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 
Abstract—Network slicing in future 5G systems enables the 

provision of multitenant networks in which a network 
infrastructure owned by an operator is shared among different 
tenants, such as mobile virtual operators, over-the-top providers 
or vertical market players. The support of network slicing within 
the radio access network requires the introduction of appropriate 
radio resource management functions to ensure that each tenant 
gets the required radio resources in accordance with the expected 
service level agreement (SLA). This paper addresses radio 
admission control (RAC) functionality in multiservice and 
multitenant scenarios as a mechanism for regulating the 
acceptance of new guaranteed bit rate service requests of 
different tenants. This paper proposes an optimization 
framework that models the RAC as a semi-Markov decision 
process and, as a result, derives an optimal decision-making 
policy that maximizes an average long-term function 
representing the desired optimization target. A reward function 
is proposed to capture the degree of tenant satisfaction with the 
received service in relation to the expected SLA, accounting for 
both the provision of excess capacity beyond the SLA and the 
cost associated with sporadic SLA breaches. The proposed 
approach is evaluated by means of simulations, and its 
superiority to other reference schemes in terms of reward and 
other key performance indicators is analyzed. 
 

Index Terms—5G, multitenancy, radio admission control, 
RAN slicing, semi-Markov decision process. 

I. INTRODUCTION 

ETWORK slicing, which allows the formation of 
multiple dedicated logical networks with specific 

functionality running on top of a common infrastructure, is a 
key capability of fifth generation (5G) systems [1] for 
enabling the simultaneous support of a wide range of 
application scenarios (e.g., the automotive industry, utilities, 
smart cities, and high-tech manufacturing) and for 
consolidating more flexible and cost-efficient service delivery 
models (e.g., neutral host network providers, Network as a 
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Service, and private cellular networks). Each of these logical 
networks is referred to as a network slice and can be tailored 
to provide a particular system behavior to best support specific 
service/application domains. Therefore, network slicing 
enables the provision of multitenant networks in which a 
network infrastructure owned and deployed by an operator is 
shared among different organizations or business entities such 
as mobile virtual operators, over-the-top providers or vertical 
market players, referred to in general as tenants, who are 
entitled to use a network slice with a given level of guaranteed 
network resources. 

In the most general case, the realization of a network slice 
involves the support of specific features and resources both in 
the 5G core network part and in the next generation radio 
access network (NG-RAN) part. The latter is referred to as a 
radio access network (RAN) slice. The issue of how the pool 
of radio resources available to one gNB (i.e., a NG-RAN 
node) can be configured and operated to simultaneously 
deliver multiple and diverse behaviors [2] and achieve 
isolation between slices (meaning that the traffic in one 
network slice should not negatively affect the performance 
seen by other slices) makes the realization of RAN slices 
particularly challenging. This isolation in the NG-RAN may 
be achieved by means of implementation-dependent radio 
resource management (RRM) policies [3], and there exists a 
general trade-off between the level of isolation and the 
efficiency of the radio resource utilization [4]. 

The split of the available radio resources among RAN slices 
in multitenant scenarios has received attention in recent years 
in the literature. This split can be performed at various levels 
with the support of different RRM functions [4]. A significant 
number of studies have focused on packet scheduling (PS) to 
carry out the dynamic assignment of radio resources to the 
users of each RAN slice. The network virtualization substrate 
(NVS) concept, designed as a hierarchical scheduler 
composed of a slice scheduler to define the resource allocation 
to a slice and a flow scheduler to decide the assignment of 
resources to the different users of the slice, is used in 
[5][6][7][8]. The CellSlice approach is presented in [9] and 
acts as a gateway-level solution that constrains the uplink 
scheduling decisions and uses NVS for the downlink. In [10], 
an application-oriented framework is proposed to optimize the 
allocation of resources to the different operators sharing the 
RAN. Recently, the Hap-SliceR framework has been proposed 
in [11] to optimize the allocation of radio resources to slices 
using a Q-learning algorithm, while a game theory-based 
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approach is used in [12][13] to model the RAN slicing 
problem and to determine the allocation of resources to the 
users of each slice. 

Some other studies have considered the allocation of 
resources to RAN slices rather than to individual users of each 
slice. For example, a heuristic algorithm integrating spectrum 
allocation, admission control for slice requests and spatial 
multiplexing is proposed in [14] to allocate resources to each 
slice. Similarly, [15] proposes the 5G network slice broker 
concept as a mechanism that facilitates on-demand resource 
allocation and performs slice admission control. This concept 
was further developed in [16], which introduces a slice 
admission control algorithm with traffic forecasting 
capabilities, as well as in [17] and [18], which study the 
optimization of admission control for slice requests that need 
to support a given number of users for a known period of time. 

The consideration of radio admission control (RAC) in 
multitenant scenarios as a mechanism to regulate the number 
of admitted users of guaranteed bit rate (GBR) services for 
each slice or tenant has received less attention in the literature. 
For example, in [8], a tenant-specific admission control is 
included in the NVS framework of [5]. It is based on 
comparing the GBR load of a tenant to a threshold that 
accounts for some resources reserved for that tenant. In turn, 
the game theory-based network slicing approach of [12] 
considers two possible admission control strategies, a worst-
case admission control and a load-driven admission control, 
that aim to ensure that the subsequent resource allocation 
algorithm will be able to find a solution that meets the rate 
requirements of GBR services. Similarly, a multitenant 
admission control for cellular networks that exploits traffic 
multiplexing principles at both intra- and multicellular levels 
was proposed in [19]. It is based on a heuristic algorithm that 
compares the GBR load of each tenant against a tenant-
specific threshold that is dynamically adjusted based on the 
loads of the tenants in the different cells. 

In this context, this paper focuses on the optimization of the 
RAC decision-making policy for admitting users in a 
multitenant and multiservice 5G scenario. For this purpose, 
RAC is modeled as a semi-Markov decision process (SMDP). 
The use of the SMDP as an optimization tool has been studied 
in different contexts in the literature. For example, SMDPs 
were used in the past to derive optimal circuit access policies 
for Integrated Service Digital Networks in [20]. Later, it was 
used in [21] to optimize the air interface selection in 
heterogeneous networks. More recently, the SMDP has been 
used in the network slicing domain. In particular, [11] uses the 
SMDP to decide the allocation of resource units to slices in 
different cells, while [17][18] have used SMDPs to optimize 
the admission of slice requests. However, none of these 
studies considers RAC decision making in multitenant 
networks, which deals with the dynamics associated with user-
level traffic generation processes and the congestion that can 
appear due to the varying number of users and the 
corresponding propagation conditions. 

The contributions of this paper can be summarized as 
follows: 

 This paper proposes an SMDP model for optimizing the 
RAC decision making policy in a multitenant and 
multiservice 5G scenario, which is something that, to the 
authors’ best knowledge, has not been addressed in the 
literature. 

 The model is defined in accordance with the network 
slicing capabilities of 5G, which allow the assignment of a 
different RAN slice to each tenant and the enforcement of 
different policies on different slices when admitting the 
users of a tenant according to the tenant’s service level 
agreement (SLA). 

 As an optimization target, the paper proposes a reward 
function that captures the degree of satisfaction of the 
tenants with the received service in relation to their 
expected SLA. The proposed reward function includes 
different parameters to account for the provision of excess 
capacity beyond the SLA and for the cost associated with 
sporadic SLA breaches. Then, through the setting of these 
parameters, it is possible to balance the trade-off between a 
more conservative RAC policy that targets a strict 
fulfillment of the SLA and a more flexible RAC policy that 
targets a more efficient utilization of the radio resources. 

 The proposed SMDP-based RAC policy is evaluated by 
means of simulations and compared against other reference 
schemes in order to analyze its behavior in terms of 
obtained reward and in terms of different key performance 
indicators such as blocking probability, throughput or 
congestion probability. 

The rest of the paper is organized as follows. Section II 
introduces the considered system model to characterize the 
radio resources and the system dynamics in the multitenant 
and multiservice 5G scenario. Based on this, Section III 
presents the formulation of the RAC as an SMDP problem, the 
algorithmic solution to this problem based on the value 
iteration method and the formulation of the proposed reward 
function to reflect the degree of fulfillment of the SLA. A 
performance evaluation of the proposed approach by means of 
system-level simulations is presented in Section IV. Finally, 
concluding remarks and future work directions are highlighted 
in Section V. 

II. SYSTEM MODEL 

Let us assume a 5G network operated by an infrastructure 
provider and configured to support Q different network slices. 
Each slice is associated with a different tenant, and therefore, 
the terms slice and tenant will be used interchangeably 
throughout this paper. Each slice is identified through the 
Single Network Slice Selection Assistance Information (S-
NSSAI) [1] and provides end-to-end connectivity between the 
user equipment (UE) of a tenant and a data network. 

A network slice is composed of one network slice subnet 
instance that includes the NG-RAN functions, referred to as 
the RAN slice, and another one with the 5G core network 
functions, referred to as the 5G core slice. Following the Third 
Generation Partnership Project (3GPP) management model 
[22], the creation and operation of the end-to-end slice is 
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carried out by a network slice management function (NSMF) 
residing at the 3GPP management system, as illustrated in Fig. 
1. In turn, the NSMF relies on one network slice subnet 
management function (NSSMF) for creating and operating the 
RAN slice, referred to here as the RAN slicing management 
function (RSMF), and on another one for the core network, 
referred to as the 5G core slicing management function. 

The focus of this paper is on the RAN slice. For this reason, 
let us assume a 5G new radio (NR) gNB of the NG-RAN with 
a cell that supports the Q slices. The cell includes a total of P 
resource blocks (RBs), each with bandwidth B. 

Tenant q uses its associated slice to provide Sq services 
numbered s=1..,Sq to its users. Following the quality of service 
(QoS) model of the 5G system [1], which defines the QoS 
flow as the finest granularity of QoS differentiation in the 5G 
system architecture, and assuming GBR services, the 
requirements of service s of tenant q are specified in terms of 
the guaranteed flow bit rate (GFBR), denoted as GFBRq,s. 

The contractual relationship between a tenant and the 
infrastructure provider is defined in terms of an SLA that 
records a common understanding about the service offered by 
the infrastructure provider, together with the measurable target 
values characterizing the level of the offered service. The SLA 
can be specified in terms of different parameters depending on 
the services involved. This paper assumes that the SLA of a 
tenant is defined in terms of the contractual aggregate GFBR 
to be guaranteed for all the QoS flows of the tenant in the cell, 
referred to as the slice aggregated guaranteed bit rate 
(SAGBR). The corresponding value for tenant q is denoted 
SAGBRq. 

To configure the operation of the RAN slice in the cell 
according to the SLA, and following the Network Resource 
Model specified in [23], this paper assumes that the RSMF 
uses the so-called RRMPolicy attribute, which is 
implementation-dependent, to configure the SAGBRq value for 
the RAN slice of tenant q in the gNB. This is done through the 
management interface between RSMF and gNB shown in Fig. 
1. 

To model the dynamic traffic generation process, it is 
assumed that the UEs of the s-th service of the q-th tenant 
establish QoS flows following a Poisson arrival process with 
rate q,s requests/s and that the QoS flow durations are 
exponentially distributed with average (1/q,s) s. 

Fig. 1 illustrates the main steps of the UE-initiated QoS 
flow establishment and the architectural entities of the 5G 
system architecture involved based on [24]. This process is 
executed as part of the protocol data unit (PDU) session 
establishment procedure, in which an IP connection is created 
between the UE and a data network including one QoS flow. 
In step number 1 of Fig. 1, the UE sends a PDU session 
establishment request message. This message belongs to the 
non-access stratum (NAS) control protocol defined between 
the UE and the access and mobility management function 
(AMF), which is the network function of the 5G core network 
in charge of handling the control signaling with the UEs. It is 
sent to the gNB encapsulated in a radio resource control 
(RRC) message and transferred through the 5G NR interface 

using the different layers of the control plane protocol stack, 
namely, the packet data convergence protocol (PDCP), radio 
link control (RLC), medium access control (MAC) and 
physical (PHY) layers. The gNB forwards this message to the 
AMF through the N2 interface. In the PDU session 
establishment request message, the UE identifies the 
associated slice through the S-NSSAI. In step number 2 of 
Fig. 1, the AMF interacts with the session management 
function (SMF) of the 5G core network in order to create the 
session management context with the new QoS flow. At this 
point, the SMF determines the GFBR of the QoS flow in 
accordance with the user subscription profile. For this 
purpose, it may interact with other network functions of the 
5G core that are not shown here for the sake of simplicity. 
Interactions between the AMF and the SMF are performed 
through their service-based interfaces Namf and Nsmf, 
respectively. 

To set up resources for the new QoS flow in the radio 
interface, in step number 3 shown in Fig. 1, the AMF sends a 
PDU session resource setup request message to the gNB 
through the N2 interface, indicating the S-NSSAI and the 
GFBR of the QoS flow being established. In this way, the 
gNB is aware of the network slice associated with the new 
QoS flow and can apply a differentiated treatment depending 
on its slice and the associated SLA. 

At the gNB, the new service data adaptation protocol 
(SDAP) introduced in 5G NR maps the QoS flow to a data 
radio bearer (DRB) that enables data transfer through the radio 
interface between the UE and the gNB according to the 
expected QoS. Finally, in step number 4 of Fig. 1, the RAC 
function is triggered at the gNB to determine if the DRB 
associated with the new QoS flow can be admitted or not. The 
proposed RAC will act based on the SAGBR configured 
through the RRMPolicy attribute to enforce different policies 
on each slice in accordance with the SLA. 

In general terms, the RAC decision should take into account 
the QoS requirements of the different services and the number 
of QoS flows that have been already admitted to the cell for 
each service and tenant. This information is captured in the 
state of the cell at a certain time, which is defined by the 
matrix X={nq,s}, where nq,s is the number of admitted QoS 
flows of the s-th service of the q-th tenant. X is a Q  S matrix 

 
Fig. 1. Architectural model and interactions between involved entities. 
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with S=max(S1...,SQ). To indicate that a tenant can have a 
number of services Sq lower than S, it is assumed that nq,s=0 
and q,s=0 for s>Sq. Therefore, the state space 𝒳 is defined as: 

 

   , , max, ,: 0Q S
q s q s q sn n N    X   (1) 

 
where Nmax,q,s is the maximum possible number of QoS flows 
for the s-th service of the q-th tenant, defined as: 
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 (2) 

 
where max (b/s/Hz) is the maximum spectral efficiency that 
can be achieved in the radio interface. It is worth mentioning 
that Nmax,q,s is an upper bound for the number of QoS flows 
that can be admitted for each service and tenant, while the 
RAC function can introduce stricter limitations on the actual 
number of admissible users depending on the considered RAC 
policy. 

III. FORMULATION OF THE RADIO ADMISSION CONTROL AS A 

SEMI-MARKOV DECISION PROCESS 

A. Problem formulation 

According to the traffic generation process defined in 
Section II, the dynamic evolution of the system follows a 
Markov chain in which state transitions occur due to either the 
generation of new QoS flows that are admitted by the RAC 
function or the finalization of existing QoS flows. The RAC 
function makes an acceptance or rejection decision each time 
that a new QoS flow is generated. Therefore, the time between 
RAC decisions is a continuous random variable related to the 
Poisson QoS flow generation process. Taking into 
consideration these characteristics, i.e., the Markovian 
dynamics and the random time between decisions, the RAC 
can be formulated as an SMDP [25]. 

An SMDP can be seen as an extension of a Markov decision 
process (MDP), which is a versatile and powerful tool for 
analyzing probabilistic sequential decision processes with an 
infinite planning horizon. MDPs have become a fundamental 
formalism for decision-theoretic planning, reinforcement 
learning and other learning problems in stochastic domains. 
They are useful for modeling dynamic systems evolving over 
time where the probabilistic law of motion can be controlled 
by making decisions (actions) that lead to state changes and 
earning rewards (or incurring costs) as a consequence of these 
decisions [25]. SMDPs extend MDPs to deal with situations in 
which the times between decision instants are not constant but 
random, as occurs with the RAC problem considered here. 

In general, an SMDP model is defined through the following 
components: (i) the state space 𝒳; (ii) the action space 𝒜X, 
which includes the set of possible actions that can be taken in 
each state X; (iii) the sojourn time in state X under action A, 

denoted (X,A), which corresponds to the average time that 
the modeled system will remain in state X before changing to 
a new state when A is the selected action; (iv) the state 
transition probability from state X to another state Y assuming 
that A is the action selected in state X, denoted PXAY; and (v) 
the reward rate obtained until the next decision time if action 
A is selected in state X, which is denoted r(X,A). 

In the following, the abovementioned components of the 
SMDP model are particularized for the RAC decision problem 
considered in this paper. The associated notation is 
summarized in Table I. 

TABLE I. 
NOTATION USED IN RAC FORMULATION 

Notation Definition 
q Tenant identifier. Range q=1,...,Q 
s Service identifier. Range s=1,..., Sq 
Q Number of tenants 
Sq Number of services of tenant q 
q,s QoS flow generation rate of the s-th service of the q-th 

tenant 
(1/q,s) Average duration of the s-th service of the q-th tenant 
GFBRq,s Guaranteed flow bit rate of the s-th service of the q-th tenant 
SAGBRq Aggregate GFBR to be guaranteed for all the QoS flows of 

the q-th tenant in the cell 
P Number of RBs in the cell 
B Bandwidth of an RB 
max Maximum spectral efficiency achievable in the radio 

interface 
nq,s Number of admitted QoS flows of the s-th service of the q-

th tenant 
X={nq,s} State with the number of admitted QoS flows for all tenants 

and services in a Q  S matrix   
𝒳 State space 
Nmax,q,s Upper bound for the number of admissible QoS flows of the 

s-th service of the q-th tenant 
aq,s Admission decision for a new QoS flow arrival of the s-th 

service of the q-th tenant (0 for rejection, 1 for acceptance)  
A(X)={aq,s} Action to be made in state X. It includes the admission 

decisions aq,s for each service and tenant in a Q  S matrix   
𝒜X Action space in state X. 
eq,s Q  S matrix with all elements equal to 0 except the element 

in the q-th row and s-th column, which equals 1. 
r(X,A) Reward rate function while the system is in state X and 

action A is chosen. 
f(X,aq,s) Reward obtained as a result of the RAC decision aq,s made 

upon the arrival of a new QoS flow of the s-th service of the 
q-th tenant while being in state X 

(X,A) Sojourn time in state X under action A 

 Minimum sojourn time among all states and actions 
PXAY State transition probability from state X to state Y assuming 

that A is the action selected in state X 
Vm(X) Value function of state X at iteration m 
Lm Maximum difference between the value of any state at 

iteration m and at iteration m-1. 
lm Minimum difference between the value of any state at 

iteration m and at iteration m-1. 

 Parameter that determines the stop condition of the value 
iteration algorithm 

Rq(X) Total GFBR of all the admitted QoS flows of the q-th tenant 
when the cell is in state X 

Cq,s Cost of an SLA breach 

Iq,s Extra reward for admitting a QoS flow exceeding the SLA 
limit 

Pc(X) Congestion probability when the cell is in state X. 
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For any state of the cell, the RAC function should decide 
whether to accept or reject any new QoS flow request of any 
service and tenant. Then, the RAC operation can be 
formalized through an RAC policy, defined as a stationary 
rule that associates each state X𝒳 with an action 
A(X)={aq,s}, represented as a Q  S matrix, each of whose 
components aq,s denote the decision to be made for a new QoS 
flow arrival of the s-th service of the q-th tenant when the cell 
is in state X, where aq,s=1 indicates acceptance and aq,s=0 
indicates rejection. 

For a given state X𝒳, the action space 𝒜X defines the set 
of eligible actions in this state and is composed of those 
actions that lead to another state of the state space 𝒳. This is 
formally defined as: 

    , , ,: 0,1 ,  0 if  Q S
q s q s q sa a a      X q,sA X e   (3) 

where eq,s is a Q  S matrix with all elements equal to 0 except 
the element in the q-th row and s-th column, which equals 1. 
Therefore, X+eq,s denotes the new state that will be reached if 
a new QoS flow of the s-th service of the q-th tenant is 
admitted while being in state X. 

The RAC policy has an impact on the system dynamics and, 
consequently, on the obtained performance, which can be 
characterized through different metrics. This paper considers a 
general reward rate function r(X,A) that defines the 
performance obtained while the system is in state X and action 
A𝒜X is chosen in this state. A specific formulation of this 
function will be presented in Section III.C. 

The SMDP problem considered here consists of finding the 
optimum RAC policy, i.e., the optimum action A(X)𝒜X to 
be selected in every state X𝒳 in order to maximize the 
average long-term reward obtained in the cell as a result of its 
dynamics. 

B. Algorithmic solution to the SMDP problem 

In general, different algorithms for finding an optimal 
decision policy in an SMDP exist, such as linear 
programming, policy iteration or value iteration (see ch. 7 of 
[25]).This paper makes use of the value iteration algorithm for 
solving the RAC function problem formulated in Section 
III.A, since it has been empirically demonstrated that this 
algorithm is able to find adequate solutions with low 
computational time. Value iteration has also been used in 
other references that have addressed SMDP, such as [20] and 
[21]. 

The value iteration algorithm for solving an SMDP is 
defined in [25] by means of a data transformation that 
converts the SMDP into an equivalent discrete time Markov 
decision process. In this way, the algorithm can recursively 
compute a sequence of value functions that approximate the 
maximum average reward per time unit. Specifically, the 
formulation of the value iteration algorithm in [20][25] is 
particularized to the problem of Section III.A as follows. 

The value functions are initialized to arbitrary values V0(X) 
for each state X𝒳 at m=0. Then, at iteration m, the new 
value functions are obtained as: 

 

       
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
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  (4) 

where: 
 
 (X,A) is the sojourn time in state X under action A and is 

given by: 
 

  
, , , ,

1 1 1 1
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,

q qS SQ Q

q s q s q s q s
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
 
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
 
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  is the minimum sojourn time among all states and 

actions, i.e. 
 

  
,

min , 
X A

X A  (6) 

 
 PXAY is the state transition probability from state X to 

another state Y assuming that A is the action selected in 
state X and is defined as: 
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The iterative process stops at the first iteration m that fulfills 

the following criterion: 
 
 0 m m mL l l    (8) 

 
where  is a parameter and Lm, lm are defined as: 
 

     1maxm m mL V V 
 

X
X X


 (9) 

     1minm m ml V V 
 

X
X X


 (10) 

 
After stopping at iteration m, the obtained RAC policy is 

given by the following actions for each state X𝒳: 
 

 
       

   

1

1

arg max ,
,

1- ,   
,

m

m

r P V

V








 



  


         


X

XAY
A Y

A X X A Y
X A

X X
X A

 



 (11) 

 
This policy provides an average reward within  of the 

optimum one. 

C. Reward formulation 

The formulation of the RAC as an SMDP presented in 
Sections III.A and III.B is general and can be used for 
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optimizing the RAC function based on different targets, 
depending on how the reward rate function r(X,A) is defined. 
This paper targets the optimization of the RAC from the 
perspective of fulfillment of the SLA (i.e., the SAGBR value) 
for the different tenants. For this reason, a reward function is 
chosen that captures the satisfaction of each tenant with the 
received service in relation to the expected SLA. 

Specifically, when the cell is in state X={nq,s} and the action 
A={aq,s} is selected, the reward rate r(X,A) is defined as: 

 

   , ,
1 1

, ꞏ ,
qSQ

q s q s
q s

r f a
 

X A X  (12) 

 
where f(X,aq,s) is defined in (13) at the bottom of the page and 
represents the reward obtained as a result of the RAC decision 
aq,s made upon the arrival of a new QoS flow of the s-th 
service of the q-th tenant in accordance with the selected 
action A. The formulation of (13) takes into consideration the 
requested GFBRq,s of the new QoS flow and the total GFBR of 
all the admitted QoS flows of the q-th tenant when the cell is 
in state X, which is denoted Rq(X) and given by: 
 

   , ,
1

qS

q q s q s
s

R n GFBR


 X  (14) 

 
Then, the different conditions in (13) are explained as 

follows: 
 If the total aggregate GFBR of all the QoS flows of the q-

th tenant is still below the contractual limit SAGBRq, i.e., 
Rq(X)+GFBRq,sSAGBRq, and the RAC decision is to 
reject the new QoS flow, i.e., aq,s=0, then an SLA breach 
occurs. Therefore, the obtained reward is negative and 
corresponds to a cost of Cq,s units. This condition intends 
to drive the RAC towards the fulfillment of the SLA terms. 

 In the case in which the RAC decision is to admit the new 
QoS flow, i.e., aq,s=1, and this involves exceeding the 
contractual SLA limit, i.e., Rq(X)+GFBRq,s>SAGBRq, this 
means that the RAC is indeed granting excess capacity to 
the q-th tenant. This will be beneficial for both the 
infrastructure provider and the tenant: the infrastructure 
provider will achieve a better utilization of radio resources, 
and the tenant will sporadically experience better service 
than expected. However, this excess capacity will only be 
effectively provided if no congestion occurs, i.e., if the cell 
in the new state X+eq,s has sufficient RBs to ensure the 
GFBR requirements of all the admitted QoS flows. 
Otherwise, the admitted QoS flows will be negatively 
affected. For this reason, the reward includes a positive 

term Iq,sꞏ(1-Pc(X+eq,s)) to reflect the extra capacity if 
there is no congestion (where Pc(X+eq,s) denotes the 
congestion probability in the new state) and a negative 
term Cq,sꞏPc(X+eq,s) for each admitted QoS flow to 
account for the degradation if there is congestion. 

 All the other cases, i.e., when Rq(X)+GFBRq,sSAGBRq 
and the decision is to admit the new QoS flow or when 
Rq(X)+GFBRq,s>SAGBRq and the decision is to reject the 
new QoS flow, reflect the normal operation of the RAC 
that would be expected by the q-th tenant and by the 
infrastructure provider. Consequently, they have neither 
positive nor negative influence, so the obtained reward is 
0.  

The congestion probability Pc(X) when the cell is in a given 
state X is the probability that the cell will not have sufficient 
RBs to serve the admitted QoS flows with their required 
GFBRs. The detailed computation of Pc(X) is given in the 
Appendix and assumes that the mapping between GFBR 
requirements and the number of required RBs is stochastic and 
depends on the propagation conditions that determine the 
spectral efficiency achievable by each UE. 

The setting of the parameters Iq,s and Cq,s in the reward 
function allows control of the trade-off between the level of 
isolation among the slices of each tenant and resource 
utilization efficiency. In particular, if a large value is set for 
Cq,s in relation to Iq,s, the reward function will drive the 
decision making toward a strict adherence to the SLA and thus 
a high isolation between slices. In contrast, increasing the 
value of Iq,s will drive the decision making toward making it 
easier for a tenant to obtain a higher bit rate than initially 
considered in its SLA, thus facilitating more efficient resource 
utilization but at the expense of a lower degree of isolation. 

IV. PERFORMANCE EVALUATION 

This section presents the performance evaluation of the 
proposed SMDP-based RAC by means of system-level 
simulations and compares it with different reference schemes 
used for benchmarking purposes in order to quantify the 
benefits that can be obtained. The details of the scenario 
considered in the simulations are described in Section IV.A, 
while the benchmarking approaches are presented in Section 
IV.B. Section IV.C includes some illustrative results to 
analyze the behavior of the SMDP-based RAC process. 
Sections IV.D to IV.F discuss the comparison with the 
reference schemes, focusing on different metrics, namely, 
reward, blocking probability, throughput and congestion 
probability. Finally, Section V.G discusses the issues involved 
in the practical implementation of the proposed approach. 

 
 

 
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'
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 
          
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q s q q qa R GFBR SAGBR



   




X   (13)
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A. Scenario description 

The performance of the proposed SMDP-based RAC is 
evaluated by means of system-level simulations. The scenario 
is composed of one gNB with one omnidirectional cell that 
includes P=51 RBs with bandwidth B=360 kHz, which 
corresponds to a subcarrier spacing of f=30 kHz according to 
the numerologies given in [3]. Table II presents the parameters 
considered in the simulation. 

 The cell is configured to support Q=2 tenants, and each is 
associated with a different RAN slice. Each tenant provides 
two different GBR services. The GFBR, QoS flow generation 
rate and average duration of each service are detailed in Table 
III. The table also includes the contractual SLA values per 
tenant SAGBRq. The average offered load of each tenant, 
defined as the aggregate of q,sꞏ(1/q,s)ꞏGFBRq,s for all the 
services of the tenant, is varied in the different simulations by 
changing the total generation rate per tenant based on the 
values indicated in Table III. Only traffic in the downlink 
direction is considered. 

B. Benchmarking approaches 

For benchmarking purposes, the proposed SMDP-based 
RAC will be compared with the following reference schemes: 

 
 Myopic policy: This strategy only considers the immediate 

reward when making RAC decisions. Thus, when the cell 
is in a given state X, it accepts a new QoS flow of the s-th 
service of the q-th tenant if the reward in case of 
acceptance f(X, aq,s=1) is higher than the reward in case of 
rejection f(X, aq,s=0). Otherwise, the new request is 
rejected. 

 Non-slice-aware policy: This strategy considers a non-
slice-aware RAC that makes decisions based only on the 
planned capacity C of the cell. Thus, when the cell is in 
state X, a new QoS flow of the s-th service of the q-th 
tenant is admitted if the following condition is fulfilled: 
 

  ' ,
' 1

Q

q q s
q

R GFBR C


  X  (15) 

 
 where the planned cell capacity C equals the aggregate 
SAGBR of all the tenants, that is: 

 
1

Q

q
q

C SAGBR


   (16) 

 Strict slicing policy: This RAC strategy decides on the 
admission or rejection of a new QoS flow of the q-th 
tenant based on the agreed SAGBRq of this tenant and 
considers a strict slicing that does not allow deviations 
exceeding this value. Therefore, a new QoS flow of the s-
th service of the q-th tenant is admitted if the following 
condition holds: 
 

   ,q q s qR GFBR SAGBR X  (17) 

 

 

C. Behavior analysis of the SMDP 

 To gain insight into decision-making mechanisms, this 
section analyzes the actions A(X) that the value iteration 
algorithm of Section III.B found to be optimal for the SMDP 
problem for an illustrative state X. Each action specifies 
whether an acceptance or rejection decision has to be made 
when the system is in state X and a new QoS flow of the s-th 
service of the q-th tenant arrives. Therefore, the actions 
specify the allowed transitions between the different states. A 
specific example of these transitions is shown in Fig. 2. It has 
been obtained by assuming the simulation parameters of Table 
II and the service characteristics of Table III with an average 
offered load of 60 Mb/s for tenant q=1 and 60 Mb/s for tenant 
q=2 and with Iq,s=100 and Cq,s=10. The figure depicts the 
transitions when the cell is in state [n1,1=6, n1,2=0, n2,1=21, 
n2,2=0] for all the possible QoS flow arrivals in this state; it 

TABLE III.   
CHARACTERISTICS OF THE TENANTS AND THE SERVICES 

Tenant q=1 q=2 

Generation 
rate per 

tenant (q) 

1: from 3.125ꞏ10-3 to 
9.1ꞏ10-2 requests/s 

2: from 2.31ꞏ10-3 to 
0.278 requests/s 

Offered load 
per tenant  

From 1 Mb/s to 120 Mb/s 
From 1 Mb/s to 120 

Mb/s 

SAGBRq 60 Mb/s 40 Mb/s 

Service s=1 s=2 s=1 s=2 

GFBRq,s 10 Mb/s 20 Mb/s 2 Mb/s 10 Mb/s 

Generation 
rate per 

service (q,s) 

0.9ꞏ1 
requests/s 

0.1ꞏ1 
requests/s 

0.8ꞏ2 
requests/s 

0.2ꞏ2 
requests/s 

QoS flow 
duration 
(1/q,s) 

120s 120s 120s 120s 

TABLE II.   
SIMULATION PARAMETERS 

Parameter Value 
Cell radius 115 m 

Path loss and shadowing model 

Urban microcell model with 
hexagonal layout (see [26]) with a 
gNB antenna height of 10 m, a UE 
height of 1.5 m and a minimum 
distance of 10 m between UE and 
gNB.  

Shadowing standard deviation 
3 dB in line of sight (LOS) and 4 dB 
in non-line of sight (NLOS) (see 
[26])  

Base station antenna gain 5 dB 
Frequency 3.6 GHz 
Transmitted power per RB 24 dBm 
Number of RBs (P) 51 
UE noise figure 9 dB 
Link-level model to map the 
signal-to-interference-and-noise 
ratio and bit rate 

Model in section A.1 of [27] with 
maximum spectral efficiency 
max=8.8 b/s/Hz. 

Simulation duration 100000 s 
Iq,s, Cq,s Varied in the simulations 

Parameter  of the value 
iteration algorithm 

10-3 

Initial values of the value 
iteration algorithm 

   0 max ,V 
A

X X A  
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represents the admission acceptance decisions (aq,s=1) with an 
arrow and represents the admission rejection decisions (aq,s=0) 
with an arrow followed by a cross. The number above each 
arrow indicates the obtained reward f(X, aq,s=1) in case of 
acceptance. In state [n1,1=6, n1,2=0, n2,1=21, n2,2=0], the 
aggregate GFBR of tenant 1 is 60 Mb/s, which equals the 
SAGBR value of this tenant, while the aggregate GFBR of 
tenant 2 is 42 Mb/s, which is above its SAGBR2=40 Mb/s. 
Therefore, the reward in the case of rejection f(X, aq,s=0) is 0 
for all possible arrivals. 

Fig. 2 shows that in the case of a new arrival of service s=2 
from tenant q=1, the decision made by the value iteration 
algorithm is to reject the new request. This is indeed a logical 
decision since the actual reward that could be obtained in case 
of acceptance is negative (-39.7) due to the high GFBR of this 
service, which would lead to a state with high congestion 
probability (37%) in case of acceptance. In contrast, the 
decision is made to admit the new arrivals of the services s=1 
and s=2 from tenant q=2. In both cases, the reward associated 
with acceptance is positive (+98.7 and +80.7, respectively) 
because the aggregate GFBR of tenant q=2 is above its 
SAGBR value. 

Remarkably, the long-term perspective that the algorithm 
embraces to gain insight into the future can be observed in the 
case of a new arrival of service s=1 from tenant q=1, where 
the decision made by the algorithm is to reject the new 
request, even though the immediate reward that can be 
obtained in case of acceptance is quite positive (+80.7). The 
reason is that the algorithm detects that a higher long-term 
reward can be obtained by rejecting the new request and 
waiting for the arrival of new QoS flows of other services such 
as s=1, q=2. Note that, as shown in Fig. 2, by admitting new 
requests of this service, the cell can progressively accumulate 
rewards until reaching a maximum of 29 users. In contrast, if 
the decision had been made to accept the new arrival of 
service s=1, q=1 and thus move to state [n1,1=7, n1,2=0, 
n2,1=21, n2,2=0], the maximum number of new requests of 
service s=1, q=2 that could have been admitted would be 25 
users. 

As a result of this long-term perspective when solving the 
SMDP problem, the cell will be able to achieve a higher 

reward than that obtained with other strategies. To illustrate 
this, Table IV presents the average reward obtained along a 
simulation when the RAC follows the admission policy used 
above to solve the SMDP problem and compares it with the 
myopic RAC strategy that only considers the immediate 
reward. The simulations use the parameters of Tables II and 
III with Iq,s=100 and Cq,s=10 and an offered load of 60 Mb/s 
for each tenant. Table IV shows that the resulting reward with 
the SMDP-based approach is approximately 30% higher than 
that obtained with the myopic approach. 

 Another characteristic of the long-term perspective inherent 
in SMDP-based decision making is an improved ability to 
avoid states with high congestion probability. This ability is 
demonstrated in Table IV, which includes the percentage of 
the total simulation time in which the cell has remained in 
states X with congestion probability Pc(X) higher than 5%. 
Clearly, the myopic approach spends much more time in these 
states than the SMDP-based policy, and as a result, the overall 
congestion probability experienced along the simulation is 
much higher, as can also be seen in Table IV. 

To provide further insight into this behavior, Table V 
presents a detailed analysis of the congestion in four selected 
states, in which n1,1=4, n1,2=1, n2,1=13 and the value of n2,2 
varies. For each state, the table presents the congestion 
probability Pc(X) computed (as explained in the Appendix) 
from the probability density function (pdf) of the number of 
RBs required by the QoS flows of the state, which are shown 
for illustration purposes in Fig. 3. On the other hand, the table 
includes the amount of simulation time (out of a total time of 
100000 s) that the cell has remained in each of the four states 
under each RAC policy. It is observed that when the RAC 
operates according to the myopic policy, the cell spends a 
nonnegligible amount of time in states with high congestion 
probability, whereas when the RAC follows the SMDP-based 
approach, these states are not observed during the simulation. 

 
 

TABLE V. 
CONGESTION PROBABILITIES FOR DIFFERENT STATES AND AMOUNT OF TIME 

IN THESE STATES WITH THE SMDP AND MYOPIC APPROACHES 
State X Pc (X) Time Myopic Time SMDP 

n1,1=4, n1,2=1, n2,1=13, n2,2=0 0.0057% 27 s 0 s 
n1,1=4, n1,2=1, n2,1=13, n2,2=1 0.126% 96 s 0 s 
n1,1=4, n1,2=1, n2,1=13, n2,2=2 2.21% 194 s 0 s 
n1,1=4, n1,2=1, n2,1=13, n2,2=3 16.9% 208 s 0 s 

 

TABLE IV. 
COMPARISON BETWEEN THE SMDP AND THE MYOPIC APPROACH 

 
Average 
reward 

% of time in 
states with 
Pc(X)>5% 

Congestion probability 
along the simulation 

SMDP 
approach 

11.27 0.47% 0.08% 

Myopic 
approach 

8.63 25.5% 4.98% 

    

Fig. 2. Example of the allowed state transitions from state [n1,1=6, n1,2=0,
n2,1=21, n2,2=0] for the different service arrivals.   
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D. Comparison in terms of reward 

Fig. 4 plots the rewards obtained with the different 
strategies as a function of the offered load of tenant 1 when 
the offered load of tenant 2 is 20 Mb/s, which is much lower 
than its SAGBR2 value. Then, Fig. 5 depicts the corresponding 
result for the case in which the offered load of tenant 2 is 60 
Mb/s, i.e., higher than SAGBR2. Both figures assume a reward 
function specified by Iq,s=100 and Cq,s=10 for all services. 
It can be observed in both figures that the reward obtained by 
the SMDP-based approach outperforms the rewards of all the 
other strategies thanks to its ability to optimize the RAC 
decision-making policy to maximize the long-term reward. 
Among the benchmarking strategies, the best reward is 
achieved by the myopic policy because this policy also 
includes the reward function in the decision-making process. 
However, due to its lack of insight into the future, this policy 
becomes suboptimal from the perspective of long-term 
reward, leading to substantial differences from the SMDP 
approach. These differences are particularly high when the 
offered load of at least one of the two tenants is higher than its 
SAGBR (e.g., the cases in Fig. 4 in which the offered load of 
tenant 1 is above 60 Mb/s and the cases in Fig. 5), which is 
when the SMDP-based decision-making policy can provide 
extra capacity to the tenants and thus increase the reward 
through the term Iq,s. The non-slice-aware strategy is also 
able to achieve a certain reward; it is able to admit requests of 
a tenant even when the aggregate GFBR of the tenant’s 
admitted flows is higher than the SAGBR because it does not 
impose tenant-specific limits on the admission of new 
requests. However, since this policy does not explicitly 
incorporate the reward into its formulation, it yields a lower 
reward than both the SMDP and the myopic policies. Finally, 
the reward of the strict slicing policy is 0 in all cases since, by 
definition, this policy does not allow admissions when the 
aggregate GFBR of the admitted flows exceeds the SAGBR 
level, so it can never achieve either a positive or a negative 
reward.  

To analyze the impact of the parameters Iq,s and Cq,s of 
the reward function, Fig. 6 and Fig. 7 show the reward 
obtained with the different strategies and an offered load of 

tenant 2 equal to 60 Mb/s in two cases: the case in which the 
reward achieved by extra capacity equals the cost of blocking 
a request that is below the contractual SAGBR limit (i.e., 
Iq,s=100, Cq,s=100 in Fig. 6); and the case in which this cost 
is much higher than the reward due to extra capacity (i.e., 
Iq,s=100, Cq,s=200 in Fig. 7). The situation in which the 
reward due to extra capacity is much higher than the cost has 
been already discussed in Fig. 5 (i.e., Iq,s=100, Cq,s=10). 

The results shown in Fig. 6 and 7 reveal a similar behavior 
as in Fig. 5 in the sense that the SMDP-based approach 
outperforms all the other reference schemes. However, it can 
be observed that the actual reward decreases when the value of 
Cq,s increases, and the superiority of the SMDP-based 
approach to the myopic policy also decreases. This is due to 
the higher cost associated with rejections when a tenant is 
below its SAGBR level. 

The percentage gain in reward achieved by the SMDP-
based approach over the myopic policy for various offered 
traffic loads of the two tenants and for the three configurations 
of Iq,s and Cq,s considered above is presented in the 3-
dimensional graphs of Fig. 8. It can be seen that the highest 
gains are achieved for high loads of both tenants and that the 
gain decreases when the cost term Cq,s increases. 
Specifically, the highest gain obtained for the configuration 
Iq,s=100, Cq,s=10 is 110%, which is reduced to 76% for the 

Fig. 3. Probability density functions of the number of required RBs for states
with n1,1=4, n1,2=1, n2,1=13 and different values of n2,2.  
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Fig. 4. Reward obtained with the different strategies as a function of the
offered load of tenant 1 when the offered load of tenant 2 is 20 Mb/s, for the 
case Iq,s=100, Cq,s=10. 

 Fig. 5. Reward obtained with the different strategies as a function of the
offered load of tenant 1 when the offered load of tenant 2 is 60 Mb/s, for the 
case Iq,s=100, Cq,s=10. 
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configuration Iq,s=100, Cq,s=100 and reduced even further 
to 50% for the configuration Iq,s=100, Cq,s=200. 

A relevant characteristic of the proposed SMDP-based 
framework is its flexibility: it can be configured to achieve 
different behaviors by properly tuning the values of the 
parameters Iq,s and Cq,s in the reward function. To illustrate 
this, Fig. 9 presents the reward obtained for the configuration 
Iq,s,=0, Cq,s=200. This configuration reflects a conservative 
case in which the RAC should strictly adhere to SLA 

fulfillment because there are high penalties for rejecting new 
requests that are under the SAGBR limit but no reward for 
providing extra capacity beyond the SAGBR limit. As a result, 
it can be seen in Fig. 9 that the reward obtained by the SMDP-
based policy is 0 in all cases, reflecting the fact that the 
decision-making policy avoids the possibility of incurring 
costs. This behavior ensures a very strong isolation between 
slices, since each tenant will obtain resources in accordance 
with its SLA, regardless of the traffic of the other tenants. 
Indeed, Fig. 9 shows that the SMDP-based approach has 
exactly the same behavior as the strict slicing policy and the 
myopic policy. In contrast, the non-slice-aware policy leads to 
negative rewards in this case due to the indiscriminate 
rejections that do not take into account the SLA of each slice. 

E. Comparison in terms of blocking probability and 
throughput 

Going beyond analyzing performance in terms of reward, 
this section compares the behavior obtained with the different 
approaches from the perspective of different key performance 
indicators (KPIs). 

Fig. 10 plots the blocking probability experienced by each 
tenant, defined as the percentage of rejections out of the total 

 

Fig. 9. Reward obtained with the different strategies as a function of the
offered load of tenant 1 when the offered load of tenant 2 is 60 Mb/s, for the
case Iq,s=0, Cq,s=200. 
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Fig. 6. Reward obtained with the different strategies as a function of the
offered load of tenant 1 when the offered load of tenant 2 is 60 Mb/s, for the
case Iq,s=100, Cq,s=100. 

  
 

Fig. 7. Reward obtained with the different strategies as a function of the
offered load of tenant 1 when the offered load of tenant 2 is 60 Mb/s, for the
case Iq,s=100, Cq,s=200. 
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Fig. 8. Reward increase achieved by the SMDP-based approach over the myopic approach for (a) Iq,s=100, Cq,s=10; (b) Iq,s=100, Cq,s=100; and (c)  Iq,s=100, 
Cq,s=200. 
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number of admission attempts. The results are presented for 
two different values of the cost Cq,s, assuming Iq,s is set to 
100, and for two different traffic mixes, the first characterized 
by an offered load of 40 Mb/s for tenant 1 and 20 Mb/s for 
tenant 2 and the second by an offered load of 60 Mb/s for 
tenant 1 and 20 Mb/s for tenant 2.  

For the case in which the cost Cq,s is set to 200, i.e., a large 
value in relation to Iq,s, Fig. 10 shows that for both traffic 
mixes, the SMDP and myopic approaches provide a very 
similar blocking probability that is lower than the probability 
for the non-slice-aware and strict slicing approaches. It is also 
observed that tenant 1 experiences higher blocking than tenant 
2 because in both traffic mixes, the offered load of tenant 2 in 
relation to its SAGBR2 is lower than the offered load of tenant 
1 in relation to its SAGBR1. 

In contrast, when the cost Cq,s is set to 10, i.e., much lower 
than Iq,s, Fig. 10 reveals some changes in the blocking 
probability obtained with the SMDP-based approach. In 
particular, note that the blocking probability of tenant 1 is 
lower than that in the case Cq,s=200. The reason is that, with 
the lower cost associated with rejections, the RAC allows the 
admission of more requests of tenant 1 exceeding the SAGBR 
limit, even if these extra admissions could represent some 
blockings of tenant 2. Then, as a result of this behavior, the 
blocking probability of tenant 2 experiences some increase, 
particularly when the offered load of tenant 1 is 60 Mb/s, since 
for this load level, which is equal to SAGBR1, the RAC will 
have more opportunities to obtain a positive reward by 
providing extra capacity to this tenant. 

Fig. 11 depicts the aggregate throughput obtained by each 
tenant with the different RAC strategies. The results are 
presented for the same conditions as in Fig. 10. Indeed, similar 
observations can be made for the throughput as for the 
blocking probability. Specifically, both the SMDP and the 
myopic approaches provide similar throughput levels that are 
higher than those obtained with the non-slice-aware and strict 
slicing strategies. Similarly, reducing the cost Cq,s leads to an 
increase in the throughput of the tenant with a higher offered 
load (i.e., tenant 1 in this case) due to the reward associated 
with the extra capacity that can be provided to this tenant. 

The blocking probability per service is depicted in Fig. 12, 
assuming an offered load of 40 Mb/s for tenant 1 and 20 Mb/s 
for tenant 2 and reward parameters Iq,s=100, Cq,s=200. The 
results show that the worst performance is achieved by the 
strict RAC, while the SMDP and myopic approaches reduce 
the blocking probability, with a slightly better performance 
achieved by the SMDP approach. In turn, it can be seen that 
service 2 of tenant 1, which requires the highest GFBR (see 
Table III), also experiences the highest blocking probability, 
while the lowest blocking probability is obtained by service 1 
of tenant 2, which requires the lowest GFBR. 

F. Comparison in terms of congestion probability 

Fig. 13 depicts the congestion probability, i.e., the 
probability that the cell does not have enough RBs to fulfill 
the requirements of all the admitted QoS flows at a certain 
point in time. It can be seen that the SMDP-based approach, 

the non-slice-aware approach and the strict slicing approach 
maintain very reduced values of the congestion probability. 
For the non-slice-aware and strict slicing approaches, the 
reason is that both approaches impose a limitation on the total 
number of admitted QoS flows that is determined by the 
planned cell capacity C, whose value provides a sufficient 
margin to avoid congestion in most situations. In contrast, 
both the SMDP and the myopic approach allow this limit to be 
exceeded in certain situations, i.e., when both tenants obtain 
extra capacity above their SAGBR value. However, the long-

Fig. 10. Blocking probability of tenant 1 and tenant 2 for different values of
Cq,s and two different traffic mixes. The numbers in parentheses indicate the
offered loads of tenant 1 and tenant 2 in Mb/s, respectively. 
 

Fig. 11. Aggregate throughput of tenant 1 and tenant 2 for different values of
Cq,s and two different traffic mixes. The numbers in parentheses indicate the
offered loads of tenant 1 and tenant 2 in Mb/s, respectively. 
 

 

Fig. 12. Blocking probability per service. 

0

5

10

15

20

25

30

(40,20) (60,20) (40,20) (60,20) (40,20) (60,20) (40,20) (60,20)

B
lo
ck
in
g 
p
ro
b
ab

ili
ty
 (
%
)

SMDP Myopic Non‐slice‐aware Strict

Cq,s=200 Cq,s=10 Cq,s=200 Cq,s=10

Tenant 2Tenant 1

0

10

20

30

40

50

60

(40,20) (60,20) (40,20) (60,20) (40,20) (60,20) (40,20) (60,20)

A
gg
re
ga
te
 t
h
ro
u
gh

p
u
t 
(M

b
/s
)

SMDP Myopic Non‐slice‐aware Strict

Cq,s=200 Cq,s=10 Cq,s=200 Cq,s=10

Tenant 2Tenant 1

0

5

10

15

20

25

30

35

Service 1,
Tenant 1

Service 2,
Tenant 1

Service 1,
Tenant 2

Service 2,
Tenant 2

B
lo
ck
in
g 
p
ro
b
ab

ili
ty
 (
%
)

SMDP Myopic Non‐slice‐aware Strict

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TVT.2019.2951322

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



 12

term reward perspective achieved by the SMDP-based strategy 
gives this strategy better control of the congestion probability 
than the myopic policy. Consequently, the myopic approach is 
the one that experiences the worst congestion probability. 

G. Practicality considerations 

Although a detailed practical implementation of the 
proposed SMDP-based algorithm is beyond the scope of this 
paper, this subsection intends to provide a discussion of the 
practical aspects that should be taken into account for such an 
implementation. 

a) Configuration of the RAC algorithm 
As discussed in Section II, the configuration of the RAC on 

a per-slice basis is performed by the RSMF through the 
implementation-dependent RRMPolicy attribute defined in the 
gNB network resource model [23]. Specifically, this attribute 
can be specified by means of different fields, namely, the 
SAGBRq values, as previously explained in Section II, as well 
as the Iq,s and Cq,s values. 

b) Acquisition of the required input parameters for 
executing the optimization model 

The optimization process to determine the RAC policy 
described in Section III.B requires knowledge about the 
service characterization in terms of the QoS flow generation 
rates (q,s) and the average service duration (1/q,s). In 
practice, these could be obtained from measurements collected 
by the network regarding service duration and time between 
arrivals observed from multiple QoS flows in each cell. These 
measurements should be statistically processed to obtain the 
average values and can be defined depending on the specific 
period of the day (e.g., every hour) so that different RAC 
policies can be applied in different periods. In the context of 
the 5G system architecture, the network data analytics 
function (NWDAF) [28], which can perform data analytics on 
UE communication patterns, is envisaged here to support the 
collection of statistics regarding the establishment and 
duration of the different services. Furthermore, the 
optimization process also requires a characterization of the 
congestion probability in the different states, following the 
formulation specified in the Appendix. This formulation 

depends on the spectral efficiency distribution of the users in 
the cell, which determines the bit rate per RB and 
correspondingly affects the number of RBs required to achieve 
a certain GFBR. The distribution of the spectral efficiency can 
be obtained from the wideband channel quality indicator 
(CQI) distribution [29], which is computed by the gNB and 
delivered to the management system, e.g., to a management 
data analytics function (MDAF) [30], according to a certain 
periodicity (e.g., 15 min). Each CQI is an integer index that 
indicates the modulation and coding scheme that a UE can use 
in accordance with its experienced propagation and 
interference conditions and is mapped to a spectral efficiency 
value according to [31]. The MDAF gathers samples of the 
wideband CQI distribution and averages them for a longer 
time period in order to obtain adequate statistical validity to be 
representative of the cell conditions. Then, the averaged 
distribution of the CQI indices is directly mapped to the 
distribution of the spectral efficiency values experienced by 
the users in the cell. Using this distribution, the computations 
presented in the Appendix can be performed to obtain the 
congestion probability of each state to be delivered to the 
RAC function. Note that the congestion probability reflects the 
long-term behavior of the cell, so its computation will be 
performed on a long-term time scale; thus, computational 
complexity is not a critical issue. 

c) Computation of the optimal RAC policy 
The determination of the optimal RAC policy involves the 

execution of the value iteration algorithm presented in Section 
III.B. The optimal RAC policy should specify the operation of 
the RAC algorithm for a period of time in which the 
abovementioned input parameters (i.e., QoS flow generation 
rates, durations and congestion probabilities) are valid. The 
variation in these inputs is expected to occur on a relatively 
long-term basis, e.g., over the course of hours to capture 
different traffic conditions during a day. For this reason, the 
value iteration algorithm can be executed off-line. The result 
can be stored in a database and remain valid as long as the 
traffic conditions do not change significantly. Because of this 
off-line execution, the computational complexity of the value 
iteration algorithm does not place significant constraints on 
the operation of the RAC. To illustrate this computational 
complexity, note that the duration of the algorithm execution 
for the different simulations presented in the previous sections 
has been 126 s on average, on an Intel(R) core CPU at 3.4 
GHz with 16 GB of RAM. 

V. CONCLUSIONS AND FUTURE WORK 

This paper has proposed an optimization framework for the 
radio admission control function in multitenant and 
multiservice 5G scenarios based on the formulation of a semi-
Markov decision process. The general formulation has then 
been particularized to include a specific reward function that 
captures the degree of fulfillment of the service level 
agreement from the perspective of the involved tenants. The 
reward function includes different parameters to account for 
the possibility of providing excess capacity beyond the SLA, 
thus achieving a more efficient usage of the radio resources, 

Fig. 13. Congestion probability as a function of the offered load of tenant 1
when the offered load of tenant 2 is 60 Mb/s, for the case Iq,s=100,
Cq,s=10. 
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and for the possibility of SLA breaches. 
The proposed SMDP-based RAC policy has been evaluated 

by means of system-level simulations in order to assess its 
performance and compare it with other reference approaches. 
The behavior analysis of the SMDP approach has allowed 
identification of how the decision-making policy obtained 
incorporates the long-term reward perspective and differs from 
a myopic approach that only considers the immediate reward 
of an RAC decision. Thanks to this perspective, the SMDP-
based approach is able to increase the obtained reward and 
reduce the time spent in states with high congestion 
probability. Specifically, the analysis of different traffic loads 
and different parameters of the reward function reflects reward 
improvements of up to 110% achieved by the SMDP-based 
policy over the myopic policy. The results have also shown 
that among all the configurations studied, the SMDP-based 
policy always outperforms the other reference strategies, 
namely, the myopic policy, the non-slice-aware policy and the 
strict slicing policy, with respect to the reward obtained. 

Another characteristic of the proposed approach is its 
flexibility: it can be configured to achieve different behaviors 
by properly tuning the parameters of the reward function, thus 
achieving a trade-off between a more conservative policy that 
targets strict fulfillment of the SLA and a more flexible policy 
that achieves higher efficiency in the utilization of radio 
resources by providing excess capacity beyond the SLA. 

Finally, the behavior of the RAC policies being considered 
has been analyzed in terms of different performance indicators 
such as blocking probability, throughput and congestion 
probability. In general, it has been observed that the SMDP-
based and myopic policies exhibit small differences in terms 
of blocking and throughput and that both of them outperform 
the non-slice-aware and strict slicing policies. In turn, the 
SMDP-based approach clearly outperforms the myopic policy 
in terms of congestion probability since it is able to maintain a 
negligible congestion probability, while the myopic policy 
exhibits congestion probability values of up to 10%. 

Based on these results, it is concluded that the proposed 
optimization framework establishes a solid basis for 
configuring the operation of the RAC function in multitenant 
and multiservice scenarios. Future work will consider the 
more practical aspects related to the implementation of the 
proposed approach, such as determining the conditions under 
which the optimized policy would need to be recomputed to 
address variations in the stationarity conditions of the 
scenario. Similarly, the framework presented here can also be 
studied with other optimization targets leading to different 
reward functions. For example, a possible extension in this 
direction would be the consideration of delay guarantees for 
handling the admission of ultra-reliable and low-latency 
communication (URLLC) services. 

APPENDIX: COMPUTATION OF CONGESTION PROBABILITY 

 Congestion occurs whenever the number of RBs required 
to satisfy the GFBR requirements of all admitted QoS flows in 
the cell, denoted KR, is higher than the number P of available 
RBs. This occurs stochastically depending on the variations in 

the propagation conditions associated with the positions of the 
different UEs and the presence of shadowing losses. These 
effects impact the spectral efficiency achieved by each UE 
and, therefore, the number of required RBs. 

Specifically, the number of RBs required by one QoS flow 
with requirement GFBR is K=GFBR/R, where R is the bit rate 
per RB and is related to the actual spectral efficiency S by 
R=SꞏB; it is a random variable that depends on the propagation 
conditions experienced by the UE of the QoS flow. Then, the 
proposed methodology assumes, based on measurements 
collected from the different UEs in terms of the wideband CQI 
distribution [29] that is directly mapped to the spectral 
efficiency distribution, that it is possible to derive the 
probability density function (pdf) of the random variable 
Y=1/R, denoted fY(y). Consequently, the pdf of the number K 
of required RBs by one QoS flow with requirement GFBR is: 
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Then, assuming that the cell is in state X={nq,s} and that 

each QoS flow experiences independent propagation 
conditions, the aggregate number KR of required RBs by all 
the QoS flows is another random variable whose pdf is 
obtained by the convolution of (18) as many times as the 
number of QoS flows: 
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The congestion probability in state X is thus given by: 
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