q are given in the next section.

Fig 1. Markov diagram of the connectivity process

with the Good and the Bad states

III. PROBABILISTIC CONNECTIVITY MODEL

Everywhere in the article it is assumed that all n vehicles

move along one-way road with the same constant speed v.

Each car can establish a connection only with the closest front

and back neighbours. We assume a Rayleigh fading channel

between every pair of cars. Consequently, the amplitude of the

received signal is exponentially distributed with pdf

p(x) =
1

λ
e−x/λ, (1)

where λ represents the average SNR (Signal-to-noise ratio)

over the fading channel. We use the Wang-Moayery model

[21] to determine values of the parameters p and q. According

to this model, we determine state of the system by comparison

signal amplitude A and threshold A. If A ≥ A then we assume,

that the system is in the Good state, otherwise it is in the

Bad state. We denote by pB the probability of the Bad case,

therefore,

pB =

∫ A

0

p(x)dx =

∫ A

0

1

λ
e−x/λdx = 1− e−A/λ. (2)

The probability of the Good state is given by the formula

pG = 1− pB = e−A/λ. (3)

Assuming the Clark model, the following formula for the level

crossing rate is obtained in [21]:

LCR(x) =

√

2πx

λ
fDe−x/λ, (4)

where fD is Doppler shift. Also, the following two explicit

formulas for parameters p and q (they are introduced in the

previous section) are derived

p =
LCR(A)

RpG
=

√

2πA
λ fD

R
, (5)

q =
LCR(A)

RpB
=

√

2πA
λ fDe−A/λ

R(1− e−A/λ)
, (6)
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where R is the symbol rate. Taking into account (5), (6), and

the following formula for the maximum Doppler shift 1:

fD =
vfc
c

, (7)

where fc and c are transmitted frequency and velocity of light

respectively, we obtain

p =
LCR(A)

RpG
=

√

2πA
λ vfc

Rc
, (8)

q =
LCR(A)

RpB
=

√

2πA
λ vfce

−A/λ

Rc(1− e−A/λ)
. (9)

The timestep ∆t (see description of timestep in the section I)

satisfies Nyquist-Shannon criterion

∆t ≤
1

2fD
. (10)

IV. MAIN RESULTS

Let pG(m) be the probability that at the moment m∆t two

fixed consecutive cars can establish a connection. We assume

that the system is initially in the equilibrium state (for more

details see section V). In the above mentioned section, the

probability pG(m) of a successful connection between two

consecutive cars at the moment of time m∆t satisfies the

following formula:

pG(m) =
q

p+ q
, (11)

where parameters p and q are calculated by the formulas (8)

and (9). Thus, probability pG(m) does not depend on m, and,

therefore, we denote it by pG.

Let symbol Ptwocars(m) stand for the probability that

connection between two cars once established has duration

m∆t. The probability Ptwocars(m) is given by the formula

Ptwocars(m) = (1 − p)m−1p. (12)

The average link duration T twocars and its variance

σ2
twocars of the distribution (12) are determined by the for-

mulas

T twocars =
∆t

p
, (13)

σ2
twocars =

(1 − p)∆t2

p2
. (14)

Definition. A cluster is a such group of vehicles that

any two cars in the group can communicate with each other,

probably through other vehicles of the cluster.

In our model, each vehicle connects only to the closest

forward and backward cars. Therefore, in the framework of

our model, clusters are formed by several consecutive cars. On

Fig. 2 below, five cars are depicted that form two clusters. The

first cluster is formed by cars 1, 2, 3 and the second cluster is

composed of cars 4 and 5. Significantly, cars 1 and 3 cannot

communicate directly, and the only communication way for

1Maximum Doppler shift is consistent with geometry of the problem, since
vehicles follow the signal propagation path.

them is through car 2, while vehicles 3 and 4 are disconnected.

We prove that the connectivity probability is given by the

formula p/(p+ q). Therefore, connectivity state between two

consecutive vehicles depends on the parameters listed in the

section III. It is worth mentioning that this probability is close

to 1 (stable connection) if p ≈ 1 and q ≈ 0.

We derive the probability Pclust(m) that the cluster formed

by the cars k, k+1, . . . , k+s once being formed exists exactly

time m∆t. Let us introduce parameter γ by the formula

γ =











2, if 1 < k and k + s < n,

1, if k = 1 or k + s = n, but not both,

0, if k = 1 and k + s = n.

(15)

The probability Pclust(m) satisfies the formula

Pclust(m) = (1−p)s(m−1)(1−q)γ(m−1)(1−(1−p)s(1−q)γ).
(16)

Fig 2. Network of 5 cars that form two clusters.

The average existence cluster lifetime T clust and variance

σ2
clust of the distribution (16) can be obtained by the formulas

T clust =
∆t

1− (1− p)s(1− q)γ
. (17)

σ2
clust =

(1− q)γ(1 − p)s∆t2

(1− (1− q)γ(1 − p)s)2
, (18)

where γ is determined in (15).

We study not only the duration of a cluster lifetime, but

also the probability that cluster does exist between two given

moments of time. More precisely, we derive the following

formula for the probability Pclust(m, l) that the cluster that

consists of cars k, k + 1, . . . , k + s is formed at the moment

of time m∆t, exists until l∆t (l ≥ m), and does not exist at

the moment (l + 1)∆t as follows:

Pclust(m, l) =
{

psG(1 − pG)
γ

− (1− p)spsG(1− pG)
γ(1− q)γ

}

× (1− p)s(l−m)(1− q)γ(l−m)
{

1− (1− p)s(1 − q)γ
}

,

(19)

where pG and γ are given by the formulas (11) and (15).

Finally, we analyse the property of ω-stability of a connec-

tion that is defined as the ability of two vehicles to establish

connection within every time interval ω∆t. More formally, we

assume that connection is ω-stable between moments m∆t
and l∆t, if there is at least one successful connection not

later that the moment (m + ω)∆t, time difference between

every two consecutive connections does not exceed ω∆t and

the last connection is established at the moment (l−ω)∆t or

later. At the end of the section V, we derive the algorithm for

finding the probability that the connection between two cars
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is ω-stable on a pre-selected interval. The algorithm has linear

complexity and recurrently calculates the probability under the

assumption of known parameters p and q.

V. MATHEMATICAL DERIVATIONS

A. Probability of two cars being connected at the moment

m∆t

Let pG(m) be the probability that there is a connection

between predetermined consecutive cars at the moment of

time m∆t and by pB(m) the probability that there is no

connection at m∆t. Let us find the limiting distributions

pG(∞) = limm→∞ pG(m) and pB(∞) = limm→∞ pB(m).
According to the Markov model (see Fig. 1), we have

pG(m) = pG(m− 1)(1− p) + pB(m− 1)q, (20)

pG(m) + pB(m) = 1. (21)

When m → ∞, the equations (20) and (21) take the following

form

pG(∞) = pG(∞)(1 − p) + pB(∞)q, (22)

pG(∞) + pB(∞) = 1. (23)

Solving system of linear equations (22) and (23), we obtain

pG(∞) =
q

p+ q
, (24)

pB(∞) =
p

p+ q
. (25)

We assume that at the moment when we observe the

system, it has reached its limiting distribution, therefore, the

probabilities at every moment m∆t are equal to the limiting

probabilities:

pG(m) =
q

p+ q
, (26)

pB(m) =
p

p+ q
. (27)

Thus, we denote them pG and pB .

B. Distribution of link duration

Let us consider two consecutive cars. We find the probability

Ptwocars(m) of the event that the connection lifetime between

these cars is exactly m∆t. In other words, if the connection

between cars is firstly established at the moment of time ∆t,
we calculate the probability that the cars keep the connection

up to the time instant m∆t, and at the time (m + 1)∆t the

connection cannot be established. This probability is given by

the formula

Ptwocars(m) = (1 − p)m−1p, (28)

since at the time ∆t the system is in the Good state, and the

probability that it remains in the Good state at the moments

2∆t, 3∆t, . . .m∆t is (1 − p)m−1 (see Markov diagram on

Fig. 1), and the probability that the system changes the state

from Good to Bad at the time instant (m+ 1)∆t is p.

Using relation (28), we can calculate the average link

duration T twocars and variance σ2
twocars of the distribution

by the formulas

T twocars =

∞
∑

l=1

l∆tPtwocars(l) =

∞
∑

l=1

l∆t(1− p)l−1p =
∆t

p
,

(29)

σ2
twocars =

∞
∑

l=1

(l∆t)2Ptwocars(l)− T
2

twocars

=

∞
∑

l=1

l2∆t2(1 − p)l−1p−
∆t2

p2

=
(2− p

p2
−

1

p2

)

∆t2 =
(1− p)∆t2

p2
. (30)

C. Distribution of a cluster lifetime

In this section we find the probability Pclust(m) that

the existence duration of a cluster composed by cars k,

k + 1, . . . , k + s equals exactly m∆t. We could assume that

the cluster exists since the moment ∆t until the moment m∆t
and does not exist at the moment (m+1)∆t. The probability

Pclust(m) satisfies the formula

Pclust(m) = (1−p)s(m−1)(1−q)γ(m−1)(1−(1−p)s(1−q)γ),
(31)

where γ is defined by (15).

Let us derive the equation (31). We consider only the case

where k > 1 and k+s < n, because in other cases derivations

are similar. The probability Pclust(m) can be calculated by the

formula

Pclust(m) = P1P2, (32)

where P1 is a probability that the cluster exists at the moments

2∆t, . . .m∆t under the condition that it exists at the moment

∆t, and P2 is a probability that the cluster does not exist at

the moment (m+ 1)∆t under the assumption that it exists at

the moment m∆t. First, we calculate the probability P1. The

fact that the cluster k, k + 1, . . . , k + s exists at the moment

∆t simply means that at this moment there is a connection

between every pair of cars (k, k + 1), (k + 1, k + 2), . . .,
(k + s− 1, k + s) and there is no connection between pairs

of cars (k, k−1) and (k+s, k+s+1). The probability that all

pairs of cars (k, k+1), (k + 1, k + 2), . . ., (k + s− 1, k + s)
preserve a connection at the moment 2∆t is (1 − p)s (see

Markov diagram on Fig. 1). The probability that the pairs of

cars (k, k−1) and (k+s, k+s+1) continue to be disconnected

at the moment 2∆t is (1 − q)2. Thus, the probability that

the cluster exists at the moment 2∆t is (1 − p)s(1 − q)2.

Continuing these derivations until the moment m∆t, we find

the probability P1 given as follows:

P1 = (1 − p)s(m−1)(1− q)2(m−1), (33)

since there are m− 1 transitions between steps ∆t and m∆t
and at each step we need to multiply the answer by the

transitional probability (1 − p)s(1 − q)2. Finally, we derive

the probability P2. The cluster should cease to exist at the

moment (m+1)∆t. The probability that the cluster continues
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to exist at the next moment is (1− p)s(1− q)2, therefore, the

probability that it does not exist is

P2 = 1− (1− p)s(1− q)2. (34)

Formulas (32)–(34) prove the equation (31).

The average time of cluster existence T clust and its variance

σ2
clust are determined by the following formulas:

T clust =

∞
∑

l=1

l∆tPclust(l)

=
∞
∑

l=1

l∆t(1− p)s(l−1)(1− q)γ(l−1)(1− (1− p)s(1− q)γ)

=
∆t

1− (1− p)s(1− q)γ
. (35)

σ2
clust =

∞
∑

l=1

(l∆t)2Pclust(l)− T
2

clust

=
(1 + (1 − p)s(1− q)γ)∆t2

(1− (1− p)s(1− q)γ)2
−

( ∆t

1− (1− p)s(1− q)γ

)2

=
(1− q)γ(1 − p)s∆t2

(1− (1 − q)γ(1 − p)s)2
. (36)

D. Probability of cluster existence between fixed moments of

time

In the section, we derive the probability of a cluster exis-

tence between two particular moments of time. We consider

only the case where k > 1 and k + s < n, because in

other cases derivations are similar. However, before solving

the problem, we find the probability Pclustbeg(m) that at the

time m∆t the cluster that consists of cars k, k+1, . . . , k+ s,

is formed, and it does not exist at the moment (m − 1)∆t.
Let us denote the probability of the event that at the moment

m∆t there is a cluster consisting of cars k, k + 1, . . . , k + s
by P1 and the probability that the cluster k, k + 1, . . . , k + s
exists at the moments (m− 1)∆t and m∆t by P2. Therefore,

the probability Pclustbeg(m) is given as follows:

Pclustbeg(m) = P1 − P2. (37)

Next, we calculate each of the probabilities P1 and P2 sepa-

rately. Firstly, we establish that

P1 = psG(1− pG)
2. (38)

Indeed, if the cluster k, k+1, . . . , k+ s exists at the moment

m∆t then the pairs of cars (k, k+1), (k+1, k+2), . . . , (k+
s − 1, k + s) are connected (each with the probability pG).

Thus, the probability of this event is psG, since there are s
such pairs. Additionally, there is no connection between the

pairs of cars (k, k − 1) and (k + s, k + s + 1) (each of

disconnections occurs with the probability 1−pG). Multiplying

the aforementioned probabilities, we get the relation (38).

Regarding the probability P2, we prove the formula

P2 = (1 − p)spsG(1− pG)
2(1− q)2. (39)

The probability P2 can be represented as follows:

P2 = P3P4, (40)

where P3 is a probability that the cluster k, k + 1, . . . , k + s
exists at the moment (m− 1)∆t and P4 is a probability that

it continues to exist at the moment of time m∆t under the

assumption that it exists at the moment (m−1)∆t. Repeating

derivations for the probability P1 in the case of the time instant

(m− 1)∆t, we have

P3 = P1 = psG(1− pG)
2. (41)

Next, we prove the relation

P4 = (1− p)s(1− q)2. (42)

Suppose, the cluster exists at the moment of time (m− 1)∆t.
The probability that a connection between any pair of the

consecutive cars of the cluster is preserved at the moment m∆t
equals 1−p. Consequently, the probability that the connection

between all s pairs of cars is preserved equals (1 − p)s. The

pairs of cars (k− 1, k) and (k+ s, k+ s+1) cannot establish

a connection at the moment (m − 1)∆t, the probability that

these pairs remain disconnected is (1 − q)2. Multiplying two

probabilities (1−p)s and (1−q)2, we derive the formula (42).

From (38)–(42), we conclude that

Pclustbeg(m) = psG(1− pG)
2

− (1− p)spsG(1 − pG)
2(1− q)2. (43)

Using the obtained probabilities, we can find the probability

Pclust(m, l) that the cluster k, k + 1, . . . k + s exists between

moments of time m∆t and l∆t (l ≥ m). In other words, it

is the probability that the cluster exists from the time instant

m∆t to l∆t (l ≥ m), and does not exist at the moments

(m−1)∆t and (l+1)∆t. The probability Pclust(m, l) satisfies

the formula

Pclust(m, l) = (psG(1 − pG)
2

− (1− p)spsG(1− pG)
2(1 − q)2)

× (1− p)s(l−m)(1− q)2(l−m)(1 − (1− p)s(1 − q)2). (44)

The probability Pclust(m, l) can be decomposed in the product

of three terms as follows:

Pclust(m, l) = Pclustbeg(m)P5P6, (45)

where P5 is a probability that the cluster exists until the

moment l∆t, and P6 is a probability that the cluster ceases to

exist at the moment (l + 1)∆t assuming that it exists at the

moment l∆t. First, we consider the probability P5 and prove

the formula

P5 = (1− p)s(l−m)(1− q)2(l−m). (46)

By analogy with derivations of (33), we deduce that the

probability, that the connection established between the pairs

of cars (k, k + 1), (k + 1, k + 2), . . . , (k + s − 1, k + s) at

the moment of time m∆t is preserved at the time instances

(m+1)∆t, . . . , l∆t, equals (1−p)s(l−m). Following the same

logic of (33), we derive that the probability, that the pairs of

cars (k−1, k) and (k+s, k+s+1) do not communicate at the

moments of time (m+1)∆t, . . . , l∆t under the condition that

the connection is not established at the moment (m − 1)∆t
equals (1−q)2(l−m). The probability P5 can be calculated as a
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product of these probabilities and, therefore, (46) is proven. By

repeating steps of the proof of the equation (34), we conclude

that

P6 = 1− (1− p)s(1− q)2. (47)

From the formulas (43), (45)–(47), we derive (44).

E. ω-stable connection

Definition A connection between moments of time m
and l (m ≤ l) is ω-stable if the time difference between

every two consecutive connections does not exceed time ω∆t.
Additionally we assume that there exists at least one successful

connection established not later than (m+ ω)∆t, and the last

connection is established at the moment of time (l−ω)∆t or

later.

It does not make sense to consider ω-stable connection if

l < m+ ω, because in this case every connection is ω-stable.

Therefore, we assume that l ≥ m+ ω. Also, we suppose that

ω is an integer number and ω ≥ 2.

In the section, we find the probability Pω(m, l) that the

connection between two consecutive cars is ω-stable between

the moments m∆t and l∆t. Let us introduce the function

h(a, b) equaling the probability that at the moment of time

a∆t, the last connection is established at the time instant b∆t,
and the function g(a) equaling the probability that there is no

connection at the time interval [0, a∆t]. To derive the function

g(a) explicitly, we should multiply the probability (1 − pG),
that at the moment m∆t there is no connection, by the

probability (1− q)a−m that at the moments (m+1)∆, . . . a∆
there is no connection as well. Therefore, the function g(a)
has the form

g(a) =

{

(1− pG)(1 − q)a−m, if a < m+ ω

0, if a ≥ m+ ω.
(48)

The following recurrences take place:

h(a, b) = 0, b < a− ω, (49)

h(a, b) = h(a− 1, b)(1− q), a− ω ≤ b < a− 1, (50)

h(a, a− 1) = h(a− 1, a− 1)p, (51)

h(a, a) = h(a−1, a−1)(1−p)+

a−2
∑

r=a−ω

h(a−1, r)q+g(a−1)q.

(52)

The formula (49) holds, since for b < a − ω, the probability

h(a, b) equals zero due to the fact that the time difference

between the last connection at the moment of time b∆t and

the next connection exceeds ω∆t. The formula (50) holds,

because if b < a−1 then at the moment (a−1)∆t the system

is in the Bad state, and the probability that it remains in this

state is 1−q. The formula (51) is derived by applying the same

logic. Finally, in (52), the recursive formula for the probability

that the connection is established at the time instant a∆t, is

obtained. Due to the ω-stability of the connection, the previous

time of the connection lies between (a−ω)∆t and (a−1)∆t.
The summand h(a−1, a−1)(1−p) occurs in the formula (52),

since it is the probability that at the moment of time (a−1)∆t
the system is in the Good state and remains at this state up

to the moment of time a∆t. The sum
∑a−2

r=a−ω h(a − 1, r)q
contains probabilities h(a− 1, r) that the time instant r∆t is

the last moment of time when the system is in the Good state.

It means that the system is in the Bad state at the moment

(a− 1)∆t and moves to the Good state at the moment a∆t.
It explains the multiplication of the terms h(a− 1, l) by q.

The probability Pω(m, l) can be calculated by the formula

Pω(m, l) =

l
∑

r=l−ω

h(l, r), (53)

because the last moment of time before l∆t when the system

is in the Good state, can be only l∆t, (l−1)∆t, . . ., (l−ω)∆t.
The following formulas hold:

h(m,m) = pG, (54)

h(m+ 1,m+ 1) = pG, (55)

where pG is determined by the formula (24). The equality (54)

takes place , since the probability that connection is established

at the moment m∆ is exactly pG, the formula (55) is obtained

similarly, taking into account that ω ≥ 2.

Under condition of a > b, application of the relations (50)

and (51) provides the expression

h(a, b) = h(a− 1, b)(1− q) = h(a− 2, b)(1− q)2 = . . .

= h(b + 1, b)(1− q)a−b−1 = h(b, b)(1− q)a−b−1p. (56)

From (52) and (56), we obtain

h(a, a) = h(a− 1, a− 1)(1− p)

+

a−2
∑

r=a−ω

h(a− 1, r)q + g(a− 1)q

= h(a− 1, a− 1)(1− p)

+

a−2
∑

r=a−ω

h(r, r)(1 − q)a−r−2pq + g(a− 1)q. (57)

By substituting a− 1 instead of a into (57), we derive

h(a− 1, a− 1)

= h(a− 2, a− 2)(1− p)

+

a−3
∑

r=a−ω−1

h(r, r)(1 − q)a−r−3pq + g(a− 2)q. (58)

Multiplying (58) by (1− q), we get the following equality:

h(a− 1, a− 1)(1− q) = h(a− 2, a− 2)(1− p)(1 − q)

+
a−3
∑

r=a−ω−1

h(r, r)(1 − q)a−r−2pq + g(a− 2)q(1 − q).

(59)

Subtraction (59) from (57) gives us

h(a, a)− h(a− 1, a− 1)(1− q) = h(a− 1, a− 1)(1− p)

− h(a− 2, a− 2)(1− p)(1− q) + h(a− 2, a− 2)pq

− h(a− ω − 1, a− ω − 1)(1− q)ω−1pq

+ g(a− 1)q − g(a− 2)q(1− q). (60)
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After simplifying (60), we finally derive

h(a, a) = h(a− 1, a− 1)(2− p− q)

− h(a− 2, a− 2)(1− p− q)

− h(a− ω − 1, a− ω − 1)(1 − q)ω−1pq

+ g(a− 1)q − g(a− 2)q(1− q). (61)

Let us introduce the function f(a) by the formula

f(a) = h(a, a). (62)

Expressions (61) and (62) provide the relation

f(a) = f(a− 1)(2− p− q)− f(a− 2)(1− p− q)

−f(a−ω−1)(1−q)ω−1pq+g(a−1)q−g(a−2)q(1−q).
(63)

Our next goal is to express the probability Pω(m, l) in terms

of the function f(a). Substitution a = l + 1 in (52) gives us

h(l+1, l+1) = h(l, l)(1−p)+q

l−1
∑

r=l+1−ω

h(l, r)+g(l)q. (64)

Subtracting (53) multiplied by q from (64) produces the

following equality:

h(l + 1, l+ 1)− qPω(m, l)

= h(l, l)(1− p)− h(l, l)q − h(l, l − ω)q + g(l)q. (65)

Applying (56) to (65), we get

h(l + 1, l+ 1)− qPω(m, l) = h(l, l)(1− p− q)

− h(l − ω, l− ω)(1 − q)ω−1pq + g(l)q. (66)

Therefore, taking into account (62), we derive

Pω(m, l) =
1

q

{

f(l+ 1)− f(l)(1− p− q)

+ f(l − ω)(1− q)ω−1pq − g(l)q
}

. (67)

From (54) and (55), we obtain

f(m) = pG, f(m+ 1) = pG. (68)

Combining previous formulas we derive the algorithm be-

low for calculating the probability Pω(m, l). In lines 2, 3, 4

and 7 two arrays f and g are declared and initialized to zero.

Lines 5, 6 and 9 are obtained by the formulas (68) and (48),

respectively. Lines 12–14 are derived by (63), the return value

in the line 17 is obtained by the formula (67).

VI. SIMULATIONS

In order to verify the theoretical development we conduct

a number of numerical simulations with the following param-

eters:

R = 105symbol/sec, fc = 3.9GHz, A/λ = 0.1.

The speed of cars v takes the following values:

v = 30, 60, 90 km/h.

Function for calculating the probability Pω(m, l)

1: function PROBABILITY OF ω-STABLE CONNEC-

TION(m, l, ω, p, q)

2: f = ARRAY [1..l + 1];
3: g = ARRAY [1..l + 1];
4: f = 0;
5: f(m) = q

p+q ;
6: f(m+ 1) = q

p+q ;
7: g = 0;
8: for a = m to m+ ω − 1 do

9: g(a) = p
p+q (1 − q)a−m;

10: end for

11: for a = m+ 2 to l + 1 do

12:

f(a) = f(a− 1)(2− p− q)

− f(a− 2)(1 − p− q)

+ g(a− 1)q − g(a− 2)q(1 − q);

13: if a− ω − 1 ≥ m then

14: f(a) = f(a)− f(a− ω − 1)(1− q)ω−1pq;
15: end if

16: end for

17: return

1

q

{

f(l+ 1)− f(l)(1− p− q)

+ f(l − ω)(1− q)ω−1pq − g(l)q
}

;

18: end function

The Doppler frequency shift is calculated by the formula

fD =
vfc
c

.

For the speeds v = 30, 60, 90 km/h Doppler frequency

fD equals 108, 217, 325 Hz, respectively. The timestep ∆t
between two consecutive transmissions should satisfy the

Nyquist–Shannon criteria

∆t ≤
1

2fD
.

We assume that ∆t is given by the formula

∆t =
1

10fD
.

For speeds v = 30, 60, 90 km/h, values of the parameter ∆t
are 9×10−4, 4.6×10−4, 3×10−4 seconds, respectively. Under

these assumptions from (5) and (6), we get the following

values of parameters p and q for speeds v = 30, 60, 90 km/h:

p = 8.5× 10−4, 1.7× 10−3, 2.5× 10−3,

q = 8.1× 10−3, 1.6× 10−2, 2.5× 10−2.

We assume that the network consists of n = 10 vehicles.

We use logarithmic scale for all graphs below. We consider

the probabilities of the event that the system remains connected

throughout the time interval [0, t]. By this, we mean that the

connection is established at each moment of time on a discrete
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time grid during the interval [0, t]. If we increase the value of

the parameter t, then we increase the number of time moments

when the vehicles should remain connected, so the probabil-

ity of this event decreases. In other words, the considered

probabilities are monotonically decreasing functions of the

parameter t. All graphs are represented as straight lines, since

the probabilities exponentially decreasing with time, which in

logarithmic scale, is represented as linear decreasing straight

lines. We compare the results obtained by the formulas and

the results of numerical simulations. The simulation results

obtained by generating evolution of the vehicle network on

the road many times, calculating number of the cases where

required characteristics of the network occur and dividing this

number by the number of trials. The values of parameters p and

q are too small (about 10−3–10−4) that results in negligible

probabilities computed by the formulas (12), (16) and (19).

It makes impossible to achieve an appropriate simulation

precision for the reasonable time. Therefore, we do not depict

the corresponding simulation results on the Figs 3, 4 and 5.

Fig. 3 presents graphs of the distribution (12) of the link

duration between two consecutive cars for v = 30, 60, 90
km/h.
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Fig 3. Graphs of the distribution (12) of the link duration between two

consecutive cars for v = 30, 60, 90 km/h

Fig. 4 shows the distribution (16) of the lifetime of the

cluster that consists of cars 2, 3 and 4 for v = 30, 60, 90
km/h.

To illustrate decreasing of the probability (19) of the cluster

existence between fixed moments of time m∆t and l∆t, we

fix the value of the parameter m = 2 and vary the value of

l = m,m+1, . . .. We assume that the cluster consists of cars

with numbers 2, 3 and 4. The graphs of the obtained functions

of parameter l are shown on the Fig. 5 below.

Fig. 6 demonstrates both the simulation results and the

probabilities computed by the algorithm from the section V-E.

We fix an initial moment of time m∆t and assume that m = 2,

and vary l = m,m + 1, . . .. Simulations results are obtained

after 50000 generations of the car evolution process.
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Fig 4. Graphs of the probability Pclust(m) given by the formula (16) for

v = 30, 60, 90 km/h

0 5 10 15

10-300

10-250

10-200

10-150

10-100

10-50

100

P
ro

ba
bi

lit
y

Value of l

P
Clust

(m,l) for v=30km/h

P
Clust

(m,l) for v=60km/h

P
Clust

(m,l) for v=90km/h

Fig 5. Graphs of the probability Pclust(r, t) of the cluster existence

between times given by the formula (19).
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Fig 6. Graphs of numerical simulation of the probability of 3-stable

connection between times m = 2 and l with variable l, and the probability

Pω(m, l) returned by algorithm from the section V-E.

VII. SIMULATIONS FOR LARGE VALUES

OF PARAMETERS p AND q

In the section, we perform simulations that confirm the

correctness of the formulas (12), (16) and (19) for increased

values of parameters p and q, which have the order of 10−2.

The results are represented on Figs. 7, 8 and 9 below. The



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2015 9

graphs perfectly match each other, which proves the correct-

ness of the above mentioned formulas.

Fig. 7 presents two graphs of the numerical simulation and

probability of the link duration Ptwocars given by the formula

(12) for p = 0.02, q = 0.02, ∆t = 0.01 and 105 iterations.

Below on Fig. 8, the simulation results of the cluster lifetime

duration are presented for the cluster that consists of cars 2,

3 and 4, and also, the graph of the predicted distribution

Pclust(m) for p = 0.02,q = 0.02, ∆t = 0.01 and 105

iterations.
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Fig 7. Graphs of the numerical simulation of the distribution of the

connection lifetime duration between two consecutive cars and distribution

(12).
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Fig 8. Graphs of the numerical simulations of the cluster lifetime and the

probability Pclust(m).

Simulation results of the probability of the cluster existence

between times 15∆t and 15∆t, 16∆t . . .30∆t are shown on

Fig 9. Thus, we assume value of m = 15 to be constant and

change the value of the parameter l = 15, 16, . . .30. Fig. 9

depicts the graph of the probability (19) for p = 0.05, q =
0.05, ∆t = 0.01 and 106 iterations.
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Fig 9. Graphs of the numerical simulation of the probability of the cluster

existence between times 15∆t and 15∆t, 16∆t . . . 30∆t and Pclust(m, l).

VIII. CONCLUSION

In the article, we consider evolution of the vehicle network

on a highway and assume that the connection between each

pair of consecutive cars can be established with a certain

probability. We derive the probability distributions that de-

scribe evolution of such characteristics of the network as a

distribution of the link duration between each pair of cars,

cluster lifetime, and etc. All the derivations are performed

under the assumption that the connectivity model is described

by the two state Markov chain model, where the parameters

of the model are explicitly expressed through the parameters

of the network.
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