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Modified Cramér-Rao Bound for M -FSK Signal
Parameter Estimation in Cauchy and Gaussian Noise

Junlin Zhang, Nan Zhao, Senior Member, IEEE, Mingqian Liu, Member, IEEE, Yunfei Chen, Senior
Member, IEEE, Hao Song, Fengkui Gong, Member, IEEE, and F. Richard Yu, Fellow, IEEE

Abstract—The Cramér-Rao bound (CRB) provides an efficient
standard for evaluating the quality of standard parameter esti-
mators. In this paper, a modified Cramér-Rao bounds (MCRB)
for modulation parameter estimations of M-ary frequency-shift-
keying (M-FSK) signals is proposed under the condition of the
Gaussian and non-Gaussian additive interference. We extend the
MCRB to the estimation of a vector of non-random parameters
in the presence of nuisance parameters. Moreover, the MCRB is
applied to the joint estimation of phase offset, frequency offsets,
frequency deviation, and symbol period of M-FSK signal with two
important special cases of alpha stable distributions, namely, the
Cauchy and the Gaussian. The extensive simulation studies are
conducted to contrast the MCRB for the modulation parameter
vector in different noise environments.

Index Terms—Modified Cramér-Rao bound, parameter esti-
mation, frequency-shift-keying, impulsive noise.

I. INTRODUCTION

COGNITIVE radio (CR) is a promising technology for
performance enhancement in vehicular networks, which

allows the combination of artificial intelligence and software-
defined radios. A major challenge of CR is the accurate en-
vironmental awareness and blind parameter estimations at CR
receivers, which is a key feature for promoting efficient and
secure communications in the CR context [1]. The Cramér-
Rao bound (CRB) is the fundamental lower bound on the
variance of any unbiased estimator, which has been proven
that the optimal performance of any parameter estimator can
be achieved [2]. However, when the observed signal con-
tains modulated data, carrying out the statistical expectations
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involved in evaluating the CRB is extremely challenging.
To avoid the high computational complexity caused by the
unwanted parameters, a modified CRB (MCRB) is proposed
as a better alternative [3].

Analytical MCRB for parameter estimations has been wide-
ly studied in several literatures, such as active and passive
localization [4], blind demodulations [5], and channel iden-
tification [6]. Unfortunately, the methods introduced in these
literatures rely on a strong assumption of the additive white
Gaussian noise (AWGN) channel. Many experimental studies
have shown that radio channels may experience non-Gaussian
noise, such as the symmetric alpha stable (SαS) distribution.
For example, non-Gaussian noise occurs in low frequency
communications [7] and shallow underwater acoustic com-
munications [8]. In [9], G. Yang et al. derived the CRB for
joint timing and carrier phase offsets estimations of minimum
shift keying signals in alpha-stable noise. In [10], M. Liu et
al. investigated the CRB on the accuracy of estimating the
direction-of-arrival parameter in impulsive noise. In [11], Y.
Chen et al. provided the CRB of frequency estimations for
complex sinusoid signals in symmetric alpha stable noise. To
the best of our knowledge, the MCRB enabled joint parameter
estimations for M-ary frequency-shift-keying (M-FSK) signals
in Cauchy and Gaussian noise have not been studied.

Therefore, the MCRB used for parameter estimations is
derived for M-FSK signals in Cauchy and Gaussian noise.
To be specific, we propose an analytical method to derive
expressions of the MCRB for joint estimations of phase
offset, frequency offsets, frequency deviation, and symbol
period of M-FSK signal in Cauchy and Gaussian noise. The
contributions of this paper can be summarized as two aspects.
First, we extend the MCRB to the joint estimation of a vector
of non-random parameters in the presence of random nuisance
parameters under Cauchy and Gaussian noise. Second, we
derive the MCRB for a parameter vector from M-FSK signal
over fading channels in Cauchy noise.

II. SYSTEM MODEL

The continuous-time baseband equivalent of FSK signal
with phase and frequency offsets can be given by

s (t) = Aejθej2πfct
∑

l
ej2πf∆slth (t− lTb) , (1)

where A, θ and fc are the amplitude, the phase offset and
frequency offset, respectively. f∆ is the frequency deviation,
and Tb is the symbol period. h (t) denotes the shaping
function. sl is the data symbol transmitted during the l-th
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period, which takes equally likely values from the alphabet
sl ∈ {s̃m |s̃m = 2m− 1−M,m = 1, · · · ,M }.

Assume that the signal is corrupted by additive noise. The
received signal can be expressed as

r (t) = s (t) + w (t) , (2)

where s (t) represents a complex baseband FSK signal, and
w (t) is additive noise. When the signal is affected by fading
channel and is corrupted by additive noise, the received signal
can be derived by

rη (t) = sη (t) + w (t) , (3)

where sη (t) represents the FSK signal over fading channel

sη (t) = Aejθej2πfct
∑

l
ηle

j2πf∆slth (t− lTb) . (4)

where ηl is non-constant fading gain.
The noise w (t) is a random variable following the sym-

metric alpha-stable (SαS) distribution. The SαS distribution
is defined by its characteristic function as

φ (ω)= exp (jδω − γ|ω|α) , (5)

where α is the characteristic exponent, δ is the location
parameter, and γ is the dispersion of the distribution. A stable
distribution is called standard if δ = 0 and γ = 1. The
alpha stable distribution has no closed-form expression for the
probability density function (PDF) except for two important
special cases, namely, the Cauchy (α = 1), and the Gaussian
(α = 2). The Cauchy distribution is given by

f1 (γ, δ;x) =
1

π

γ

γ2 + (x− δ)
2 . (6)

Besides, the Gaussian distribution is given by

f2 (γ, δ;x) =
1

√
πγ

exp

(
− (x− δ)

2

γ

)
. (7)

The mixed signal to noise ratio (MSNR) is employed to
describe the signal and noise power ratio in this paper.

MSNR = 10log10
(
σ2
s

/
γ
)
, (8)

where σ2
s is the signal variance, and γ is dispersion coefficient

of the alpha stable noise.

III. MCRB FOR M-FSK PARAMETER ESTIMATION

A. MCRB in Cauchy Noise

To jointly estimate a parameter vector of λ =
(θ, fc, f∆, Tb)

T, we assume that a vector λ with finite dimen-
sional can be uesed to represent r (t) with adequate accuracy
in the observed interval. The PDF of the received signal r (t),
with the Cauchy distribution noise can be expressed as

ρ (r| s,λ) =
∏L

l=1
(2π)

−1
γ
(
γ2 + |rl − sl|2

)−3/2

, (9)

where L is the observation time and s
∆
= {sl} is the vector of

transmitted symbols. The log-likelihood function is

ln ρ (r| s,λ) = L log (γ)− L log (2π)

− 1.5
∑L

l=1
log
(
γ2 + |rl − sl|2

)
,

(10)

Letting λ = (θ, fc, f∆, Tb)
T

= (λ1, . . . , λ4)
T denote

a vector parameter to be estimated. For any parameter
λm (m = 1, · · · , 4), the fundamental lower bound on the error
variance is given as

Er

[(
λ̂m − λm

)2]
≥MCRBλ(λm)=

[
Ic

−1 (λ)
]
m,m

. (11)

[Ic (λ)]m,n = Er

[
−∂2 ln ρ (r| s,λ)

∂λm∂λn

]
, (12)

where Ic (λ) is Fisher Information Matrix (FIM), [·]m,n
represents the element of the matrix at row m and column
n, and Er [·] denotes statistical expectation with respect to the
subscripted variable r. First, we calculate the derivatives of
the log likelihood function given in (10) with respect to the
components of λ as follows.

∂ ln ρ (r| s, λ)
∂λm

=−
∂

(
1.5

L∑
t=1

log
(
γ2+|x (t)−s (t)|2

))
∂λm

= −3
L∑

t=1

|w (t)|
γ2 + |w (t)|2

∂s (t)

λm
.

(13)

Then, by using (13), allows us to compute the [Ic (λ, s)]m,n

as follows.

[Ic (λ, s)]m,n=E

{
∂2 ln ρ (r| s, λ)

∂λm∂λn

}
=9E

{
L∑

t=1

|w (t)|
γ2+|w (t)|2

∂s∗(t)

∂λm

L∑
t=1

|w (t)|
γ2+|w (t)|2

∂s (t)

∂λn

}

= 9E


L∑

t=1

|w (t)|2(
γ2 + |w (t)|2

)2 ∂s∗(t)∂s (t)∂λm∂λn


=

3

5γ2

∫
Es

[
Re

(
∂s∗(t)∂s (t)

∂λm∂λn

)]
dt,

(14)

where E

{
|w(t)|2

(γ2+|w(t)|2)

}
= 2

15γ2 . In order to determine

the expression of [Ic (λ, s)]m,n, we should go through

Es

[
Re
(

∂s∗(t)∂s(t)
∂λm∂λn

)]
(m = n) which can be written as fol-

lows

Es

[∣∣∣∣∂s(t)∂θ

∣∣∣∣2
]
= A2Es

[∑L

l=1
h2 (t− lTb)

]
, (15)

Es

[∣∣∣∣∂s(t)∂fc

∣∣∣∣2
]
= 4π2A2t2Es

[∑L

l=1
h2 (t− lTb)

]
, (16)

Es

[∣∣∣∣∂s(t)∂f∆

∣∣∣∣2
]
= 4π2A2t2Es

[∑L

l=1
s2l h

2 (t− lTb)

]
, (17)

Es

[∣∣∣∣∂s(t)∂Tb

∣∣∣∣2
]
= A2Es

[∑L

l=1
l2ḣ2 (t− lTb)

]
, (18)

where ḣ(t−Tb) is the derivative of h(t−Tb) with respect
to Tb. Denote Λ = 3A2

/(
5γ2
)
, C = Es[sls

∗
l ], ℑ1 =∫

Tb

∑L
l=1 h

2(t−lTb)dt, ℑ2=
∫
Tb

t
∑L

l=1 h
2 (t− lTb)dt, ℑ3=∫

Tb
t2
∑L

l=1 h
2(t−lTb)dt, Ω=

∫
T0

∑L
l=1 l

2ḣ2 (t−lTb)dt.
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According to (14)-(18), the elements of I (λ, s) are ex-
pressed as

[Ic (λ, s)]1,1 = Λℑ1, (19)

[Ic (λ, s)]2,2 = 4π2Λℑ3, (20)

[Ic (λ, s)]3,3 = 4π2ΛCℑ3, (21)

[Ic (λ, s)]4,4 = ΛΩ. (22)

Using the same procedure, we can derive the
Es

[
Re
(

∂s∗(t)∂s(t)
∂λm∂λn

)]
(m ̸= n) as follows

Es

[
Re

(
∂s∗(t)

∂θ

∂s(t)

∂fc

)]
=2πtA2Es

[∑L

l=1
h2(t−lTb)

]
, (23)

Es

[
Re

(
∂s∗(t)

∂θ

∂s(t)

∂f∆

)]
=2πtA2Es

[∑L

l=1
slh

2(t−lTb)

]
, (24)

Es

[
Re

(
∂s∗(t)

∂fc

∂s(t)

∂f∆

)]
=(2πtA)2Es

[∑L

l=1
slh

2(t−lTb)

]
, (25)

Es

[
Re

(
∂s∗(t)

∂θ

∂s(t)

∂Tb

)]
=Es

[
Re

(
∂s∗(t)

∂fc
· ∂s(t)
∂Tb

)]
=Es

[
Re

(
∂s∗(t)

∂f∆
· ∂s(t)
∂Tb

)]
=0.

(26)

Substituting (23)-(26) into (14), the elements of Ic (λ, s)
for m ̸= n are expressed as

[Ic (λ, s)]1,2 = [Ic (λ, s)]2,1 = 2πΛℑ2, (27)

[Ic (λ, s)]1,3 = [Ic (λ, s)]3,1 = 2πΛBℑ2, (28)

[Ic (λ, s)]2,3 = [Ic (λ, s)]3,2 = 4π2ΛBℑ3, (29)

[Ic (λ, s)]1,4 = [Ic (λ, s)]4,1 = 0, (30)

[Ic (λ, s)]2,4 = [Ic (λ, s)]4,2 = 0, (31)

[Ic (λ, s)]3,4 = [Ic (λ, s)]4,3 = 0. (32)

where B = Es[sl]. According to (19)-(22) and (27)-(32),
Ic (λ, s) can be written as

Ic(λ, s)=


Λℑ1 2πΛℑ2 2πΛBℑ2

2πΛℑ2 4π2Λℑ3 4π2ΛBℑ3

2πΛBℑ2 4π2ΛBℑ3 4π2ΛCℑ3

ΛΩ

. (33)

Substituting (33) in (11), the MCRBs for λ =
(θ, fc, f∆, Tb)

T can be derived as

MCRBc
λ (θ) = ℑ3/(Λ (ℑ1ℑ3 −ℑ2ℑ2)), (34)

MCRBc
λ (fc) =

Cℑ1ℑ3 −B2ℑ2ℑ2

4π2Λℑ3 (ℑ1ℑ3 −ℑ2ℑ2)
, (35)

MCRBc
λ (f∆) = 1

/(
4π2Λℑ3

(
C −B2

))
, (36)

MCRBc
λ (Tb) = 1/(ΛΩ). (37)

Using a similar approach, we derive the FIM Ic (µ, s) for
parameter vector of µ=(θ, fc, f∆)

T which can be given as

Ic (µ, s)=

 Λℑ1 Λ2πℑ2 2πΛBℑ2

2πΛℑ2 4π2Λℑ3 4π2ΛBℑ3

2πΛBℑ2 4π2ΛBℑ3 4π2ΛCℑ3

 . (38)

Substituting (38) in (11), the MCRBs for µ = (θ, fc, f∆)
T

can be expressed as

MCRBc
µ (θ) = ℑ3/(Λ (ℑ1ℑ3 −ℑ2ℑ2)), (39)

MCRBc
µ (fc) =

(
Cℑ1ℑ3 −B2ℑ2ℑ2

)
4π2Λℑ3 (ℑ1ℑ3 −ℑ2ℑ2)

, (40)

MCRBc
µ (f∆) = 1

/(
4π2Λℑ3

(
C −B2

))
. (41)

For the parameter vector of υ = (θ, fc)
T, we can obtain

Ic (υ, s) by using the same procedure.

Ic (υ, s) =

[
Λℑ1 2πΛℑ2

2πΛℑ2 4π2Λℑ3

]
. (42)

Substituting (42) in (11), the MCRBs for υ = (θ, fc)
T are

expressed as

MCRBc
υ (θ) = ℑ3/(Λ (ℑ1ℑ3 −ℑ2ℑ2)), (43)

MCRBc
υ (fc) = ℑ1

/(
4π2Λ (ℑ1ℑ3 −ℑ2ℑ2)

)
. (44)

For the parameter vector of σ = (θ, f∆)
T, Ic (σ, s) can be

expressed as

Ic (σ, s) =

[
Λℑ1 2πΛBℑ2

2πΛBℑ2 4π2ΛCℑ3

]
. (45)

Substituting (45) in (11), the MCRBs for the parameter set
σ = (θ, f∆)

T, are written as

MCRBc
σ (θ) = Cℑ3

/(
Λ
(
Cℑ1ℑ3 −B2ℑ2ℑ2

))
, (46)

MCRBc
σ (f∆) = ℑ1

/(
4π2Λ

(
Cℑ1ℑ3 −B2ℑ2ℑ2

))
. (47)

For the parameter vector of ν = (fc, f∆)
T, we can express

Ic (ν, s) as

Ic (ν, s) =

[
4π2Λℑ3 4π2ΛBℑ3

4π2ΛBℑ3 4π2ΛCℑ3

]
. (48)

Substituting (48) in (11), the MCRBs for the parameter set
ν = (fc, f∆)

T written as

MCRBc
ν (fc) = C

/
4π2Λℑ3

(
C −B2

)
, (49)

MCRBc
ν (f∆) = 1

/(
4π2Λℑ3

(
C −B2

))
. (50)

B. MCRB in Gaussian Noise

Considering an observation vector r = (r1, r2, · · · , rL)T in
Gaussian noise, the PDF of the received signal r (t) can be
expressed as

p (r| s,λ) = 1√
π
exp

(
− 1

γ

∫
|rl − sl|2dt

)
, (51)

where s
∆
= {sl} is the vector of transmitted symbols. The

log-likelihood function becomes

ln p (r| s,λ) = − 1

γ

∫
|rl − sl|2dt. (52)

For any parameter λm (m = 1, · · · , 4), the fundamental
lower bound on the error variance given as

Er

[(
λ̂m−λm

)2]
≥MCRBλ(λm)=

[
Ig

−1 (λ)
]
m,m

, (53)
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[Ig(λ)]m,n = Er

[
−∂2 ln p (r| s,λ)

∂λm∂λn

]
, (54)

where, Ig (·) is FIM, [·]m,n
represents the factor of the matrix

with row m and column n, and Er [·] denotes statistical
expectation with respect to the subscripted variable r. This
gives

[Ig (λ, s)]m,n =
2

γ

∫
Es

[
Re

(
∂s∗(t)

∂λm
· ∂s(t)
∂λn

)]
dt. (55)

Similar to Section A, we can obtain the following equations

[Ig (λ, s)]1,1 = ℜℑ1, (56)

[Ig (λ, s)]2,2 = 4π2ℜℑ3, (57)

[Ig (λ, s)]3,3 = 4π2ℜCℑ3 (58)

[Ig (λ, s)]4,4 = ℜΩ, (59)

[Ig (λ, s)]1,2 = [J (λ, s)]2,1 = 2πℜℑ2, (60)

[Ig (λ, s)]1,3 = [J (λ, s)]3,1 = 2πℜBℑ2, (61)

[Ig (λ, s)]2,3 = [J (λ, s)]3,2 = 4π2ℜBℑ3, (62)

[Ig (λ, s)]1,4 = [J (λ, s)]4,1 = 0, (63)

[Ig (λ, s)]2,4 = [J (λ, s)]4,2 = 0, (64)

[Ig (λ, s)]3,4 = [J (λ, s)]4,3 = 0. (65)

where ℜ = 2A2
/
γ. Using (56)-(65), the FIM Jg (λ, s) is

given by

Ig (λ, s)=


ℜℑ1 2πℜℑ2 2πℜBℑ2

2πℜℑ2 4π2ℜℑ3 4π2ℜBℑ3

2πℜBℑ2 4π2ℜBℑ3 4π2ℜCℑ3

ℜΩ

 . (66)

Substituting (66) in (53), the MCRBs for λ =
(θ, fc, f∆, Tb)

T written as

MCRBg
λ (θ) = ℑ3/(ℜ (ℑ1ℑ3 −ℑ2ℑ2)), (67)

MCRBg
λ (fc) =

(
Cℑ1ℑ3 −B2ℑ2ℑ2

)
4π2ℜℑ3 (ℑ1ℑ3 −ℑ2ℑ2)

, (68)

MCRBg
λ (f∆) = 1

/(
4π2ℜℑ3

(
C −B2

))
, (69)

MCRBg
λ (Tb) = 1/(ℜΩ). (70)

For the parameter vector of µ = (θ, fc, f∆)
T, we can also

obtain the MCRBs

MCRBg
µ (θ) = ℑ3/(ℜ (ℑ1ℑ3 −ℑ2ℑ2)), (71)

MCRBg
µ (fc) =

(
Cℑ1ℑ3 −B2ℑ2ℑ2

)
4π2ℜℑ3 (ℑ1ℑ3 −ℑ2ℑ2)

, (72)

MCRBg
µ (f∆) = 1

/(
4π2ℜℑ3

(
C −B2

))
, (73)

For the parameter vector of υ = (θ, fc)
T, the MCRBs given

by
MCRBg

υ (θ) = ℑ3/(ℜ (ℑ1ℑ3 −ℑ2ℑ2)), (74)

MCRBg
υ (fc) = ℑ1

/(
4π2ℜ (ℑ1ℑ3 −ℑ2ℑ2)

)
. (75)

For the parameter vector of σ = (θ, f∆)
T, the MCRBs written

as

MCRBg
σ (θ) = Cℑ3

/(
ℜ
(
Cℑ1ℑ3 −B2ℑ2ℑ2

))
, (76)

MCRBg
σ (f∆) = ℑ1

/(
4π2ℜ

(
Cℑ1ℑ3 −B2ℑ2ℑ2

))
, (77)

For the parameter vector of ν = (fc, f∆)
T, the MCRBs

expressed as

MCRBg
ν (fc) = C

/(
4π2ℜℑ3

(
C −B2

))
, (78)

MCRBg
ν (f∆) = 1

/(
4π2ℜℑ3

(
C −B2

))
. (79)

C. MCRB for Fading Channel with Cauchy Noise

In this section we consider the MCRB for modulation
parameter estimations of FSK signals over the fading channel
with Cauchy noise. Since the noise w(t) is Cauchy noise, the
PDF of the received signal r (t) can be expressed as

ρ (rη| sη,λ) =
∏L

l=1
(2π)

−1
γ
(
γ2 +

∣∣rlη − slη
∣∣2)−3/2

,

(80)
where sη

∆
=
{
slη
}

is the vector of transmitted symbols is
affected by fading channel. The log-likelihood function is

ln ρ (rη| sη,λ) = L log (γ)− L log (2π)

− 1.5
∑L

l=1
log
(
γ2 +

∣∣rlη − slη
∣∣2), (81)

Let λ = (θ, fc, f∆, Tb)
T

= (λ1, . . . , λ4)
T be the modula-

tion parameter vector. Based on (11) and (12), this bound on
the variance of any unbiased estimate is given by

Er

[(
λ̂m−λm

)2]
≥MCRBλ(λm)=

[
I−1
η (λ, sη)

]
m,n

. (82)

[Iη (λ, sη)]m,n = Er

[
−∂2 ln ρ (rη| sη,λ)

∂λm∂λn

]
, (83)

where [Iη (λ, sη)]m,n is Fisher Information Matrix (FIM).
Using the same procedure in section A, [Iη (λ, s)]m,n can
be written as

[Iη (λ, sη)]m,n=
3

5γ2

∫
Es

[
Re

(
∂s∗η(t)

∂ρm
· ∂sη(t)

∂ρn

)]
dt. (84)

Similarly, Es

[
Re
(

∂s∗η(t)

∂ρm
· ∂sη(t)

∂ρn

)]
can be written as follows

Es

[∣∣∣∣∂sη(t)∂θ

∣∣∣∣2
]
= A2Es

[∑L

l=1
η2l h

2 (t−lTb)

]
, (85)

Es

[∣∣∣∣∂sη(t)∂fc

∣∣∣∣2
]
=4π2A2t2Es

[∑L

l=1
η2l h

2 (t−lTb)

]
, (86)

Es

[∣∣∣∣∂sη(t)∂f∆

∣∣∣∣2
]
=4π2A2t2Es

[∑L

l=1
s2l η

2
l h

2 (t−lTb)

]
, (87)

Es

[∣∣∣∣∂s(t)∂Tb

∣∣∣∣2
]
=A2Es

[∑L

l=1
η2l l

2ḣ2 (t−lTb)

]
. (88)

Es

[
Re

(
∂s∗η(t)

∂θ

∂sη(t)

∂fc

)]
=
A(t)

2πt
Es

[∑L

l=1
η2l h

2(t−lTb)

]
, (89)
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Es

[
Re

(
∂s∗η(t)

∂θ

∂sη(t)

∂f∆

)]
=
A(t)

2πt
Es

[∑L

l=1
slη

2
l h

2(t−lTb)

]
, (90)

Es

[
Re

(
∂s∗(t)

∂fc

∂s(t)

∂f∆

)]
=A(t)Es

[∑L

l=1
slη

2
l h

2(t−lTb)

]
, (91)

Es

[
Re

(
∂s∗η(t)

∂θ

∂sη(t)

∂Tb

)]
=Es

[
Re

(
∂s∗η(t)

∂fc
· ∂sη(t)

∂Tb

)]
=Es

[
Re

(
∂s∗η(t)

∂f∆
· ∂sη(t)

∂Tb

)]
=0.

(92)

where A(t) = (2πtA)2. We assumed that,
Λ = 6A2

/(
5γ2
)
, Υ1 =

∫
Tb

∑L
l=1 η

2
l h

2(t−lTb)dt,
Υ2 =

∫
Tb

t
∑L

l=1 η
2
l h

2 (t− lTb)dt, Υ3 =∫
Tb

t2
∑L

l=1 η
2
l h

2(t−lTb)dt, Ψ=
∫
T0

∑L
l=1 l

2η2l ḣ
2 (t−lTb)dt.

The elements of Iη (λ, s) are expressed as

[Iη (λ, sη)]1,1 = ΛΥ1, (93)

[Iη (λ, sη)]2,2 = 4π2ΛΥ3, (94)

[Iη (λ, sη)]3,3 = 4π2ΛCΥ3, (95)

[Iη (λ, sη)]4,4 = ΛΨ. (96)

[Iη (λ, sη)]1,2 = [Iη (λ, s)]2,1 = 2πΛΥ2, (97)

[Iη (λ, sη)]1,3 = [Iη (λ, s)]3,1 = 2πΛBΥ2, (98)

[Iη (λ, sη)]2,3 = [Iη (λ, s)]3,2 = 4π2ΛBΥ3, (99)

[Iη (λ, sη)]1,4 = [Iη (λ, s)]4,1 = 0, (100)

[Iη (λ, sη)]2,4 = [Iη (λ, s)]4,2 = 0, (101)

[Iη (λ, sη)]3,4 = [Iη (λ, s)]4,3 = 0. (102)

According to (93)-(102), Iη (λ, sη) can be written as

Iη(λ, sη)=


ΛΥ1 2πΛΥ2 2πΛBΥ2

2πΛΥ2 4π2ΛΥ3 4π2ΛBΥ3

2πΛBΥ2 4π2ΛBΥ3 4π2ΛCΥ3

ΛΨ

. (103)

Application of (103) to (82) yields,

MCRBη
λ (θ) = Υ3/(Λ (Υ1Υ3 −Υ2Υ2)), (104)

MCRBη
λ (fc) =

CΥ1Υ3 −B2Υ2Υ2

4π2ΛΥ3 (Υ1Υ3 −Υ2Υ2)
, (105)

MCRBη
λ (f∆) = 1

/(
4π2ΛΥ3

(
C −B2

))
, (106)

MCRBη
λ (Tb) = 1/(ΛΨ). (107)

Similarly, for the parameter vector of µ = (θ, fc, f∆)
T, the

MCRBs can be expressed as

MCRBη
µ (θ) = Υ3/(Λ (Υ1Υ3 −Υ2Υ2)), (108)

MCRBη
µ (fc) =

(
CΥ1Υ3 −B2Υ2Υ2

)
4π2ΛΥ3 (Υ1Υ3 −Υ2Υ2)

, (109)

MCRBη
µ (f∆) = 1

/(
4π2ΛΥ3

(
C −B2

))
. (110)

For the parameter vector of υ = (θ, fc)
T, we can also obtain

the MCRBs as follow,

MCRBη
υ (θ) = Υ3/(Λ (Υ1Υ3 −Υ2Υ2)), (111)

MCRBη
υ (fc) = Υ1

/(
4π2Λ (Υ1Υ3 −Υ2Υ2)

)
. (112)

For the parameter vector of σ = (θ, f∆)
T, the MCRBs are

written as

MCRBη
σ (θ) = CΥ3

/(
Λ
(
CΥ1Υ3 −B2Υ2Υ2

))
, (113)

MCRBη
σ (f∆) = Υ1

/(
4π2Λ

(
CΥ1Υ3 −B2Υ2Υ2

))
. (114)

For the parameter vector of ν = (fc, f∆)
T, we can express

the MCRBs as

MCRBη
ν (fc) = C

/
4π2ΛΥ3

(
C −B2

)
, (115)

MCRBη
ν (f∆) = 1

/(
4π2ΛΥ3

(
C −B2

))
. (116)

We can make the following remarks concerning the de-
scribed derivation.

Remark 1: The MCRBs of the parameter vector λ are
dependent on the amplitude A and dispersion coefficient γ
in Cauchy and Gaussian noise. When MSNR is given, the
MCRBs with Gaussian noise is less than MCRBs with Cauchy
noise.

Remark 2: For the parameter vector of λ, MCRBs for
modulation parameter estimation of M-FSK signal are de-
pendent on the amplitude A, dispersion coefficient γ, shaping
function h (t) and observation time L. In addition, MCRBs for
frequency offsets fc and frequency deviation f∆ are affected
by data symbols {sl}.

Remark 3: For the case of M-FSK modulated sequence
transmitted over fading channel, the fading gain is one of
important factor affecting MCRBs. In other words, the worse
the fading channel, the higher the MCRBs.

IV. NUMERICAL RESULTS

In this section, the numerical simulation results of the
derived MCRBs are presented followed with the corresponding
analysis. In simulations, the signal amplitude A is unity, the
symbol time Tb is normalized to unity, the carrier frequency
fc is set to 10/Tb, the carrier phase θ is set arbitrarily
between 0 and 2π, the frequency deviation f∆ is set to 2/Tb.
The observation time is 100 so that there are 100 symbols
available for estimations. The parameters of the Cauchy noise
(α = 1) and Gaussian noise (α = 2) are selected as a
location parameter δ = 0 and a dispersion coefficient γ = 1.
The consider a fading channel is modeled as an independent
Rayleigh flat fading channel.

Fig.1 and Fig.2 demonstrate the MCRBs of the joint
estimation parameter vector λ = (θ, fc, f∆, Tb)

T and the
MCRBs of the individual estimation parameter as a function of
MSNR in Cauchy and Gaussian noise. It can be observed that
jointly estimating MCRBs and individually estimating MCRBs
are almost identical for frequency deviation f∆ and symbol
duration Tb. For carrier phases θ and carrier frequency fc,
jointly estimations of the MCRBs are higher than individ-
ual estimations of that when MSNR is given. This can be
explained that MCRBλ (θ) and MCRBλ (fc) are dependent
on the frequency deviation f∆, and the carrier phases θ and
carrier frequency fc interact with each other. Additionally,
comparing Fig.1 and Fig.2, it is observed that the MCRBs
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Fig. 1. MCRB of joint estimation and individual estimation for M-FSK
signals in Cauchy noise
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Fig. 2. MCRB of joint estimation and individual estimation for M-FSK
signals in Gaussian noise

with Gaussian noise is less than MCRBs with Cauchy noise
for given amplitude A.

In Fig. 3, we evaluate the MCRBs of the joint estimation
parameter vector λ = (θ, fc, f∆, Tb)

T and the MCRBs of the
individual estimation parameter when FSK modulated signal
is affected by fading channel and is corrupted by additive
Cauchy noise. From the figure, we note that the MCRBs with
joint estimations are also higher than MCRBs with individual
estimations for the carrier phases θ and carrier frequency fc.
Moreover, comparing Fig.3 and Fig.1, we can find out that
the MCRBs for modulation parameter estimations from FSK
signals over fading channel are all less than MCRBs with
Cauchy noise for given MSNR, indicating that the worse the
fading channel, the higher the MCRBs.

V. CONCLUSION

This paper has derived the MCRB to estimate the mod-
ulation parameters of M-FSK signals in Cauchy noise and
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Fig. 3. MCRB of joint estimation and individual estimation for M-FSK
signals over Fading channel

Gaussian noise. The modulation parameters considered are
the frequency offsets, carrier phases, frequency deviation and
symbol duration. In addition, we investigated the MCRB
for a parameter vector λ from M-FSK signal over fading
channels in Cauchy noise. Theoretical analysis and simulations
demonstrated that the smaller the characteristic exponent α of
the noise, the higher the MCRBs for given MSNR. And the
worse the fading channel, the higher the MCRBs for given
MSNR. The MCRB approach seems to be applicable in many
other modulation types, such as PSK and QAM .
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