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Abstract—In this paper, we investigate the energy-efficient hy-
brid precoding design for integrated multicast-unicast millimeter
wave (mmWave) system, where the simultaneous wireless informa-
tion and power transform is considered at receivers. We adopt two
sparse radio frequency chain antenna structures at the base station
(BS), i.e., fully-connected and subarray structures, and design
the codebook-based analog precoding according to the different
structures. Then, we formulate a joint digital multicast, unicast
precoding and power splitting ratio optimization problem to
maximize the energy efficiency of the system, while the maximum
transmit power at the BS and minimum harvested energy at
receivers are considered. Due to its difficulty to directly solve
the formulated problem, we equivalently transform the fractional
objective function into a subtractive form one and propose a
two-loop iterative algorithm to solve it. For the outer loop, the
classic Bi-section iterative algorithm is applied. For the inner
loop, we transform the formulated problem into a convex one
by successive convex approximation techniques and propose an
iterative algorithm to solve it. Meanwhile, to reduce the complexity
of the inner loop, we develop a zero forcing (ZF) technique-based
low complexity iterative algorithm. Specifically, the ZF technique
is applied to cancel the inter-unicast interference and the first
order Taylor approximation is used for the convexification of the
non-convex constraints in the original problem. Finally, simulation
results are provided to compare the performance of the proposed
algorithms under different schemes.

Index Terms—Hybrid precoding, mmWave, multicast, unicast,
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energy efficiency, SWIPT.

I. Introduction

Millimeter wave (mmWave) (30-300 GHz), owning the wider
bandwidth, has been considered as a promising technique to
meet the requirement with an exponential data traffic growth
in future wireless communications [2]. Furthermore, due to the
short wavelengths in mmWave bands, more antennas can be
packed with a small physical size, forming a massive multi-
input multi-output (mMIMO) mmWave system [3]. However,
the use of a large number of antennas will cause a huge
energy consumption and hardware cost when fully digital
signal processing is applied, in the sense that each antenna
needs a dedicate radio frequency (RF) chain, and the power
consumption of the RF chain is as high as 250 mW at mmWave
frequencies [4]. To tackle this problem, a hybrid analog/digital
precoding scheme can be employed, where the required number
of RF chains will be much less than that of antennas [5].
Based on the connectivity of RF chains, two types of structures
are generally considered when the number of RF chains is
small, one is fully-connected structure and the other is subarray
structure. For the former, each RF chain is connected to all
the antennas with a large number of phase shifters, which can
obtain a high spectrum efficiency (SE). On the contrary, for the
latter, each RF chain is required to connect a subset of antennas
with a small number of phase shifters, thus a high energy
efficiency (EE) is obtained [6]-[8]. For example, [9] investigates
the energy and cost efficiency optimization solutions for 5G
wireless communication systems with massive antenna and
RF chains, and formulates a EE optimization problem. Based
on this, a suboptimal iterative hybrid precoding algorithm is
proposed. In [10], the authors formulate a joint optimization
problem of computation and communication power based on a
partially-connected RF chain structure and an upper bound of
EE is derived. Meanwhile, a suboptimal solution consisting of
the baseband and RF precoding matrices is proposed.

On the other hand, the simultaneous wireless information and
power transfer (SWIPT) has also been identified a promising
technique for future wireless communications [11]-[14]. In
general, there are two practical schemes for the SWIPT, namely
power splitting and time switching [11]. With power splitting,
the receivers split the received RF signals for information
detection and energy harvesting at the same time, while with
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Fig. 1: Joint multicast-unicast millimeter wave massive MIMO
systems with SWIPT.

time switching, the receivers switch between information de-
tection and energy harvesting at different times [15]. In fact,
SWIPT is a very effective solution for a multi-user system,
where the interference power can be transformed into the
energy at receivers. For example, [16], [17] study the joint
information and energy beamforming optimization problem in
a MIMO interference channels, and some interference align-
ment schemes are proposed in the interference networks with
SWIPT [18], [19]. However, the interference channel also
causes the difficulty for information decoding [20]. Therefore,
how to trade off the information and harvested energy is a
challenge in the SWIPT system.

Having both mmWave and SWIPT as technological enablers
for the energy-efficient wireless communications, the future
cellular network can potentially support a wide range of
services with a variety of very diverse requirements. There
is an increasing demand for the multicast content delivery
service over cellular networks, where a group of subscribed
users intend to receive the same content [21], [22]. It is often
that these users would request the customized content, when
consuming the multicast content at the same time. Taking the
object-based broadcasting (OBB) scenario as an example, each
of the subscribed users intends to simultaneously receive both
common message over multicast and private message over
unicast. To this end, a joint multicast and unicast transmission
can be an effective and efficient solution approach, compar-
ing with the conventional frequency/time division multiplex-
ing [23]. However, the cross interference between multicast and
unicast should be properly managed [24]. Therefore, the major
challenges in considering joint unicast and multicast include: i)
How to simultaneously transmit unicast and multicast signals;
ii) How to jointly design the unicast and multicast beamform-
ing.

A. Related Works

Currently, several works have been conducted to investigate
the part of the above problems. For the SWIPT system, [25]
studies the joint optimal power allocation and power splitting
ratio to maximize the minimum signal to interference plus noise
ratio (SINR) of all users. The authors in [26] investigate the EE
maximization problem by jointly optimizing the beamforming
and power splitting ratio. Then, a low-complexity zero forcing
(ZF) beamforming algorithm is proposed. Later, the authors
extend the SWIPT system to heterogeneous networks [27],

where small cell BSs can harvest the energy from the macro
BS. Based on this, a joint optimization energy harvesting rate
and achievable throughput of small cell users is formulated, and
then a sub-optimal iterative algorithm is proposed. The authors
in [28] apply the SWIPT to a multicast system, where multiple
users share the same message. The authors propose an efficient
subcarrier allocation and power allocation scheme to maximize
the minimum SINR at each subcarrier. Similarly, they later
formulate a non-convex optimization problem as maximizing
the minimum SINR among users in [29] , and two successive
convex approximation (SCA)-based iterative algorithms are
proposed to solve the formulated problem. Meanwhile, they
extend the system to the sparse RF chain structure at the
BS in [30]. For the above system, they develop an efficient
antenna selection and hybrid beamforming design algorithm to
minimize the transmit power.

In addition, [31] investigates the spectrum and energy-
efficient beamforming design problem in the mMIMO-NOMA
mmWave with lens antenna array, and the ZF precoding scheme
is used to reduce the inter-beam interference. Then, a dy-
namic power allocation algorithm is proposed to maximize
the sum rate of the system. Later, the authors extend the
system to SWIPT in [32], and they propose an effective hybrid
precoding and user grouping algorithm. Next, the weighted
minimum mean square error (WMMSE)-based power alloca-
tion algorithm is developed to solve the formulated sum rate
maximization problem. The authors in [33] investigate the
energy-efficient hybrid beamforming strategy, where the fully
digital power minimization problem is first analyzed. Then,
the authors propose an iterative hybrid beamforming scheme
to obtain the optimal solution. In [34], the authors investigate
the hybrid beamforming design problem in mmWave joint
unicast and multicast system. Based on this, a low-complexity
optimization algorithm is proposed to solve the formulated sum
rate maximization problem.

However, the existing works have not jointly investigated
the multicast-unicast mmWave communication with SWIPT.
For example, [25]-[27] only consider the SWIPT, and [28]-
[30] only study the multicast transmission. In addition, [31]-
[34] investigate the hybrid precoding in mmWave, and the joint
multicast and unicast transmission is only considered in [34].

B. Main Contributions

Different from the previous works, in this paper, we consider
the joint multicast-unicast mmWave communication, where the
SWIPT is applied at each receiver. The main contributions are
summarized as follows
• To reduce the hardware cost and energy consumption,

we consider two sparse RF chain structures at the BS,
i.e, fully-connected and subarray structures, and the cor-
responding analog precoding are designed according to
the predefined codebook. On this basis, we formulate an
EE maximization problem by jointly optimizing unicast,
multicast precoding and power splitting ratio. Meanwhile,
we consider the maximum transmit power constraint of
the BS and the minimum harvested energy requirement
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of each receiver. The formulated problem is non-convex,
which is intractable in its original form.

• We equivalently transform the fractional objective function
of the optimization problem into a subtractive form one
and then, a two-loop iterative algorithm is developed.
Specifically, the Bi-section iterative algorithm is applied
at the outer loop. For the inner loop, we still need to
solve a non-convex optimization problem. To this end, by
introducing auxiliary variables and employing the SCA
technique, we transform the original problem into a convex
one and propose an iterative algorithm to solve it.

• To reduce the complexity of the inner loop, we further
develop a low-complexity iterative algorithm. Specifically,
we apply the ZF technique to cancel the inter-unicast
interference, simplifying the unicast beamforming design
as power allocation problem. Then, the first Taylor approx-
imation is adopted to transform the non-convex constraints
into convex ones, and the convex optimization technique
is used to solve the inner optimization problem.

The rest of this paper is organized as follows. The system
description and analog precoding design schemes are presented
in Section II. The EE maximization problem is formulated and
solved in Section III. A low complexity ZF-based iterative
algorithm is developed in Section IV. Simulation results are
presented in Section V. Finally, we conclude this paper in
Section VI.

Notations: We use the following notations throughout this
paper: (·)∗, (·)T and (·)H denote the conjugate, transpose and
Hermitian transpose, respectively, ‖ · ‖ is the Frobenius norm,
Cx×y means the space of x × y complex matrix, Re(·) denotes
real number operation.

II. System Description and Analog Precoding Design

In this section, we will describe the investigated mmWave
system, including system model and mmWave channel model.
Then, two analog precoding design schemes are developed.

A. System Description

We consider a downlink mmWave communication system
as shown in Fig. 1, where the BS is equipped with NTX
antennas. To reduce the hardware cost and energy consumption,
we assume that the BS is equipped with NRF RF chains
(NRF ≤ NTX). In addition, K (K ≤ NRF) single-antenna users
are served simultaneously with multicast and unicast, where
K = {1, . . . ,K} denotes the set of all users. In this paper, we
focus on a scenario that all user receive a common information
stream by multicast, meanwhile each user obtains a private
information stream by unicast. In general, there are two types
of sparse RF chain structures at the BS. One is the fully-
connected structure as shown in Fig. 2(a), where each RF
chain is connected to all antennas through NTX phase shifters.
Another is the subarray structure as shown in Fig. 2(b), where
each RF chain is connected to a disjoint subset of antennas
through several phase shifters.

The received signal by the kth user can be expressed as

yk = hkFvk xk︸   ︷︷   ︸
Desired private signal

+ hkFv0x0︸   ︷︷   ︸
Desired common signal

+ hkF
K∑

i,k

vixi︸        ︷︷        ︸
Multi−user interference

+ nk︸︷︷︸
Noise

,
(1)

where hk ∈ C
1×NTX , vk ∈ C

NRF×1, and xk, respectively, denote the
downlink channel vector, digital precoding vector and private
signal for the kth user. v0 ∈ C

NRF×1 and x0 are the digital
precoding vector and common signal for the kth user, respec-
tively. nk is an independent and identically distributed (i.i.d.)
additive white Gaussian noise (AWGN) defined as CN(0, δ2

0).
F ∈ CNTX×NRF means the analog precoding matrix implemented
by the equal power splitter and phase shifters [35]. For the
fully-connected structure, F can be written as

F = [f1, f2, . . . , fNRF ], (2)

where fk ∈ C
NTX×1 is the analog precoding vector associated

with the kth RF chain, and |(fk)i| = 1/
√

NTX(i ∈ {1, . . . ,NTX}).
Similarly, for the subarray structure, F can be expressed as

F =


f1 0 · · · 0
0 f2 · · · 0
...

...
. . .

...
0 0 · · · fNRF

 , (3)

where fk ∈ C
NSUB×1 denotes the analog precoding vector

associated with the k-th RF chain with |(fk)i| = 1/
√

NSUB (i =

1,. . .,NSUB). Here, NSUB denotes the number of antennas con-
nected to each RF chain, and we assume that NSUB is the same
for all RF chains with NSUB = NTX/NRF

1.
In addition, each user splits the received signal into informa-

tion decoder (ID) and energy harvester (EH). We assume that
the βk portion of received signal power is divided into the ID,
while the remaining 1−βk portion of the received signal power
is transformed into the EH. Accordingly, the received signal
used for EH by the kth user can be written as

yEH
k =

√
1 − βkyk, (4)

and the harvested energy is

Ek = ε(1 − βk)

 K∑
i=0

|hkFvi|
2 + δ2

0

 , (5)

where ε ∈ (0, 1] denotes the energy conversion efficiency. The
received signal used for ID can be expressed as

yID
k =

√
βkyk + n′k, (6)

where n′k ∼ CN(0, δ2
1) is the addition noise caused by the ID.

Recently, layered-division multiplexing (LDM), a form of
non-orthogonal multiplexing technology, has been introduced
in cellular networks for joint multicast and unicast transmission,

1Here, NSUB should be an integer. In fact, when NSUB is not an integer, i.e.
the number of antennas in different subarrays may be different, this is also
suitable in our scheme.
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Fig. 2: Two sparse RF chain structures: (a) Fully-connected
structure; (b) Subarray structure.

which is a key technology for next generation terrestrial digital
television standard ATSC 3.0 [36]. A layered transmission
structure is applied to LDM for transmitting multiple signals
with different power levels and robustness for different services
and reception environment. Each user first decodes the upper
layer most robust signal, and then cancels it from the received
signal before decoding the next layer signal by successive
interference cancellation (SIC) technique. Therefore, in this
work, we can adopt a two-layer LDM structure, where the first
layer is intended for multicast services and the second layer
is for unicast services. In general, the decoding order of the
multicast and unicast messages at each receiver can be opti-
mized according to the instantaneous channel condition. Since
the multicast message is intended for multiple users and should
have a higher priority [37], each user first decodes the multicast
message and subtracts it from the received message, and then
decodes the unicast message. To this end, the achievable SINR
of the common signal at the kth user can be expressed as

γ0
k =

βk |hkFv0|
2

βk

(∑K
i=1 |hkFvi|

2 + δ2
0

)
+ δ2

1

, (7)

and the achievable SINR of the private signal at the kth user
can be expressed as

γk =
βk |hkFvk |

2

βk

(∑K
i,k |hkFvi|

2 + δ2
0

)
+ δ2

1

. (8)

For mmWave channel, we adopt a widely used geometric
channel mode as follows [38],

hk =

√
NTX

L

L∑
l=1

αl
ka(θl

k), (9)

where L is the number of paths, αl
k represents the complex

gain of the lth path. a(θl
k) is the antenna array response vector

Algorithm 1: The Analog Precoding Selection Algorithm
for the Fully-Connected Structure.

1 Initialize A, F = [], n = 1.
2 while n ≤ NRF do
3 for k = 1 : K do
4 Compute f?n = arg max

fn∈A

|hkfn|
2,

5 F = [F f?n ], A = A− {f?n }, n = n + 1.
6 if n > NRF then
7 Break;
8 end if
9 end for

10 end while

at user k. When the uniform linear array is used, a(θl
k) can be

expressed as

a(θl
k) =

1
√

NTX

[
1, e j(2π/λ)d sin(θl

k), . . . , e j(NTX−1)(2π/λ)d sin(θl
k)
]
, (10)

where θl
k ∈ [0, 2π] is the azimuth angles of departure of the

BS at the lth path, λ is the wavelength, and d is the distance
between two adjacent antenna array elements.

B. Analog Precoding Design

For the sparse RF chain structure, the design of the analog
precoding depends on the phase shifters. Although several
analog percoding methods [39]-[41] that may outperform the
codebook-based one, to decrease the complexity of joint de-
sign, we first apply the codebook-based method for designing
analog precoding [42], [43]. Based on this, we can obtain
the analog precoding by searching the codebook defined as
A = {a(θl

k),∀k, l}. For the fully-connected structure, the analog
precoding of the kth user can be selected as

f?k = arg max
fk∈A

|hkfk |
2, (11)

and we summarize the analog precoding selection scheme as
Algorithm 1.

For the subarray structure, all RF chains are connected to
the disjoint subset of antennas, and each of them has one
beamforming direction. To this end, we divide the channel hk as

hk = [hk,1,hk,2, . . . ,hk,NRF ], (12)

where hk,i denotes the channel gain from the ith subarray anten-
nas to the kth user. Different from the fully-connected structure,
we need to search the codebook based on the subarray. For
example, the analog precoding for the subarray i at the kth
user can be selected as

f?k = arg max
fk∈A

|hk,ifk |
2, (13)

where A has become subarray-based codebook. Based on
this, we summarize the analog precoding selection scheme as
Algorithm 2.
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Algorithm 2: The Analog Precoding Selection Algorithm
for the Subarray Structure.

1 Initialize A, F = 0NTX×NRF , n = 1.
2 while n ≤ NRF do
3 for k = 1 : K do
4 Compute f?n = arg max

fn∈A

|hk,nfn|
2,

5 F((n − 1)NSUB + 1 : nNSUB, n) = f?n , A = A− {f?n },
n = n + 1.

6 if n > NRF then
7 Break;
8 end if
9 end for

10 end while

III. EE Optimization Problem Formulation and Solution
In this section, we formulate an EE maximization problem

by jointly optimizing the unicast, multicast precoding and
power splitting ratio, and then a two-loop iterative algorithm is
proposed.

A. Problem Formulation
In general, the power consumption includes two parts,

namely transmit power and circuit power consumption. The
circuit power consumption are mainly caused by baseband
signal processing, RF chains and phase shifters [3], [7]. For
the fully-connected structure, the circuit power consumptions
can be written as

PC = PBB + NRFPRF + NRFNTXPPS, (14)

where PBB, PRF, and PPS, respectively, denote the power
consumption of the baseband, the RF chain and the phase
shifter. Similarly, the circuit power consumption of the subarray
structure can be expressed as

PC = PBB + NRFPRF + NTXPPS. (15)

Finally, we give the total power consumption as follows

Ptotal =

K∑
k=0

ξ||Fvk ||
2 + PC. (16)

where ξ ≥ 1 is the inefficiency of the power amplifier [44].
Next, we define the EE of the system as

ηEE =

min
∀k
{log2(1+γ0

k )}+
∑K

k=1 log2(1+γk)

Ptotal
[bps/Hz/W]. (17)

In this paper, we aim to maximize the EE of the system
by jointly optimizing the power splitting ratio βk (k ∈ K) and
digital precoding vk (k ∈ {0,K}), which is written as

max
{{βk}, {vk}}

ηEE (18a)

s.t. Ek ≥ Emin
k , k ∈ K , (18b)

0 ≤ βk ≤ 1, k ∈ K , (18c)
K∑

k=0

||Fvk ||
2 ≤ Pmax, (18d)

where (18b) denotes the minimum requirement of the harvested
energy for each user, and (18d) means the maximum transmit
power constraint for the BS. One can observe that higher
transmit power is needed for a larger Emin

k . However, (18d)
means that the total transmit power is limited. When Pmax
is small while Emin

k is large, problem (18) may be infeasible.
Therefore, it cannot be guaranteed that (18) is always feasible.
In general, for a given Pmax, when (18) is infeasible, we have
to decrease Emin

k .

B. The Proposed Two-Loop Iterative Algorithm

After obtaining the analog precoding F, we define the
equivalent channel as ĥk = hkF. By introducing auxiliary
variables t0 and tk, the original EE maximization problem can
be equivalently expressed as

max
{{βk}, {vk}, t0, {tk}}

∑K
k=0 log2(1 + tk)

Ptotal
(19a)

s.t.
βk |ĥkv0|

2

βk

(∑K
i=1 |ĥkvi|

2 + δ2
0

)
+ δ2

1

≥ t0, k ∈ K , (19b)

βk |ĥkvk |
2

βk

(∑K
i,k |ĥkvi|

2 + δ2
0

)
+ δ2

1

≥ tk, k ∈ K , (19c)

ε(1 − βk)

 K∑
i=0

|ĥkvi|
2 + δ2

0

 ≥ Emin
k , k ∈ K , (19d)

0 ≤ βk ≤ 1, k ∈ K , (19e)
K∑

k=0

||Fvk ||
2 ≤ Pmax. (19f)

It is evident that (19) is a non-convex optimization problem
due to non-convex constraints (19b)-(19d). To solve the above
problem, we first equivalently transform the fractional objective
function into the subtractive form. We denote q? as the obtained
maximum EE of the system, namely

q?=

∑K
k=0 log2(1 + t?k )∑K

k=0 ξ||Fv?k ||2 + PC
= max
{{βk}, {vk}, t0, {tk}}

∑K
k=0 log2(1 + tk)∑K

k=0 ξ||Fvk ||
2 + PC

, (20)

where {{βk}, {vk}, t0, {tk}} should satisfy constraints (19b)-(19f).
Then, we apply the following Theorem.

Theorem 1: The maximum EE q? is obtained if an only if

max
{{βk}, {vk}, t0, {tk}}

K∑
k=0

log2(1 + tk) − q?
 K∑

k=0

ξ||Fvk ||
2 + PC


=

K∑
k=0

log2(1 + t?k ) − q?
 K∑

k=0

ξ||Fv?k ||
2 + PC


=0,

(21)

where
∑K

k=0 log2(1 + tk) ≥ 0 and
∑K

k=0 ξ||Fvk ||
2 + PC > 0.

Proof The proof of Theorem 1 can follow the similar approach
to the one in [45].
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Algorithm 3: The Bi-section-Based EE Resource Alloca-
tion Algorithm.

1 Initialize qs = 0, qb � 0 with T (qs) > 0 and T (qb) < 0, a
small constant ε.

2 repeat
3 Update qm ← (qs + qb)/2,
4 Solve problem (22) and obtain T (qm),
5 qs ← qm if T (qm) > 0, else qb ← qm.
6 until |T (qm)| < ε;

As a result, we need to solve the following optimization
problem for a given q

max
{{βk}, {vk}, t0, {tk}}

K∑
k=0

log2(1 + tk) − q
K∑

k=0

ξ||Fvk ||
2 (22a)

s.t. (19b) − (19f), (22b)

where q can be regarded as a parameter and we can denote
the optimal value of (22a) as T (q). To this end, we have the
following definition according to Theorem 1

q = q? ⇔ T (q) = 0, (23)

which means that searching the root for the nonlinear equation
T (q) = 0 is equivalent to solve (19). It can be found that T (q)
is a strictly decreasing and convex function with respect to q,
where T (q) > 0 with q → −∞ and T (q) < 0 with q → ∞.
Therefore, we can use the classical Bi-section method to find
T (q) = 0, which is summarized as Algorithm 3.

Apparently, (22) is still a non-convex optimization problem.
Next, we define two new variables µk = 1/βk, ωk = 1/(1 − βk)
and reformulate the following optimization problem

max
{{µk}, {ωk}, {vk}, t0, {tk}}

K∑
k=0

log2(1+tk) −
K∑

k=0

ξ||Fvk ||
2 (24a)

s.t.|ĥkv0|
2 ≥ t0

 K∑
i=1

|ĥkvi|
2 + δ2

0 + µkδ
2
1

 , k ∈ K , (24b)

|ĥkvk |
2 ≥ tk

 K∑
i,k

|ĥkvi|
2 + δ2

0 + µkδ
2
1

 , k ∈ K , (24c)

K∑
i=0

|ĥkvi|
2 + δ2

0 ≥
Emin

k

ε
ωk, k ∈ K , (24d)∥∥∥∥∥∥ µk − ωk

2

∥∥∥∥∥∥
2
≤ µk + ωk − 2, k ∈ K , (24e)

(19e), (19f). (24f)

Meanwhile, we have the following theorem.
Theorem 2: The optimal solution of (24) is also the optimal

solution of (22).

Proof According to (24e), we have,

µk + ωk ≤ µkωk. (25)

Due to µkωk ≥ 0, we divide (25) by µkωk and have
1
µk

+
1
ωk
≤ 1. (26)

Assume
{
{µ?k }, {ω

?
k }, {v

?
k }, t?0 , {t

?
k }

}
represents a global opti-

mization solution of (24), when (24e) is satisfied with equality,
namely 1/µ?k +1/ω?k = 1, it is clear that problems (22) and (24)
are equivalent and we only need to replace 1/µ?k with β?k for
k ∈ K . Otherwise, if 1/µ?k + 1/ω?k < 1, we scale

{
{µ?k }, {ω

?
k }

}
by (1/µ?k + 1/ω?k ) and have

1
µ?k (1/µ?k + 1/ω?k )

+
1

ω?k (1/µ?k + 1/ω?k )

=
µ?k

µ?k + ω?k
+

ω?k
µ?k + ω?k

= 1.
(27)

It means that (24e) can satisfy the equality and the har-
vested power does not violate the constraint (24d) due to
1/µ?k +1/ω?k < 1. As a result, the values of

∑K
i=1 |ĥkvi|

2+δ2
0+µkδ

2
1

and
∑K

i,k |ĥkvk |
2 + δ2

0 + µkδ
2
1 in (24b) and (24c) will become

smaller. Meanwhile, we can obtain a large {t0, tk} than the
optimal {t?0 , t

?
k }, which means a greater rate can be obtained for

the same vk. It is contradictory with our original assumption,
and we finish the proof.

Next, we need to solve (24), which is still a non-convex
optimization problem due to the non-convex constraints (24b)-
(24d). Let {v̂k}(k ∈ K) is a feasible solution and then, we define
vk = v̂k + ∆vk and have

|ĥkvk |
2 =(v̂k + ∆vk)HĤk(v̂k + ∆vk)

≥2Re{(v̂k)HĤk∆vk} + (v̂k)HĤkv̂k,
(28)

where Ĥk = ĥH
k ĥk, ∆vk = vk − v̂k. In this case, |ĥkvk |

2 can
be replaced by its convex approximations and the formulated
problem can be solved iteratively. Accordingly, (24b)-(24d) can
be transformed as

2Re{(v̂0)HĤk∆v0}+(v̂0)HĤkv̂0≥ t0

 K∑
i=1

|ĥkvi|
2+δ2

0+µkδ
2
1

 , (29)

2Re{(v̂k)HĤk∆vk}+(v̂k)HĤkv̂k≥ tk

 K∑
i,k

|ĥkvi|
2+δ2

0+µkδ
2
1

 , (30)

K∑
i=0

2Re{(v̂i)HĤk∆vi} + (v̂i)HĤkv̂i + δ2
0 ≥ Emin

k ωk/ε. (31)

Then, we set the new variables τk ≥
∑K

i=1 |ĥkvi|
2 + δ2

0 + µkδ
2
1

and λk ≥
∑K

i,k |ĥkvi|
2 + δ2

0 +µkδ
2
1, and reformulate the following

optimization as

max
{{µk}, {ωk}, {τk}, {λk}, {vk}, t0, {tk}}

K∑
k=0

log2(1+tk)−q
K∑

k=0

ξ||Fvk ||
2 (32a)

s.t. 2Re{(v̂0)HĤk∆v0} + (v̂0)HĤkv̂0 ≥ t0τk, k ∈ K , (32b)
K∑

i=1

|ĥkvi|
2 + δ2

0 + µkδ
2
1 ≤ τk, k ∈ K , (32c)

2Re{(v̂k)HĤk∆vk} + (v̂k)HĤkv̂k ≥ tkλk, k ∈ K , (32d)
K∑

i,k

|ĥkvi|
2 + δ2

0 + µkδ
2
1 ≤ λk, k ∈ K , (32e)

(19e), (19f), (24e), (31). (32f)
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Algorithm 4: The Joint Digital Precoding and Power
Splitting Ratio Iterative Algorithm.

1 Initialize {τ[i−1]
k }, {λ[i−1]

k }, {v[i−1]
k }, t[i−1]

0 , {t[i−1]
k }, i = 1, the

maximum iteration times Tmax.
2 repeat
3 Solve the optimization problem (34) and obtain the

optimal {µ[i]
k }, {ω

[i]
k }, {τ

[i]
k }, {λ

[i]
k }, {v

[i]
k }, t0, {t

[i]
k }.

4 Update i← i + 1.
5 until i = Tmax;

So far, the only non-convex constraints are (32b) and (32d)
in (32). Similar to [46], we can obtain the upper of t0τk and
tkλk as

t[i−1]
0

2τ[i−1]
k

τ2
k +

τ[i−1]
k

2t[i−1]
0

t2
0 ≥ t0τk,

t[i−1]
k

2λ[i−1]
k

λ2
k +

λ[i−1]
k

2t[i−1]
k

t2
k ≥ tkλk, (33)

where {t[i−1]
0 , {τ[i−1]

k }, {t[i−1]
k }, {λ[i−1]

k }} are the value of
{t0, {τk}, {tk}, {λk}} at the (i − 1)th iteration. Finally, we
formulate the following optimization problem

max
{{µk}, {ωk}, {τk}, {λk}, {vk}, t0, {tk}}

K∑
k=0

log2(1+tk)−q
K∑

k=0

ξ||Fvk ||
2 (34a)

s.t. 2Re{(v̂0)HĤk∆v0}+(v̂0)HĤkv̂0≥
t[i−1]
0

2τ[i−1]
k

τ2
k +

τ[i−1]
k

2t[i−1]
0

t2
0, (34b)

2Re{(v̂k)HĤk∆vk}+(v̂k)HĤkv̂k≥
t[i−1]
k

2λ[i−1]
k

λ2
k +

λ[i−1]
k

2t[i−1]
k

t2
k , (34c)

(19e), (19f), (24e), (31), (32c), (32e). (34d)

So far, it is clear that (34) is a convex optimiza-
tion problem, which can be solved by standard con-
vex optimization technique, e.g., interior-point method or
CVX tool box. Summarily, solving the original problem
(22), we need to iteratively solve the optimal values of
{{µk}, {ωk}, {τk}, {λk}, {vk}, t0, {tk}} via (34). In addition, since
obtained

{
{µ[i]

k }, {ω
[i]
k }, {τ

[i]
k }, {λ

[i]
k }, {v

[i]
k }, t

[i]
0 , {t

[i]
k }

}
are the optimal

solutions at the ith iteration, iteratively updating these variables
will increase or maintain the value of the objective function
(34a). To this end, the proposed iterative algorithm will con-
verge to at least a local optimal solution, which is summarized
in Algorithm 4.

Next, we analyze the complexity of Algorithm 4. In fact, (34)
is a second-order cone optimization problem, and the worst-
case complexity of solving (34) with second-order cone form
is O([KNTX + 5K + 1]3.5) [47], where KNTX + 5K + 1 denotes
the number of variables.

IV. ZF-Based Low-complexity Algorithm

To reduce the complexity for solving (22), we propose a ZF-
based low complexity algorithm. Specifically, we first apply
the ZF technique to cancel the inter-unicast interference. Let
H = [ĥT

1 , ĥ
T
2 , . . . , ĥ

T
K]T , which includes the equivalent downlink

channel from the BS to all K users. Then, the precoding matrix
can be written as V = HH(HHH)−1, and the digital precoding

for unicast of the kth user can be expressed as vk = Vk/‖FVk‖,
where Vk denotes the kth row of V.

After applying ZF precoding, the multi-user interference can
be removed from (7) and (8), and the user’s SINR can be
rewritten as

γ0
k =

βk |ĥkv0|
2

βk

(
pk |ĥkvk |

2 + δ2
0

)
+ δ2

1

, k ∈ K , (35)

and

γk =
βk pk |ĥkvk |

2

βkδ
2
0 + δ2

1

, k ∈ K , (36)

where pk stands for the unicast transmit power for the kth user.
In this case, we only need to optimize the transmit power {pk}

and multicast precoding v0. Next, we define two new variables
gk and ok, where gk ≥

1
βk

and ok ≥
Emin

k
ε(1−βk) . As a result, the

optimization problem (22) can be rewritten as

max
{{βk}, {pk},v0 t0, {tk}}

K∑
k=0

log2(1+tk)−qξ(
K∑

k=1

pk + ‖Fv0‖
2) (37a)

s.t.
|ĥkv0|

2

pk |ĥkvk |
2 + δ2

0 + gkδ
2
1

≥ t0, k ∈ K , (37b)

pk |ĥkvk |
2

δ2
0 + gkδ

2
1

≥ tk, k ∈ K , (37c)

pk |ĥkvk |
2 + |ĥkv0|

2 + δ2
0 ≥ ok, k ∈ K , (37d)

gk ≥
1
βk
, k ∈ K , (37e)

ok ≥
Emin

k

ε(1 − βk)
, k ∈ K , (37f)

‖Fv0‖
2 +

K∑
k=1

pk ≤ Pmax, (37g)

(19e). (37h)

One can observe that (37b)-(37f) are all non-convex con-
straints. Next, we will apply some approximation techniques
to transform them into convex ones.

Firstly, combining with (28), (37d) can be transformed into
the convex constraint as

pk |ĥkvk |
2 + 2Re{(v̂0)HĤk∆v0} + (v̂0)HĤkv̂0 + δ2

0 ≥ ok, k ∈ K . (38)

To deal with the non-convex constraints (37e) and (37f), we
apply the Schur complement lemma [48] and transform them
into the following convex matrix form constraints,[

gk 1
1 βk

]
≥ 0, k ∈ K , (39)

and  ok

√
Emin

k√
Emin

k ε(1 − βk)

 ≥ 0, k ∈ K . (40)

In addition, we find that the left side of (37b) is a
quadratic-over-affine function, which is jointly convex with
respect to {v0, pk, gk}. Based on this, we define f (v0, pk, gk) =
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Algorithm 5: The ZF-Based Low-Complexity Algorithm.

1 Initialize {g[i−1]
k }, {t[i−1]

k }, {v[i−1]
0 }, i = 1, the maximum

iteration times Tmax.
2 repeat
3 Solve the optimization problem (46) and obtain the

optimal {β[i]
k }, {p

[i]
k }, {g

[i]
k }, {v

[i]
0 }, t

[i]
0 , {t

[i]
k }. Update

i← i + 1.
4 until i = Tmax;

|ĥkv0 |
2

pk |ĥkvk |
2+δ2

0+gkδ
2
1
, k ∈ K and the first order Taylor series expansion

of f (v0, pk, gk) can be written as

f (v0, pk, gk) ≈
2
(
ĥkv[i−1]

0

)∗
Γ

[i−1]
k

ĥkv0 −
|ĥkv[i−1]

0 |2

(Γ[i−1]
k )2

Γk, (41)

where Γk = pk |ĥkvk |
2 + δ2

0 + gkδ
2
1 and Γ

[i−1]
k = p[i−1]

k |ĥkvk |
2 + δ2

0 +

g[i−1]
k δ2

1. In addition, v[i−1]
0 , p[i−1]

k and g[i−1]
k denote the value of

v0, pk and gk at the [i− 1]th iteration, respectively. As a result,
(37b) can be written as the following convex constraint

2
(
ĥkv[i−1]

0

)∗
Γ

[i−1]
k

ĥkv0 −
|ĥkv[i−1]

0 |2

(Γ[i−1]
k )2

Γk ≥ t0, k ∈ K . (42)

Finally, (37c) can be expressed as

|ĥkvk |
2

δ2
1

pk −
δ2

0

δ2
1

tk ≥ tkgk, k ∈ K . (43)

Similar to (33), we can obtain the upper bound of tkgk as

t[i−1]
k

2g[i−1]
k

g2
k +

g[i−1]
k

2t[i−1]
k

t2
k ≥ tkgk, (44)

where t[i−1]
k and g[i−1]

k , respectively, are the value of tk and gk

at the [i − 1]th iteration. After that, (37c) can be transformed
into the following convex constraint

|ĥkvk |
2

δ2
1

pk −
δ2

0

δ2
1

tk ≥
t[i−1]
k

2g[i−1]
k

g2
k +

g[i−1]
k

2t[i−1]
k

t2
k , k ∈ K . (45)

Accordingly, we need to iteratively solve the following convex
optimization problem.

max
{{βk}, {pk}, {gk},v0 t0, {tk}}

K∑
k=0

log2(1+tk)−qξ(
K∑

k=1

pk + ‖Fv0‖
2) (46a)

s.t. (19e), (38), (39), (40), (42), (45). (46b)

We can solve the above problem by convex solvers (e.g.,
CVX), which is summarized as Algorithm 5. Similar to (34),
the worst-case complexity of solving (46) with second-order
cone form is O([NTX + 4K + 1]3.5) < O([KNTX + 5K + 1]3.5),
where NTX + 4K + 1 denotes the number of variables in (46).

Summarily, compared with the unicast beamforming design,
the significant challenges for joint consideration of multicast
and unicast includes the following two aspects: (a) The energy

efficiency (EE) is defined as ηEE =
min
∀k
{log2(1+γ0

k )}+
∑K

k=1 log2(1+γk)

Ptotal
,

where min
∀k
{log2(1+γ0

k )} denotes the multicast rate. Then, we
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values.

transform ηEE into a tractable one given by
∑K

k=0 log2(1+tk)
Ptotal

via
bringing auxiliary variables t0 and tk, and then advanced
convex approximated techniques are applied and an iterative
algorithm is proposed, i.e, Algorithm 4. (b) For joint multicast-
unicast transmission, when ZF technique is used to cancel
the inter-unicast interference, we still need to design multicast
beamforming such as our proposed Algorithm 5, which is
challenging and different from the unicast beamforming design.

V. Simulation Results

In this section, simulation results are provided to illustrate the
effectiveness of the proposed algorithms. We assume that the
BS has a coverage of 30 meters, and the path loss is modeled as
69.4 + 24 log10(D) dB, where D denotes the distance in meter.
We assume that there are 8 paths for the mmWave channel, and
the azimuth angle of departure at BS is uniformly distributed
over [0, 2π]. The BS is equipped with NTX = 256 antennas and
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NRF = 4 RF chains, where we set d = λ/2. The noise power,
δ2

0 and δ2
1, are set -80 dBm and -60 dBm, respectively. The

energy conversion efficiency ε and the inefficiency of the power
amplifier ξ are set as 0.5 and 0.38, respectively. In addition,
we set PBB = 200 mW, PRF = 300 mW, PPS = 40 mW [32].
Meanwhile, the minimum harvested energy is Emin

k = 100 µW
for all users [32], [49], the number of users is set as K = 2.

Fig. 3 shows the convergence performance of the proposed
two algorithms (e.g., Algorithms 4 and 5) under different an-
tenna structures, including digital structure (e.g., each antenna
is connected to a dedicated RF chain), fully-connected structure
and subarray structure, where we set q = 0 and Pmax = 30 dBm.
It is clear that although the SE under Algorithm 4 is higher than
that under Algorithm 5, Algorithm 5 can converge speedily
after 5 iterations, while Algorithm 4 needs about 50 itera-
tions. Therefore, the ZF-based method can speedily obtain
the solutions of the problem with a small performance loss.
In addition, it can also be found that the SE under digital
structure is the highest compared to another two structures, but
its energy consumption and hardware complexity are high. In
addition, Fig. 4 shows the influence of different initial values
on its solutions, where we consider the Algorithm 5 and fully-
connected structure. From this figure, we can obtain that the
proposed algorithm always converges to the same point under
different initial values. However, initialization does slightly
influence the convergence speed.

Figs. 5 and 6 show the convergence property of Algorithm 3
under different antenna structures, and we set Pmax = 40 dBm.
We solve problem (22) via Algorithm 4. From Fig. 5, one can
observe that the EE trends to converge after 8 iterations. In
addition, one can see that the EE under subarray structure is
higher than that under another two structures. This is because
its circuit power consumption is low due to the small number
of RF chains and phase shifters. In addition, the value of T (q)
must be zero according to Theorem 1, and Fig. 5 also verifies
this point.

Fig. 7 shows the EE versus maximum transmit power at the
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Fig. 6: The value of T (q) versus iteration.

25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Maximum transmit power (dBm)

E
ne

rg
y 

ef
fic

ie
nc

y 
(b

ps
/H

z/
W

)

 

Algorithm 4
Algorithm 5

Subarray structure

Fully-connected structure

Digital structure

Fig. 7: Energy efficiency versus maximum transmit power at
the BS.

BS with NRF = 4. We can observe that the EE first increases
and then saturates as Pmax increases. It is understandable that a
larger transmit power can obtain a higher SE, but the improved
ratio will be lower and lower as transmit power increases.
Therefore, the EE will reach the point of diminishing returns
when the transmit power continues to increase. In addition, it
is clear that the EE under subarray structure is the highest and
under digital structure is the lowest due to the huge power
consumption of RF chains.

We examine the EE of the system under different optimiza-
tion schemes in Fig. 8. “Max EE” stands that the EE of the
system when the EE is maximized, while “Max SE” represents
the EE of the system when the SE is maximized. In addition,
Algorithm 4 is used to solve the optimization problem. It can be
observed that when the maximum transmit power is identical,
the EE under two optimizations schemes is the same. As the
maximum transmit power increases, the EE reaches maximum
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and remains constant under “Max EE” scheme, while the EE
decreases under “Max SE” scheme. In fact, the objection of
“Max SE” scheme is to maximize the SE without considering
the power consumption. As a result, the EE may decrease for
larger transmit power.

Fig. 9 shows the EE versus the minimum harvested energy,
and we set Pmax = 45 dBm. One can observe that the EE
keeps a constant when Emin

k is relatively small, e.g., Emin
k ∈

[0.1 0.4]. This is because there are redundant power at the
BS that can be used to satisfy the requirement of the harvested
energy. However, when Emin

k is large, more power has to be
used to transform into the energy, and thus the EE is decreased.
Based on this, it means that higher EH may lead to a lower
EE. Therefore, in general, it is unavailable to increase EE and
EH simultaneously, and we have to sacrifice one for improving
the other.

Finally, the tradeoff between the EE and SE is demonstrated
under the subarray structure in Fig. 10. It can be observed that
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Fig. 10: Energy efficiency versus spectral efficiency.

the EE increases with the SE when the SE is small. For a larger
SE, the EE will decreases, which means that a large SE does
not lead to a higher EE, and vice versa. Therefore, there exists
a tradeoff between the EE and SE, specifically for a higher SE.

VI. Conclusions

In this paper, we investigated the EE maximization problem
in a joint multicast-unicast mmWave communication system
with SWIPT. We first designed the analog precoding for two
sparse RF chain structures. Next, we proposed a two-loop al-
gorithm to solve the formulated EE optimization problem. The
Bi-section algorithm is adopted in outer loop. Subsequently,
we developed two iterative algorithms (e.g., Algorithms 4 and
5) for the inner loop. Simulation results showed that although
the performance of Algorithm 5 is slightly inferior to that of
Algorithm 4, fast convergence can be achieved. In addition, it
can also be observed that there still a tradeoff between EE and
SE, specifically for a larger SE.
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