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Hybrid Electric Vehicle Two-step Fuel Efficiency

Optimization with Decoupled Energy Management

and Speed Control
Boli Chen, Simos A. Evangelou and Roberto Lot

Abstract—Hybrid electric vehicles (HEVs) offer an effective
solution for emissions reduction and fuel energy savings. The
pursuit of further improvements in their energy efficiency has led
to the two fundamental optimization challenges of vehicle speed
and powertrain energy management (EM), which are inherently
coupled. This paper examines the vehicle speed and powertrain
EM co-optimization problem for fuel economy for a series HEV
following a prescribed route with expected traveling time. In
order to overcome the computational burden of a large scale
optimal control problem (OCP), this work presents a novel two-
step optimal control strategy that suitably separates the co-
optimization problem on the basis of involving the characteristics
of the HEV powertrain power split and losses in the speed
optimization step without an explicit use of a powertrain model.
A benchmark method that simultaneously solves the optimal
driving speed and the energy source power split is introduced,
which is used to show the solution quality of the proposed
approach. It is illustrated that the proposed method yields a
driving speed solution close to the benchmark method, and
additionally it outperforms the benchmark fuel economy, with
much higher computational efficiency. The simplicity and effec-
tiveness of the proposed two-step approach make it a practical
and implementable EM control strategy.

ABBREVIATIONS

CS Charge-Sustaining

ECMS Equivalent Consumption Minimization Strategy

EM Energy Management

HEV Hybrid Electric Vehicle

ICE Internal Combustion Engine

NLP Nonlinear Programming

OCP Optimal Control Problem

PL Propulsion Load

PMS Permanent Magnet Synchronous (Machine)

PS Primary Source of energy

SOC State of Charge

SS Secondary Source of energy

I. INTRODUCTION

Concerns about climate change and the increasing global

energy consumption have led to the electrification of ground
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vehicles, which have great potential to reduce greenhouse gas

emissions and to save fossil fuels. As with the conventional

internal combustion engine (ICE) vehicles, the energy effi-

ciency of a hybrid electric vehicle (HEV) can be enhanced

in two aspects: a) “vehicle-to-miles”, and b) “tank-to-vehicle”

[1]. The first step a) represents the energy conversion from

mechanical energy received from the powertrain system to

the kinetic energy for the displacement, while in the second

energy conversion step b) the fuel energy is transformed to the

mechanical energy for propulsion via the hybrid powertrain.

In the literature on HEV energy efficiency optimization, a) is

primarily addressed by optimizing driving speed, which also

plays an important role in eco-driving training schemes. On

the other hand, the approach of improving ‘tank-to-vehicle”

efficiency is usually referred to as an energy management

(EM) strategy that aims at minimizing overall fuel consump-

tion by a suitable energy source power-split, while following

a predefined driving cycle.

The energy-aware driving style has been thoroughly inves-

tigated in the last two decades for conventional vehicles. It

has been shown using the theory of optimal control in [2],

[3] and experimentally in [4] that when the traffic and road

elevation is not considered, pulse and glide (PnG) operation

is fuel efficient. Such operation includes a rapid acceleration

at the beginning until the vehicle reaches its maximum speed,

followed by a period of coasting to a low speed. The operation

of heavy-duty vehicles diverts from PnG, since their optimal

driving speed is strongly influenced by the road gradient. In

[5], look-ahead controllers are proposed for optimizing the

speed of heavy trucks in a highway based on trip information,

which entails the road slope ahead of the vehicle. In contrast

with the highway condition, the urban driving scenario is

usually subject to the infrastructure constraints (e.g., traffic

lights), which increase the problem complexity. Driving speed

optimization in such circumstances has been addressed in

[6] by a predictive control method, while the influence of

other perturbations, including engine saturation, headwind

and traffic flow speed is systematically investigated in [7].

Increased research attentions have recently been paid also to

the speed control of connected and automated vehicles, so as

to find the energy-efficient and safe cruise speed according to

the traffic and geographical information of the road networks

[8], [9], [10], [11]. Furthermore, the optimal speed of a heavy-

duty vehicle platoon is investigated in [12], where a two-

layer controller, formed by dynamic programming (DP) and

model predictive control (MPC) is proposed to safely and fuel-
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efficiently coordinate the vehicles in the platoon. Extending

the conventional eco-driving strategy to full electric vehicles

(BEVs) with a single electric energy source is straightforward

and it is investigated in [13] by an optimal control approach.

The optimal solution in this case involves a smoother accel-

eration and lower peak speed as compared to a PnG profile.

Despite this, there is still a lack of investigation on the energy-

efficient driving of HEVs, which are characterized by a higher

level of complexity due to the interaction between vehicle

driving speed and hybrid powertrain EM control.

There is a rich literature in the powertrain EM control

design, which is one of the main challenges for modern HEVs.

A comprehensive overview of existing EM control techniques

can be found in [14], [15], [16]. According to the fundamental

design principles, EM strategies are classified into two main

categories: optimization-based and rule-based approaches. The

former group encompasses numerous algorithms, such as

DP [17], [18], equivalent consumption minimization strategy

(ECMS) [19], [20], MPC [21], [22], [23] and emerging

approaches based on machine learning and neural networks

[24], [25], [26], [27]. Among these, DP is able to find global

optimal solutions. However, it is not suitable for practical

use as the computational burden increases exponentially with

the model complexity [28]. ECMS is a commonly used cost-

effective alternative, which is derived from the Pontryagin’s

Minimum Principle (PMP) optimality condition. The main

drawback of the ECMS is that the tuning of the equivalence

factors is not straightforward, due to their high sensitivity to

characteristics of the drive cycle [29]. On the other hand, the

rule-based techniques define the vehicle operating modes by

Boolean or fuzzy rules, which are easy to implement and

understand, such as thermostat control strategy and power

follower control strategy. Nonetheless, conventional rule-based

methods are very inefficient and lack of charge sustaining

(CS) guarantees. The rule-based Exclusive operation strategy

(XOS) [30] and Optimal primary source strategy (OPSS) [31]

have recently been introduced for series HEVs. The XOS and

OPSS have some of their features inspired by the ECMS and

both strategies ensure CS operation by a so called threshold-

changing mechanism that is defined by battery state-of-charge

(SOC) dependent power thresholds. Although XOS and OPSS

can yield near-optimal solutions for particular drive cycles,

they still fall behind by some margin from optimization-based

benchmarks.

One of the main drawbacks of most of the EM control

methodologies in the literature is that they require a priori

the knowledge of the entire drive cycle, which is practically

unavailable. In this context, it is more appropriate to define

the driving mission in terms of a path (referred to as a “free

driving” problem) or the preceding vehicle speed (referred to

as a “car following” problem). The resulting optimal control

problem (OCP) may be addressed by solving individual speed

and EM optimization problems, one for each aspect, in steps

and combined a posteriori. However, the solution must be sub-

optimal as the conventional speed optimization methods do

not incorporate the characteristics of the hybrid powertrain

and power sharing strategies. To overcome the disadvantages

of such a two-step optimization mechanism, simultaneous

optimization of both driving speed and EM has also been

suggested (see for example [32], [33], [34], [35]), which is

expected to achieve better optimal solutions than the two-step

counterpart. However, the computation complexity is increased

when both aspects are simultaneously solved. The prior work

presented by the present authors [36] has examined the benefit

and challenges of the joint optimization strategy on the basis

of a series HEV architecture. The joint optimization solution is

benchmarked against a two-step algorithm with an introduced

speed optimization algorithm that can emulate the energy

recovery phenomenon of an HEV, and consequently improves

the optimality of the fuel economy solution of the associated

two-step scheme. Nonetheless, the fuel economy solution of

the two-step approach in [36] still lags the joint optimization

result by a noticeable margin.

This paper proposes a computationally efficient two-step

optimization algorithm that is formed by a novel driving

speed optimization strategy, which is the core contribution

of the paper, and a standard optimal EM control strategy.

The proposed speed optimization strategy outperforms the

algorithm presented in [36] by suitably integrating essen-

tial characteristics of the powertrain losses and optimal EM

solutions without embedding the explicit powertrain model.

The resulting optimal speed profile can be very close to that

of the joint optimization, and when combined with the EM

strategy, the associated fuel economy solution can be near-

optimal as compared to the joint optimization benchmark,

with much lower computational complexity. The focus of the

paper is on the series HEV architecture that is a common

arrangement for modern HEVs and involves a number of

products in the market, such as the Nissan Note e-power and

a variety of extended-range electric vehicles. Nevertheless, the

ideas that will be presented also have relevance to other HEV

architectures.

The paper is organized as follows. The models of the vehicle

and its powertrain are described in Section II, where the

benchmark strategy with joint consideration of optimal vehicle

speed and energy management is also introduced. Section III

introduces the proposed two-step control strategy that is based

on a separate OCP formulation for each of the driving speed

and power split. Section IV provides two case studies in

which the solutions of both strategies are compared. Finally,

Section V comes to a conclusion on the basis of the presented

work.

II. MODEL DESCRIPTION AND PROBLEM STATEMENT

In this section, the problem of optimal energy management

including speed control is formulated for an HEV with a series

configuration, as shown in Fig. 1. The proposed methodology

aims to solve a “free driving” problem, where the vehicle is

requested to complete a mission with minimum fuel usage. In

particular, the mission is defined in terms of the route and the

expected traveling time. Road traffic is not considered in this

work, thus the vehicle speed is not limited by the behavior of

other road users or infrastructure (e.g., traffic lights). However,

it is straightforward to take the traffic flow into account by

formulating a “car following” problem, where the mission is
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PS branch

SS branch

PL branch

Fig. 1. Block diagram of the series HEV powertrain used in this work. The powertrain comprises the primary (PS) and secondary (SS) source branches,
and the propulsion load (PL) branch, shown respectively in brown, green and blue colors.

determined by the speed of the preceding vehicle rather than

the path, and the headway distance between the two vehicles

is subject to prescribed constraints.

A. Vehicle Model

With reference to Fig. 1, the series HEV powertrain is

formed by three branches, the primary source (PS) branch,

the secondary source (SS) branch and the propulsion load

(PL) branch, which are joined electrically at the DC-link. The

PS consists of an engine-generator unit (EGU) and a three-

phase rectifier to convert chemical fuel energy to mechanical

propulsion energy, and then to electric energy. The EGU

contains an internal combustion engine (ICE) and a permanent

magnet synchronous (PMS) generator, which are mechanically

coupled. The secondary source (SS) branch contains a lithium-

ion battery and a bi-directional DC-DC converter. The PS and

SS branches power outputs are merged at the DC link. Then,

the total power is delivered to the wheels of the vehicle via the

PL branch that combines an inverter, a PMS motor/generator

and the transmission system. The SS allows energy recovery

either by the PS or by regenerative braking, which conveys the

kinetic braking energy from the wheels up to the SS by the

motor behaving as a generator. In addition, mechanical brakes

are applied directly to the wheels for further deceleration, with

the corresponding power converted into heat dissipation.
1) Primary source: The dynamics of the ICE (e.g., engine

speed, air mass flow rate) are much faster than the dynamics

of interest in the present work, such as powertrain energy

flow and battery SOC variations. Hence, a characterization

of the average engine efficiency at steady-state operating

conditions is adequate for the present purposes. Figure 2

shows the engine map utilized in this work, which is for the

1.8L Audi 5-Cylinder Turbo Diesel Engine taken from the

Advanced Vehicle Simulator (ADVISOR) [37]. The generator

efficiency map is also shown in Fig. 2, which is the same

for the electric motor used in the PL branch. The map is

calculated analytically from the mathematical model given in

[32], in which the model parameters are selected to provide a

realistic representation of the machine efficiency as compared

to experimental data available in the literature. Finally, the

rectifier is modeled as a constant efficiency factor, denoted by

ηr. In this context, the engine branch is reasonably modeled

by a steady state efficiency map, which is simply obtained as

the product of individual component efficiencies, as illustrated

in Fig. 3.

Since the EGU is mechanically decoupled from the driving

wheels, the EGU is allowed to be controlled independently of
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Fig. 2. Left: Map of ICE efficiency in terms of engine speed and torque.
Right: Efficiency of the reversible PMS machine (generator = positive torque,
motor = negative torque).

the vehicle speed. By operating the engine branch along the

locus of most efficient power-speed operating points (which

are highlighted in the branch efficiency map in Fig. 3), the

nonlinear relationship between the fuel chemical power, Pf

and the PS output power, Pr can be accurately fitted by a

linear function, as shown in Fig. 3. Therefore, the fuel mass
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Fig. 3. Left: map of overall efficiency of the PS branch. The torque-speed
operating points for maximum PS branch efficiency at different output power
values are shown by a dashed curve. Right: Fuel mass rate with PS power
when the most efficient torque-speed operating point is followed at each power
value.

dynamic equation is given by

d

dt
mf = qf0 + αfPr (1)

where qf0 acts as the idling fuel mass rate, and αf is the

coefficient of power transformation, obtained by using simple

linear regression methods.

2) Secondary source: The dynamic of the battery is gov-

erned by:
d

dt
SOC =

ib
Qmax

. (2)

where ib denotes the battery current, assumed positive during

the discharge phase. For a CS battery management with low

SOC variation (compatible with the usual operational strategy
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of non-plug-in HEVs), it is acceptable to assume a constant

open circuit voltage, Voc, rather than utilizing a nonlinear

mapping between SOC and the open circuit voltage (as it

is known in the literature). Based on the internal resistance

electrical model [38], the battery closed circuit voltage is

approximated by Vb = Voc − Rbib. The battery voltage

is amplified by the DC/DC converter that is modeled as

a constant efficiency term ηdc. Therefore, the bi-directional

power conversion of the SS branch is described by:

Pb = η
sign(Pb)
dc Pbl = η

sign(Pb)
dc ibVb, (3)

where Pbl = ibVb represents the battery output power and Pb

is the SS branch output power. Equation (3) is solved with

respect to ib and the solution

ib =
Voc −

√

V 2
oc − 4PbRb/η

sign(Pb)
dc

2Rb

, (4)

is applied to reformulate (2), leading to the differential equa-

tion of SOC with respect to Pb:

d

dt
SOC =

−Voc +
√

V 2
oc − 4PbRb/η

sign(Pb)
dc

2RbQmax
. (5)

3) Propulsion load: Similarly to the AC-DC rectifier, the

DC-AC inverter is also modeled as a constant efficiency

factor ηi. The power flow through the DC-link and inverter

is described by:

Pi = η
sign(Ppl)
i Ppl , (6)

where Ppl is the demanded PL branch power.

The PMS motor/generator offers bi-directional energy con-

version according to:

Pm = (ηm(τlm, ωm))
sign(−Pi) Pi, (7)

such that when it works as a motor, the electric power

Pi is converted into mechanical power Pm for propulsion.

Conversely, Pm is transformed into Pi when it works as

a generator. The efficiency ηm of the PMS motor/generator

varies with load torque τlm (= −Pm/ωm) and angular speed

ωm operating points, and it is shown in Fig. 2.

The motor drives the wheels via the transmission system

characterized by a fixed ratio gt, such that

ωm = gtv , (8)

in which v is the vehicle longitudinal speed. The bi-directional

power flow through the transmission is modeled by:

Pt = η
sign(Pm)
t Pm . (9)

with ηt a constant efficiency factor. Combing all three com-

ponents of the PL branch, the overall PL power flow is:

Ppl = η
− sign(Pt)
pl Pt, (10)

in which the PL efficiency is given by ηpl = ηiηmηt.
Let Fv denote the total driving force at the wheels and

Pv = vFv, (11)

the corresponding total wheel power. Fv and Pv are positive

during traction (when the energy is transferred from the pow-

ertrain to the vehicle) and negative during braking. Therefore,

Pt = Pv, ∀Pv ≥ 0, (12)

and because of the mechanical brakes, Ph:

Pt = Pv − Ph, ∀Pv < 0. (13)

In this work, the mechanical brakes are simply modeled as

power withdrawal, that is as a source of negative power

Ph < 0. Furthermore, as commonly assumed in energy man-

agement studies (see for example [24] and [33]), the regen-

erative braking is not restricted by the braking distribution

between front and rear axles, such that all the braking power is

recoverable and it is only restricted by the SS power charging

limit, Pb,min. As such, the mechanical braking power is derived

as follows:

Ph = min (0, Pv − Pb,min/ηpl) . (14)

The vehicle longitudinal dynamics are described by:

mv

d

dt
v = (Fv − FR − FD) (15)

where mv is the vehicle mass, and FR = fRmvg and FD =
fDv

2 represent the resistance forces due to the tire rolling and

aerodynamic drag, respectively. Finally, the traveled distance

s is calculated by integrating the longitudinal speed:

d

dt
s = v . (16)

The two sources (PS and SS) and the propulsion load

branches are integrated at the DC-link with the corresponding

power balance given as follows:

Pr + Pb = Ppl = η
− sign(Pt)
pl Pt. (17)

The main characteristic parameters of the vehicle model are

summarized in Table I, where the parameters are chosen to

represent a medium-size passenger car with non-plug-in HEV

powertrain.

TABLE I
MAIN VEHICLE MODEL PARAMETERS

symbol value description

mv 1500 kg vehicle mass
fR 0.01 rolling resistance coefficient
fD 0.47kg/m aerodynamic drag coefficient
ηt 0.96 efficiency of the transmission
gt 10 transmission ratio
qf0 0.12g/s idling fuel mass rate
αf 0.059 g/kW/s power transformation factor
Qmax 5 Ah battery capacity
Rb 0.2056 Ω battery internal resistance
Voc 300V battery open circuit voltage
ηr , ηi, ηdc 0.96 efficiency of converters
Pb,min/max −15/30kW SS power limits

SOCmin/max 0.5/0.8 battery SOC limits

Pr,max 75kW PS power limit
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B. Problem formulation and the benchmark solution

This section characterizes the optimal control problem

addressed in this paper, and reviews the possible solution

methods, including a benchmark solution.

The main objective is to minimize the fuel consumption

mf (T ) for a driving mission by finding an appropriate driving

speed and energy source power split, subject to various state

and control constraints. The intuitive method to solve such

problem is the joint optimization scheme (OCP-Joint) that

formulates the whole problem as a single OCP, thus both

aspects (vehicle speed and power-split between the engine

and battery) can be solved simultaneously. By applying the

conventional speed optimization approaches (for conventional

or electric vehicles as reviewed in the Introduction), it is

also possible to divide the concerned problem into two sub-

problems, 1) driving speed optimization (OCP-S), and 2) en-

ergy management optimization (OCP-EM), which are solved

individually in successive steps and combined a posteriori,

yielding a counterpart strategy (OCP-Split). In Fig. 4, both

optimization mechanisms are illustrated.

Route & travel 

time

Full HEV 

model

OCP-Joint

Driving 

speed 

Energy 

management

OCP-S OCP-EM
Speed 

HEV powertrain 

model

Car motion 

model only

OCP-Split

Fig. 4. Optimization problems formulated in this paper for a series HEV.

A major benefit in calculation time can be expected when

solving the whole optimization problem in two steps as carried

out in the OCP-Split, thus relieving the computational burden

caused by the joint optimization of OCP-Joint. However, the

main challenge for the OCP-Split is to decouple the EM and

the vehicle speed optimization, while maintaining sufficient

information of the powertrain and its EM in the OCP-S.

If that is achieved, the speed profile found by the OCP-S

will tend to the solution of OCP-Joint, and thus the overall

optimality of the OCP-Split will be improved. In the next

section, a novel OCP-Split algorithm aiming to realize this

potential is proposed and benchmarked against the OCP-Joint

by numerical simulation examples.

Prior to the introduction of the novel scheme, the bench-

marking solution OCP-Joint is formulated next. The associated

optimal control problem is:

minimize
u

J(x,u) (18a)

subject to:
d

dt
x = f (x,u, t) (18b)

ψ (x,u, t) ≤ 0 (18c)

b (x(0),x(T )) = 0, (18d)

where T denotes the total traveling time and J(x,u) = mf (T )
represents the main objective. The vector x represents the

system state vector, which evolves according to the dynamic

system (18b), and the vector u represents the vector of control

inputs. The inequality constraints and the boundary conditions

are taken into account by (18c) and (18d).

To ensure smooth vehicle motion and to avoid unrealistic

jerky maneuvers, the vehicle is controlled in terms of the

jerk decision variables u = [jr, jb, jv]
⊤, which are the first

derivative of the associated PS branch, SS branch and total

driving forces, respectively Fr, Fb and Fv . In this context,

the source power values can be immediately obtained by

Pr = vFr and Pb = vFb. By combining the dynamic

equations (1), (5), (15), and (16), and the dynamics of Fr,

Fb and Fv, the overall dynamic system is:

d

dt





















s
v
mf

SOC
Fr

Fb

Fv





















=































v
Fv − FR − FD

mv

qf0 + αfvFr

−Voc +
√

V 2
oc − 4vFbRb/η

sign(Pb)
dc

2RbQmax

mv jr
mv jb
mv jv































.

(19)

with the state variable x = [s, v, mf , SOC, Fr , Fb, Fv]
⊤.

The inequality constraints of OCP-Joint are as follows. First,

the vehicle speed and acceleration are constrained for safety

and comfort purposes. Specifically,

0 ≤ v ≤ vmax, (20)

where vmax is the legal speed limit. Instead of the commonly

used ellipse of adherence of tires, the longitudinal and lateral

accelerations are constrained within an acceleration diamond,

as everyday drivers use accelerations remarkably smaller than

adherence limits [39]. The constraint is described as follows:

∣

∣

∣

∣

Fv/mv

ax,max

∣

∣

∣

∣

+

∣

∣

∣

∣

v2Θ

ay,max

∣

∣

∣

∣

≤ 1 , (21)

where Θ is the curvature of the road center, calculated from

its Cartesian coordinates (x, y) as a function of the travelled

distance s:

Θ(s) =

√

(

d2x

ds2

)2

+

(

d2y

ds2

)2

. (22)

The two numerators Fv/mv and v2Θ are respectively the

longitudinal and the lateral acceleration applied by the driver,

while ax,max and ay,max are their maximum allowed values.

To keep the operating conditions of the powertrain compo-

nents inside their admissible range, the following inequality
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constraints are also imposed,

Fr + Fb ≥ η
sign(−Fv)
pl Fv (23a)

−jb,max ≤ jb ≤ jb,max (23b)

−jr,max ≤ jr ≤ jr,max (23c)

−jv,max ≤ jv ≤ jv,max (23d)

SOCmin ≤ SOC ≤ SOCmax (23e)

0 ≤ vFr ≤ Pr,max (23f)

Pb,min ≤ vFb ≤ Pb,max (23g)

The inequality constraint (23a) is proposed to reflect the

power balance at the DC-link in (17). It is formulated as

an inequality, rather than a (less computationally efficient)

equality constraint, to account for both Fv ≥ 0 and Fv < 0
cases, for which Pt = vFv and Pt > vFv respectively (see

(12) and (13)), while also vFr+vFb is minimized to reduce the

overall fuel consumption. Inequality conditions (23b)-(23d)

are imposed with jb,max = jr,max = jv,max = 1m/s3 for

smooth operation [32]. In this work, we let SOCmin = 0.5
and SOCmax = 0.8 to ensure the battery is closely charge

sustained throughout the mission. Moreover, the power limits

of the energy sources are given in Table I.

The following boundary conditions are imposed to complete

the formulation:

s(0) = 0 , s(T ) = l, (24a)

v(0) = v(T ) = 0, (24b)

SOC(0) = SOC(T ) = 0.65, (24c)

Fb(0) = Fb(T ) = 0, (24d)

Fr(0) = Fr(T ) = 0, (24e)

Fv(0) = Fv(T ) = 0, (24f)

mf (0) = 0 , (24g)

where l is the length of the path, SOC is initialized at the

middle of the allowed SOC range, and the other states are

initialized at 0 to emulate the start of a driving mission. To

cancel the equivalent fuel caused by the non-zero differences

between initial and terminal conditions of v, SOC, Fb, Fr and

Fv , terminal conditions as presented in (24b)-(24f) are also

employed.

III. THE TWO-STEP OPTIMAL CONTROL STRATEGY

A computationally efficient OCP-Split algorithm is pro-

posed in this section by combining a novel OCP-S (named

OCP-S-2) and a standard OCP-EM, where OCP-S-2 is the

core contribution of this paper and the OCP-EM is formulated

by using the speed profiles obtained by the speed optimization

as the reference input. The overall two-step scheme is bench-

marked against the OCP-Joint introduced in Section II-B and

another OCP-Split benchmark that is formed by the driving

speed optimization strategy (named OCP-S-1) proposed in

[36] by the present authors and the same OCP-EM. OCP-S-1

is described next in this section followed by the introduction

of the novel scheme.

A. Driving speed optimization (OCP-S)

The problem of finding the energy efficient driving speed

of a conventional vehicle has already been studied in the

literature. Nonetheless, the optimal solutions may not be

compatible when it comes to an HEV.

1) OCP-S-1: Prior work of the present authors in [36] has

proposed an enhanced OCP-S that formulates the possible

energy recovery phenomenon of an HEV by a specialized

objective function for the following state space model (a part

of the full model (19) presented in the OCP-Joint):

d

dt





s
v
Fv



 =







v
1

mv

(Fv − FR − FD)

mv jv






, (25)

with three states x = [s, v, Fv]
⊤ and one input u = jv . The

core idea has been to define an energy recovery factor ρ ∈
[0, 1] as the ratio between regenerative braking power and the

total braking power, such that the energy dissipation function

becomes:

J1 =

∫ T

0

{

Fv Fv ≥ 0

ρFv Fv < 0
v dt =

∫ T

0

max(ρFv, Fv) v dt.

(26)

Similarly to the OCP-Joint formulated in the previous section,

the possible maneuvers are constrained by (20), (21), (23d),

and

Pv ≤ Pv,max = (Pb,max + Pr,max)ηpl (27)

where the total input power is bounded by a variable limit,

depending on the individual power limits of the PS and the

SS branches, and the instantaneous PL branch efficiency ηpl.
Finally, the problem is completed by the boundary conditions

(24a), (24b) and (24f).

As it can be noticed, the case ρ = 0 corresponds to a

conventional powertrain, while ρ = 1 indicates that all braking

energy is recovered as in a highly hybridized or fully electric

vehicle. However, the speed profile solved by such an OCP-

S still cannot capture the essential behavior of the OCP-

Joint solution as the energy source power split and powertrain

efficiencies are not incorporated. Consequently, the resulting

OCP-Split in [36] falls behind OCP-Joint by over 5% in terms

of fuel economy.

2) OCP-S-2: The new driving speed optimization strategy

is introduced in this section. The core idea is to design an

objective function that integrates the essential information and

characteristics of regenerative braking and powertrain energy

losses, without including the explicit powertrain model in (25).

To this end, the following three steps are followed: 1) an

analysis that finds the nature of the optimal energy source

power split solution, 2) evaluation of the powertrain minimum

power losses, informed by the nature of the optimal power

split solution found in the first step, and 3) introduction of

a new objective function that integrates the fuel energy and

energy recovery with the powertrain losses characterized in

the second step.
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Step 1: Given the vehicle driving speed (and accelera-

tion), it is clear that the total driving force Fv , and conse-

quently the associated power Pv , is uniquely determined:

Pv = v(mva+ FR + FD) . (28)

To proceed with the analysis, let us first introduce some useful

notations and definitions. Consider two sets of time intervals

respectively for the propulsive phase Φ , {t|Pv(t) ≥ 0} and

the energy recovery phase Ψ , {t|Pv(t) < 0}, such that Φ∪Ψ
is the full time horizon {t|0 ≤ t ≤ T }. Analogously, Φ can

be divided into two subsets as Φ = Φd ∪ Φc, where Φd ,

{t|Pv(t) ≥ 0, Pb(t) ≥ 0} and Φc , {t|Pv(t) ≥ 0, Pb(t) < 0}.

These subsets respectively collect the battery discharging and

charging (by the ICE) intervals for all t ∈ Φ.

By resorting to (12) and (17), the sum of PS and SS power

is determined when Pv ≥ 0:

Pr + Pb =
Pv

ηpl
, ∀Pv ≥ 0 . (29)

On the other hand, when Pv < 0, by using (13) and (14), the

PS and SS power is shown to be:

Pb = max (Pvηpl, Pb,min) , Pr = 0 , ∀Pv < 0 . (30)

The overall fuel consumption at the end of the mission can

be obtained by integrating both sides of the fuel consumption

model (1) over [0, T ], as follows:

mf (T ) = qf0T + αf

∫

Φ

Prdt. (31)

Note that the integration of Pr is done only for the Φ time

interval, since for the Ψ time interval (Pv < 0) the PS power

Pr = 0 (see (30)) and therefore this case does not contribute

to the fuel consumption. By applying (3) and (29) in (31), we

obtain:

mf (T ) = mf0 − αf

(∫

Φd

ηdcPbdt+

∫

Φc

1

ηdc
Pbdt

)

, (32)

where

mf0 = qf0T + αf

∫

Φ

Pv

ηpl
dt, (33)

is a fixed term, independent of the EM control. It is clear that

one of the necessary conditions to minimize mf(T ) in (32)

is:
∫

Φc

Pbdt = 0 , (34)

since
∫

Φc
Pbdt ≤ 0. The condition (34) further implies that

mf (T ) is minimized if Φc = ∅, indicating that for an optimal

EM the battery is never charged directly by the PS, instead,

the battery is only replenished by regenerative braking. In the

literature correction schemes have been employed when calcu-

lating the SS efficiency, for example by post-multiplication of

the SS discharging efficiency with the PS average efficiency,

such that future power losses of the PS for replenishing the

consumed SOC in the SS are accounted for [40]. However,

the finding in (34) allows for our purposes to evaluate the

efficiency/power loss of the SS independently of the PS

efficiency, without applying any correction. The power losses

of PS and SS are therefore computed by:

Pr,loss = Pf − Pr = qLHV (qf0 + αfPr)− Pr, (35a)

Pb,loss = Vocib − Pb, (35b)

where qLHV = 42.6MJ/kg is the diesel lower heating value.

Step 2: With reference to the preceding analysis of

the optimal EM solution, the minimum power loss of the

powertrain, including mechanical brakes, at each Pv is now

estimated to inform the formulation of the new OCP-S-2. Since

the PS is a much more lossy component than the SS because

of the ICE, the powertrain minimum losses are due to SS use

only, where it is possible to employ the SS. The estimation

of the power losses can therefore be considered in four Pv

ranges, with the associated power splits as follows:

Pr = Pv/ηpl − Pb,max, Pb = Pb,max, Pv/ηpl > Pb,max,
Pr = 0, Pb = Pv/ηpl, 0 ≤ Pv/ηpl ≤ Pb,max,
Pr = 0, Pb = Pvηpl, Pb,min ≤ Pvηpl < 0,
Pr = 0, Pb = Pb,min, Pvηpl < Pb,min.

(36)

As it can be noticed, during the propulsive phase Φ, the

minimum losses are when the powertrain is operated in pure

electric mode until Pv/ηpl > Pb,max, and if Pv further

increases, the PS is required to be activated to meet the

demand, and therefore its losses will apply in addition to the

SS losses. Conversely, the power flow of the PS, the SS and the

mechanical brakes simply follows (14) and (30) when Pv < 0.

Thus, by making use of (35) and the fact ηpl < 1, the lower

bound of the power loss in each power range is as follows

(obtained for ηpl = 1):

Ploss,1=























qLHV (qf0 + αfPr)− Pr

+Vocib,max − Pb,max, Pv > Pb,max,
Vocib − Pb, 0 ≤ Pv ≤ Pb,max,
Vocib − Pb, Pb,min ≤ Pv < 0,
Vocib,min − Pv , Pv < Pb,min,

(37)

where ib,max and ib,min are the battery currents respectively

for Pb,max and Pb,min, which can be calculated from (4). By

substituting Pr , Pb from (36) and ib from (4), this power

loss can be expressed as a piecewise function of Pv only,

as illustrated in Fig. 5.

Fig. 5. Analytic powertrain minimum power losses including mechanical
braking loss for varied total driving power, Pv. The PL branch efficiency, ηpl,
is assumed to be 1. The associated power split is as follows: when Pv ≥ 0,
only the SS is used until Pb,max is reached, and for higher Pv values the
powertrain is operated in PS and SS hybrid mode with Pv = Pb,max + Pr;
when Pv < 0 regenerative braking takes place, and mechanical braking power
is not applied until the total braking power becomes smaller than Pb,min.
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It is clear that the actual minimum power loss diverges from

the analytic minimum profile shown in Fig. 5 as the PL branch

efficiency ηpl decreases from 1. To avoid the inaccuracy at a

low ηpl (for example, when the vehicle is accelerating hard at

low speed), the power loss of the PL branch is also evaluated,

resorting to the commonly used closed-form expression [1] for

estimating the electric power supplied to or generated by the

motor:

Pi = c1τlmωm + c2τ
2
lm . (38)

In view of (38), the fixed transmission ratio, and the constant

efficiencies of the transmission and the inverter, the PL branch

power can be linked to Pv by:

Ppl = d1Pv + d2τ
2
v , (39)

where τv = P 2
v /(gtv)

2 = F 2
v /g

2
t is the load torque at

the wheels, and the parameters d1 and d2 are obtained by

fitting the model (39) to Ppl(Pv, v) respectively for motoring

(Ppl(Pv, v) = Pv/ηpl(Pv, v)) and generating (Ppl(Pv, v) =
Pvηpl(Pv, v)) phases. As such the power loss of the PL branch

is estimated by terms of the form:

Ploss,2 = Ppl − Pv = (d1 − 1)Pv + d2τ
2
v . (40)

In order to include the relationship between Pv and power

losses into the speed optimization without a significant in-

crease in computational effort, let us rewrite the total driving

power Pv as the combination of four individual segments, such

that:

Pv =

4
∑

i=1

Pv,i,

with

Pv,1 ≤ 0, Pb,min ≤ Pv,2 ≤ 0, (41a)

0 ≤ Pv,3 ≤ Pb,max, 0 ≤ Pv,4 ≤ Pr,max. (41b)

As such the piecewise nonlinear function (37) is fitted by four

piecewise linear functions of Pv,i, i = 1, · · · , 4, respectively,

expressed as follows:

Ploss,1 =

4
∑

i=1

aiPv,i + bi, (42)

where a2 = a3 = 0.04, a1 = 1, a4 = 1.545 are constants

obtained using the least square regression method. Moreover,

by defining Fv,i = Pv,i/v the power associated force, the PL

power loss (40) is:

Ploss,2=(d′1 − 1)(Pv,1+Pv,2)+d
′

2(Fv,1+Fv,2)
2/g2t

+ (d1 − 1)(Pv,3+Pv,4)+d2(Fv,3+Fv,4)
2/g2t ,

where the losses for both the motoring and generating phases

are separately accounted for. With reference to the PL branch

efficiency map (obtained by multiplying the motor efficiency

map in Fig. 2 with ηt and ηi), it is immediate to obtain:

d1 = 1.049, d2 = 0.033, if Pv ≥ 0,

d′1 = 0.954, d′2 = 0.03, if Pv < 0,

by polynomial regression fit.

Step 3: The determination of the power loss relationships

presented, enables to design a new objective function for the

OCP-S-2 that includes: a) the fuel energy
∫ T

0
max(Pv, 0) dt, b)

the energy recovery
∫ T

0 min(Pv , 0) dt, and c) the terms that

penalize the energy loss due to the power withdrawal from

both energy sources. The objective function is:

J2 =

∫ T

0

(Pv + Ploss,1 + Ploss,2) dt

=

∫ T

0

4
∑

i=1

aiPv,i + d′1(Pv,1+Pv,2) + d1(Pv,3+Pv,4)

+ d′2(Fv,1+Fv,2)
2/g2t +d2(Fv,3+Fv,4)

2/g2t dt . (43)

d

dt

















s
v
Fv,1

Fv,2

Fv,3

Fv,4

















=























v

1

mv

(

4
∑

i=1

Fv,i − FR − FD

)

mv jv,1
mv jv,2
mv jv,3
mv jv,4























(44)

with augmented state and input vectors: x =
[s, v, Fv,1, Fv,2, Fv,3, Fv,4]

⊤ and u = [jv,1, jv,2, jv,3, jv,4]
⊤.

Analogously to the OCP-S-1 formulated in the previous

section, OCP-S-2 is subject to the constraints (20), (21), (41),

jv,i ≤ |jv,max|, i = 1, · · · , 4, and,

4
∑

i=1

Pv,i ≤ Pv,max = (Pb,max + Pr,max)ηpl, (45)

which is inferred from (27). The boundary conditions (24a),

(24b) and Fv,i(0) = Fv,i(T ) = 0, i = 1, . . . , 4 are also

imposed to complete the formulation.

B. Energy management optimization (OCP-EM)

The problem of EM optimization for an HEV while fol-

lowing a predefined speed profile is standard with a rich

literature (see, for example [14], [16] and the references cited

therein). The problem has also been specifically formulated in

numerous prior studies as an OCP in the form of (18) (see,

for example [41]).

In this work, the OCP-EM is formulated with reference to

the OCP-Joint presented in Section II-B. For a given speed

profile (which can be obtained by the OCP-S), the OCP-EM

is formulated to find the powers Pr and Pb provided by the

PS and SS respectively, which minimize fuel consumption.

Therefore the cost to be minimized is:

J = mf (T ), (46)

and the state space model is:

d

dt









mf

SOC
Fr

Fb









=















qf0 + αfvFr

−Voc +
√

V 2
oc − 4vFbRb/η

sign(Pb)
dc

2RbQmax

mv jr
mv jb















,

(47)
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where x = [mf , SOC, Fr, Fb]
⊤ and u = [jr, jb]

⊤ are formed

by a part of the elements of the full model used for OCP-

Joint. To complete the problem, the inequality constraints

(23a)-(23c), (23e)-(23g) and the boundary conditions (24c),

(24d), (24e), (24g) are also imposed. Note that the right hand

side of (23a), ηpl(Fv, v)
sign(−Fv)Fv , is a given function of

time determined by the chosen speed profile v(t), with Fv(t)
obtained from (15).

All the OCPs formulated in this paper are addressed by the

MATLAB-based software package GPOPS-II, which is a tool

for solving general-purpose optimal control problems [42].

GPOPS-II contains the machinery for transcribing a trajectory

optimization problem into an NLP and incorporates the well

developed solver, IPOPT, to solve the resulting NLP. To set

up an optimization problem in GPOPS-II, the initial segmen-

tations and number of collocation points within each segment

need to be initialized, and GPOPS-II will automatically refine

the grid mesh during the computation process.

IV. SIMULATION RESULTS AND DISCUSSION

Two case studies are presented in this section to evaluate

the performance of the proposed two-step optimal control

strategy, formed by OCP-S-2 and OCP-EM (OCP-Split-2),

in the context of “free driving” scenarios. For benchmarking

purposes, the proposed algorithm is compared with the OCP-

Joint formulated in Section II-B and with the existing OCP-

Split algorithm [36] formed by OCP-S-1 and OCP-EM (OCP-

Split-1).

A. Case Study I

In this example the vehicle is requested to drive only for

1 km on a straight and flat road with prescribed traveling

time T = 60 s (i.e., average speed 60km/h). The speed limit

is assumed to be much higher than the average speed in

the first instance, such that it does not affect the solution,

to expose the nature of the ‘untruncated’ optimal driving

speed in each OCP case. Moreover, such a problem setup can

highlight the important characteristics of each optimal control

solution, while the results also provide practical insight since

an arbitrary path can be reasonably treated as the combination

of multiple straight segments [32].

In Fig. 6, the optimal speed profile solved by the proposed

OCP-S-2 is illustrated and compared with various solutions

of the OCP-S-1 and the speed profile from the OCP-Joint.

As it can be noticed, when ρ = 0, the OCP-S-1 emulates

the driving speed optimization of a conventional vehicle. The

optimal profile starts from a rapid acceleration to a maximum

velocity, after which the vehicle mildly decelerates by coasting

for a considerable time to a relatively low speed, at which

point intensive braking is applied to stop the vehicle. Such

driving behavior coincides with the PnG strategy found in the

literature for conventional vehicles. By increasing the energy

recovery factor ρ, the most fuel-efficient driving speed profile

changes and eventually when ρ = 1 it shifts to a more

regular profile that suggests the driver to accelerate to a cruise

speed value, then to stay at this speed until the destination

approaches, as drivers normally do. Although the extra degree

Fig. 6. Optimal speed profiles solved by OCP-Joint, the OCP-S-1 [36] with
different ρ and the proposed OCP-S-2 for a 1 km straight road.

of freedom offered by ρ allows the OCP-S-1 to find various

solutions depending on the energy recovery capability, in all

ρ cases noticeable differences can be observed as compared

to the joint optimization solution. This can be understood

that the most-fuel efficient driving speed is highly influenced

by the characteristics of the powertrain, such as the energy

source efficiency and power-split, which are ignored by OCP-

S-1 but are taken into account by OCP-Joint. In particular,

it is not efficient to apply hard acceleration or deceleration

at the beginning or end of a mission, as in that case the

energy source, especially the ICE is inefficiently operated or

the battery reaches its charging limit and energy is wasted in

mechanical braking.

Nevertheless, it is expected that the speed profile obtained

by OCP-S-1 with ρ = 1 is close-to-optimal in the context

of a full electric vehicle as the efficiency of the associated

electric branch (battery and electric motor) is much higher

than that of the ICE, unless the battery is inadequately sized

and mechanical braking is required to be used. Therefore, it

can be said that without energy recovery eco-driving requires

a pulse and glide type profile, which is not natural and difficult

to be implemented by drivers because the proper identification

of the maximum speed and braking points requires a lot of

anticipation. In contrast, energy recovery does not only reduce

fuel consumption, but also allows the driver to drive more

regularly without behavioral adaptation.

On the other hand, the speed profile solved by the proposed

OCP-S-2 is able to capture the essential features of the OCP-

Joint benchmark solution, and therefore it is much closer to

it as compared to the OCP-S-1. The comparison emphasizes

the importance of including the various losses of the HEV

powertrain in the OCP-S objective function as formulated in

(43). Further insight into the effectiveness of the new OCP-S-

2 scheme can be obtained by comparing the resulting power

split solution of OCP-Split-2, with that of the OCP-Split-1 for

ρ = 0.5 (that leads to a similar peak speed to OCP-S-2) and

the OCP-Joint, as shown in Fig 7.

It is illustrated that following the profiles obtained by

OCP-S-1 requests from both energy sources very high power

withdrawal with short duration at the start of the mission,

while the other two OCP methods use much less power (as

milder acceleration is applied, as seen in the corresponding

speed profiles), which is beneficial to the powertrain efficiency

according to the analysis performed in the previous section
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Fig. 7. Power flow and battery SOC profiles solved by the OCP-Joint (top),
the OCP-Split-1 [36] for ρ = 0.5 (middle) and the proposed OCP-Split-2
(bottom) for a 1 km straight road.

(see Fig. 5). A further observation is made by referring to

the higher speed of the OCP-S-2 as compared to that of OCP-

Joint in the first 10 s in Fig. 6, and the apparent opposite to the

expected trend in the power magnitudes of the two OCPs in the

same time period in Fig. 7. This is explained by considering

that even though the peak power values of OCP-Split-2 are

lower, these are reached at an earlier time when OCP-Joint

still has low power values, which lead to a higher initial

acceleration for OCP-S-2, but which subsequently becomes

less than that of OCP-Joint as the OCP-Joint power values

rise to their higher peak values at a slightly later time. This

apparent difference in the power profile behavior of the two

OCPs is related to the (necessary) smoothing functions used

for sign(·) in the OCP-Joint numerical formulation in order

to manage its computational complexity and convergence to a

solution, which consequently lead to smoother power profiles.

Such smoothed solutions may affect the optimality of the

joint optimization solution, as it will be discussed later in

this Section. By further observing the behavior of the power

profiles towards the end of the mission, it is clear that as

compared to the OCP-Split-1, braking is applied much earlier

and for longer overall duration in OCP-Joint and OCP-Split-

2 cases. Therefore, lower magnitudes of braking power are

adequate to stop the vehicle in OCP-Joint and OCP-Split-

2, removing the need to use substantial mechanical braking

power (as can be seen in the OCP-Split-1 solution), which is

totally wasted.

In terms of the SOC profiles shown in Fig. 7, all the profiles

are strictly CS at the end of the mission, as expected from

the defined boundary conditions. The solution of OCP-Split-

1 has the lowest depth of discharge which is explained as

follows: a) for a given speed profile, as in OCP-EM and

consequently OCP-Split-1, the battery is charged only from

regenerative braking, as derived in Section III-A2, b) OCP-

Split-1 solutions tend to apply large braking power for a short

duration, as can be seen in Fig. 7, and therefore regenerative

braking tends to get truncated because of the battery charging

power limit, c) hence only small amounts of regenerative

braking energy can be collected, implying that only small

amounts of battery energy can be discharged to remain CS.

Therefore, the overall usage of the battery and consequently

the depth of discharge is very limited. In contrast, OCP-Split-

2 and OCP-Joint make more use of the battery by avoiding

large magnitudes of braking power, due to the knowledge

they have of the power losses associated with such braking

power magnitudes. Moreover, between them, the OCP-Split-2

solution has a slightly lower depth of discharge throughout

the mission as compared to the OCP-Joint, which is more

compatible with the aim of CS operation.

Finally, the fuel consumption of each method is evaluated

as well as the average computation time required by each

strategy, and shown in Table II. By using OCP-Split-1 as a

TABLE II
FUEL CONSUMPTION RESULTS WITH COMPARISONS OF THE TWO

OCP-SPLIT WITH OCP-JOINT AND AVERAGE COMPUTATION TIME OF

EACH METHOD FOR A 1 KM STRAIGHT ROAD. THE CPU USED FOR

COMPUTATION IS INTEL XEON E5-1650, 3.5 GHZ.

fuel economy fuel increase running time
[L/100km] [s]

OCP-Joint [32] 4.36 0 62.12
OCP-Split-1 [36] 4.71 7.87% 5.71
OCP-Split-2 4.28 -1.8% 11.34

benchmark, vehicle fuel economy greatly benefits from the

joint optimization. As shown, the OCP-Joint saves 7.87% of

fuel in comparison to the OCP-Split-1, however, the required

computation time of OCP-Joint is about 10 times longer.

The OCP-Split-2 has significantly improved optimality as

compared to OCP-Split-1, with an impressive 9.01% fuel

saving for the 1 km straight mission, with only marginally

higher computation time. It is worth noting that the final

fuel usage of the OCP-Split-2 is even less than the result of

OCP-Joint, with about 1.8% improvement (and about 6 times

less computation time). This is attributed to the precision of

implementation. As mentioned previously, non-smooth sign(·)
functions used in the representation of the system dynamics

(with bidirectional power flow) are smoothed by approxima-

tions, which affect the accuracy of the optimal solution. In

this context, the split optimization strategy is less influenced

by such approximations, since the PL branch that contains

the bi-directional power flow can be absorbed exactly in the

PL power input to the OCP-EM part of the split optimization

scheme, and hence it can be isolated from the optimization

scheme. More specifically, given a speed profile, the right hand

side of (23a), ηpl(Fv, v)
sign(−Fv)Fv can be uniquely computed

by v(t) and Fv(t) (obtained from (15)).
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B. Case Study II

A more realistic example is considered in this subsection

to further evaluate the effectiveness and robustness of the

proposed two-step algorithm. The vehicle mission corresponds

to a rural route of 7.2 km, as shown in Fig. 8. The road is

Fig. 8. 7.2km route selected for the vehicle mission. http://tiny.cc/geve7y.

assumed to be flat and its geometry, defined by the longitude

and latitude coordinates, is exported from Google Maps and

converted into the curvature model (22). A variable upper

speed limit is imposed throughout the journey according to

the real conditions (legal speed limit) of the chosen path. Road

traffic is not considered, therefore the speed is not constrained

to the behavior of other vehicles. The trip is requested to be

accomplished in 480 s, which corresponds to an average speed

of the vehicle of 54 km/h.

The optimal speed profiles solved by the three optimization

schemes already compared in Section IV-A are shown in

Fig. 9. As it can be seen, all the solutions tend to follow

the two lower speed limits at 48.28 km/h and 64.37 km/h, but

not the highest one at 80.50 km/h. This can be understood that

velocity optimization naturally minimizes the speed variance

throughout the mission to avoid aggressive or unnecessary ac-

celeration and deceleration, which usually lead to less efficient

vehicle and powertrain operation. Moreover, the optimal solu-

tion from each optimization scheme is essentially compatible

with its associated profile pattern illustrated in the 1 km case.

For example, the solution of OCP-S-1 applies a much higher

acceleration than the other two schemes at the beginning of

the mission and after passing a corner (for example B, C, and

D) or a rising edge of the speed limit (for example the one that

appears at 2.8 km). At the same time, between two successive

intersections or speed limit changes, the profile is very close

to that of the 1 km case, as it can be noticed from B to C,

from D to E and from the speed limit change at 2.8 km to D.

It is also clear that as compared to the OCP-S-1, the speed

solution of the OCP-S-2 is less aggressive and closer to the

joint optimization solution, further verifying the findings with

the 1 km case.

The effectiveness of the OSP-S-2 is further clarified by

comparing in Fig. 10 the power flow and SOC profiles of

the OCP-Joint and the two OCP-Split algorithms that are

driven by OCP-S-1 and OCP-S-2, respectively. Similarly to

the 1 km case, OCP-Split-1 requests higher propulsive power

and applies noticeable mechanical braking during the mission.

The OCP-Split-2 captures the main features of the OCP-

Joint power split solution, which operates the energy sources

more efficiently at a medium level of propulsive power and

with no noticeable mechanical braking (all braking power is

regenerated), as a consequence of the driving profile obtained

by OCP-S-2 (see Fig. 9). The similarity between the OCP-

Split-2 and the OCP-Joint can also be identified from their

SOC profiles, which have analogous tendencies.

Finally, the results of fuel usage and computation time

of each method are shown in Table III. The OCP-Split-1

consumes 11.3% more fuel as compared to the OCP-Joint,

while the OCP-Split-2 achieves a significant improvement

over OCP-Split-1 and lags the OCP-Joint by only 4.95%.

However, the required computation time can be quartered by

using the OCP-Split-2 rather than OCP-Joint. By comparing

the outcomes presented in both case studies I and II, it

is expected to gain more fuel benefit from OCP-Joint over

OCP-Split as the complexity of the problem increases by

involving more practical aspects such as road gradient and

traffic. However, at the same time it is expected that the OCP-

Joint will run into infeasibility due to the increased overall

complexity much earlier than OCP-Split. Hence OCP-Slit-2

offers a computationally and fuel efficient solution to problems

that OCP-Joint will not be able to tackle.

TABLE III
FUEL CONSUMPTION RESULTS WITH COMPARISONS OF THE TWO

OCP-SPLIT WITH OCP-JOINT AND AVERAGE COMPUTATION TIME OF

EACH METHOD FOR THE 7.2 KM RURAL ROUTE.

fuel economy fuel increase running time
[L/100km] [s]

OCP-Joint [32] 3.22 0 1344
OCP-Split-1 [36] 3.59 11.3% 238
OCP-Split-2 3.38 4.95% 347

V. CONCLUSION

A fundamental analysis of series hybrid electric vehicle

(HEV) powertrain losses and optimal energy management

(EM) solutions leads to the introduction of a novel driving

speed optimization strategy for series HEVs. The strategy is

formulated as a “free driving” optimal control problem with

the mission defined in terms of traveling time and route charac-

teristics, which are easily available from a navigation system.

When combined with a conventional series HEV powertrain

optimal EM control strategy, in which the driving speed profile

is given as an input, it results in a novel suitably decoupled and

computationally efficient two-step optimal control strategy.

The proposed strategy is shown to outperform in vari-

ous aspects existing vehicle speed and powertrain EM co-

optimization schemes, for an exemplary straight road mission.

In particular, as compared to a recently introduced speed

and EM split optimization benchmark method it saves 9% of

fuel, while only increasing marginally the computation time.

Additionally, as compared to the benchmark of jointly opti-

mizing speed and EM, which is subject to high computational

complexity, it produces comparable fuel consumption but with

significantly reduced computation time. For a more realistic

rural route driving mission, which is also investigated, the

proposed two-step optimization method is found to outperform

the split optimization benchmark method by 6%. Although

the fuel economy is 4.95% worse than the joint optimization

benchmark solution in this case, the two-step approach is much

more computationally efficient. Thus, it enables to tackle more
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Fig. 9. Optimized speed profiles with respect to traveled distance for the 7.2 km rural route. The markers A, B, C, D, E correspond to the intersections
shown in Fig. 8.

Fig. 10. Power flow and battery SOC profiles solved by the OCP-Joint (top),
the OCP-Split-1 [36] for ρ = 0.5 (middle) and the proposed OCP-Split-2
(bottom) for the 7.2 km rural road.

complex realistic missions, which the joint scheme cannot

feasibly optimize due to its computational complexity.

Future research efforts will be devoted to extending the

novel two-step optimization algorithm to further HEV pow-

ertrain architectures, beyond the series one, as well as to main

powertrain features that are different from the ones in the

present study, such as nonlinear fuel consumption map and

engine start-stop-system.
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