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Abstract

This paper studies unmanned aerial vehicle (UAV) aided wireless communication systems where

a UAV supports uplink communications of multiple ground nodes (GNs) while flying over the area of

the interest. In this system, the propulsion energy consumption at the UAV is taken into account so that

the UAV’s velocity and acceleration should not exceed a certain threshold. We formulate the minimum

average rate maximization problem and the energy efficiency (EE) maximization problem by jointly

optimizing the trajectory, velocity, and acceleration of the UAV and the uplink transmit power at the GNs.

As these problems are non-convex in general, we employ the successive convex approximation (SCA)

techniques. To this end, proper convex approximations for the non-convex constraints are derived, and

iterative algorithms are proposed which converge to a local optimal point. Numerical results demonstrate

that the proposed algorithms outperform baseline schemes for both problems. Especially for the EE

maximization problem, the proposed algorithm exhibits about 109 % gain over the baseline scheme.

I. INTRODUCTION

Recently, unmanned aerial vehicles (UAVs) have received great attentions as a new commu-

nication entity in wireless networks [1]. Compared to conventional terrestrial communications

where users are served by ground base stations (BSs) fixed at given position [2], UAV-aided

systems could be dispatched to the field with various purposes such as disaster situations and

military uses. Moreover, located high above users, UAVs are likely to have line-of-sight (LoS)

communication links for air-to-ground channels.

Utilizing these advantages, UAVs have been considered to diverse wireless communication

systems. The authors in [3] and [4] studied a mobile relaying system where a UAV helps the

communication of ground nodes (GNs) without direct communication links. In this UAV-aided
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relaying system, compared to conventional static relay schemes [5], [6], the UAV can move closer

to source and destination nodes in order to obtain good channel conditions, and thus the system

throughput can be significantly improved. In [3], the throughput of mobile relaying channels

was maximized by optimizing the transmit power at the source and the relay node as well as the

trajectory of the mobile relay. For the fixed relay trajectory, the work [4] addressed the secrecy

rate maximization problem for the UAV-based relaying system with an external eavesdropper.

In addition, UAVs have been adopted to assist conventional terrestrial communication infras-

tructures [7]–[9]. For the disaster situation, UAVs were employed in [7] to recover malfunctioned

ground infrastructure. The work in [8] examined a system where the UAV serves cell-edge users

by jointly optimizing UAV’s trajectory, bandwidth allocation, and user partitioning. Also, the

flying computing cloudlets with UAVs were introduced to provide the offloading opportunities

to multiple users [9].

Moreover, the UAVs could play the role of mobile BSs in wireless networks [10]–[12]. The

authors in [10] derived mathematical expressions for the optimum altitude of the UAVs that

maximizes the coverage of the cellular network. Also, the trajectory optimization methods for

mobile BSs were presented in [11] and [12]. Assuming that the GNs are located in a line, the

minimum throughput performance was maximized in [11] by optimizing the position of a UAV

on a straight line. This result was extended in [12] to a general scenario where multiple UAVs

fly three-dimensional space to communicate with GNs. The joint optimization algorithms for

the UAV trajectory, transmit power, and time allocation were provided in [12] to maximize the

minimum throughput performance. However, these works did not consider the propulsion energy

consumption of the UAVs necessary for practical UAV designs under limited on-board energy

situation [13].

By taking this issue into account, recent works [14]–[16] investigated energy efficiency (EE)

of the UAV system. Different from conventional systems which consider only communication-

related energy consumption [17]–[19], the EE of the UAV should addresses the propulsion energy

at the UAV additionally. The authors in [14] maximized the EE by controlling the turning radius

of a UAV for mobile relay systems. Also, by jointly optimizing the time allocation, speed,

and trajectory, both the spectrum efficiency and the EE were maximized in [15]. In [16], the

propulsion energy consumption of the UAV was theoretically modeled, and the EE of the UAV

was maximized for a single GN system.

This paper studies UAV-aided wireless communications where a UAV with limited propulsion
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energy receives the data of multiple GNs in the uplink. It is assumed that all GNs and the

UAV operate in the same frequency band and there are no direct communication links among

GNs. Under these setup, we formulate the minimum rate maximization problem and the EE

maximization problem by jointly optimizing the UAV trajectory, the velocity, the acceleration,

and the uplink transmit power at the GNs. A similar approach for solving the minimum rate

maximization was studied in [12], but the authors in [12] did not involve the propulsion energy

consumption at the UAV. For the EE maximization problem, our work can be regarded as a

generalization of the single GN system in [16] to the multi-GN scenario, and thus we need to

deal with inter-node interference as well. Due to these issues, existing algorithms presented in

[12] and [16] cannot be directly applied to our problems.

To tackle our problem of interest, we introduce auxiliary variables which couple the trajectory

variables and the uplink transmit power in order to jointly optimize these variables. As the

equivalent problem is still non-convex, we employ the successive convex approximation (SCA)

technique which successively solves approximated convex problems of the original non-convex

one. In order to apply the SCA to our optimization problems, we present new convex surrogate

functions for the non-convex constraints. Then, we propose efficient algorithms for the minimum

rate maximization problem and the EE maximization problem which yield local optimal solutions.

Simulation results confirm that the proposed algorithms provide a significant performance gain

over baseline schemes.

The rest of this paper is organized as follows: Section II explains the system model and the

problem formulations for the UAV-aided communication systems. In Section III, the minimum

rate maximization and the EE maximization algorithms are proposed. We examine the circular

trajectory case as baseline schemes in Section IV. Section V presents the numerical results for

the proposed algorithms and we conclude the paper in Section VI.

Notations: Throughout this paper, the bold lower-case and normal letters denote vectors and

scalars, respectively. The space of M-dimensional real-valued vectors are represented by R
M×1.

For a vector a, ‖a‖ and aT indicate norm and transpose, respectively. The gradient of a function

f is defined as ∇f . For a time-dependent function x(t), ẋ(t) and ẍ(t) stand for the first-order

and second-order derivatives with respect to time t, respectively.
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Fig. 1. UAV-enabled wireless network

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider UAV-aided wireless communications where a UAV receives

uplink information transmitted from K GNs. The UAV horizontally flies at a constant altitude H

with a time period T , while the GNs are located at fixed positions, which are perfectly known to

the UAV in advance. For the location of the GNs and the UAV, we employ a three-dimensional

Cartesian coordinate system, and thus the horizontal coordinate of GN k (k = 1, ..., K) is denoted

by wk = [xk yk]
T . Also, we define the time-varying horizontal coordinate of the UAV at time

instant t as q(t) = [qx(t) qy(t)]
T , for 0 ≤ t ≤ T . Then, the instantaneous velocity v(t) and the

acceleration a(t) of the UAV are expressed by v(t) , q̇(t) and a(t) , q̈(t), respectively.

Continuous time expressions of variables make analysis and derivations in the UAV systems

intractable. For ease of analysis, we discretize the time duration T into N time slots with the

same time interval δt =
T
N

[3]. As a result, the trajectory of the UAV can be represented by N

vector sequences q[n] , q(nδt), v[n] , v(nδt), and a[n] , a(nδt) for n = 0, 1, ..., N . When

the discretized time interval δt is chosen as a small number, the velocity and the acceleration

can be approximated by using Taylor expansions as [16]

v[n] = v[n− 1] + a[n− 1]δt, for n = 1, ..., N, (1)

q[n] = q[n− 1] + v[n− 1]δt +
1
2
a[n− 1]δ2t , for n = 1, ..., N. (2)

Also, assuming the periodical operation at the UAV, we have [12]

q[0] = q[N ],v[0] = v[N ], a[0] = a[N ], (3)



5

which implies that after one period T , the UAV returns to its starting location with the same

velocity and acceleration.

In addition, the acceleration and the velocity of the practical UAV are subject to

‖a[n]‖ ≤ amax, for n = 0, 1, ...N, (4)

Vmin ≤ ‖v[n]‖ ≤ Vmax, for n = 0, 1, ..., N, (5)

where amax indicates the maximum UAV acceleration in m/sec2 and Vmin and Vmax stand for

the minimum and the maximum UAV speed constraints in m/sec, respectively. Notice that the

minimum speed constraint Vmin is important for practical fixed-wing UAV designs which need

to move forward to remain aloft and thus cannot hover over a fixed location [16].

For the power consumption at the UAV, we take into account the propulsion power utilized

for maintaining the UAV aloft and supporting its mobility. The propulsion power of the UAV

Pprop[n] at time slot n is given by [16]

Pprop[n] = c1‖v[n]‖3 +
c2
‖v[n]‖

(

1 +
‖a[n]‖2

g2

)

, for n = 0, 1, ..., N, (6)

where c1 and c2 are the parameters related to the aircraft design and g = 9.8 m/sec2 equals the

gravitational acceleration. Thus, the average propulsion power and the total consumed propulsion

energy over N time slots are obtained by 1
N

∑N

n=1 Pprop[n] and δt
∑N

n=1 Pprop[n], respectively. The

power consumed by signal processing circuits such as analog-to-digital converters and channel

decoders are ignored since they are practically much smaller than the propulsion power [16].

Now, let us explain the channel model between the UAV and the GNs. We assume that the

air-to-ground communication links are dominated by the LoS links. Moreover, the Doppler effect

due to the UAV mobility is assumed to be well compensated. Then, the effective channel gain

hk[n] from GN k to the UAV at time slot n follows the free-space path loss model as [3]

hk[n] =
γ0

d2k[n]
, (7)

where γ0 , β0/σ
2 represents the reference signal-to-noise ratio (SNR) at 1 m with β0 and σ2

being the channel power at 1 m and the white Gaussian noise power at the UAV, respectively,

and the distance dk[n] is written by

dk[n] =
√

‖q[n]−wk‖2 +H2. (8)
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At time slot n, GN k transmits its data signal to the UAV with power 0 ≤ pk[n] ≤ Ppeak,

where Ppeak is the peak transmission power constraint at the GNs. Accordingly, the instantaneous

achievable rate Rk[n] can be expressed as

Rk[n] = log2

(

1 +
pk[n]hk[n]

1 +
∑K

j=1,j 6=k pj[n]hj [n]

)

, (9)

where the term
∑K

j=1,j 6=k pj[n]hj [n] stands for interference from other GNs. Therefore, the

achievable average rate of the GN k and the total information bits transmitted from GN k

over N time slots are denoted as 1
N

∑N

n=1Rk[n] and Wδt
∑N

n=1Rk[n], respectively, where W

means the bandwidth.

In this paper, we jointly optimize the variables q[n], v[n], and a[n] and the uplink transmit

power pk[n] at the GNs so that the minimum average rate among multiple GNs and the EE are

maximized, respectively. First, the minimum rate maximization problem can be formulated as

(P1) : max
{q[n],v[n],a[n]}

{pk[n],τ}

τ (10a)

s.t.
1

N

N
∑

n=1

Rk[n] ≥ τ, ∀k, (10b)

0 ≤ pk[n] ≤ Ppeak, ∀k, n, (10c)

1

N

N
∑

n=1

Pprop[n] ≤ Plim, (10d)

(1)− (5),

where Plim in (10d) indicates the propulsion power constraint at the UAV.

Next, to support all of the individual GNs, the fairness based EE [20]–[22] is more suitable than

the network-wise EE [18], [19]. Thus, we define the EE in the UAV-aided wireless communication

systems as the ratio between the minimum information bits transmitted among the GNs and the

total energy consumed at the UAV. Therefore, the EE maximization problem can be written by

(P2) : max
{q[n],v[n],a[n]}

{pk[n],η}

η
∑N

n=1 Pprop[n]
(11a)

W

N
∑

n=1

Rk[n] ≥ η, ∀k, (11b)

s.t. (1)− (5), (10c).
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In general, (P1) and (P2) are non-convex problems due to the constraints and the objective

functions. Compared to [12], we additionally consider the propulsion power constraint (10d) in

the minimum rate maximization problem (P1). Also, note that the EE maximization problem

(P2) can be regarded as a generalization of [16] which investigated only a single GN scenario.

From these respects, the works in [12] and [16] can be regarded as special cases of our problems

(P1) and (P2), respectively. To solve the problems (P1) and (P2), we adopt the SCA framework

[23] [24] which iteratively solves approximated convex problems for the original non-convex

problems.

III. PROPOSED ALGORITHM

In this section, we propose iterative algorithms for efficiently solving (P1) and (P2) by applying

the SCA method. First, the minimum rate maximization problem (P1) is considered in Section

III-A, and then it is followed by the EE maximization problem (P2) in Section III-B.

A. Minimum Average Rate Maximization

Applying the change of variables as

Gk[n] , pk[n]hk[n] =
pk[n]γ0

‖q[n]−wk‖2 +H2
, ∀k, n, (12)

where Gk[n] is a new optimization variable, the constraint (10c) becomes 0 ≤ Gk[n] ≤
Gk,max[n], ∀k, n, where Gk,max[n] , Ppeakhk[n] =

Ppeakγ0

‖q[n]−wk‖
2+H2

. Then, we can rewrite the

achievable rate Rk[n] in (9) as

Rk[n] = log2

(

1 +

K
∑

m=1

Gm[n]

)

− R̂k[n], (13)

where R̂k[n] , log2

(

1 +
∑K

j=1,j 6=k Gj[n]
)

.
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By introducing new auxiliary variables {V1[n]}, (P1) can be recast to

(P1.1) : max
{q[n],v[n],a[n]}
{Gk[n],V1[n],τ}

τ (14a)

s.t.
1

N

N
∑

n=1

(

log2

(

1 +

K
∑

m=1

Gm[n]

)

− R̂k[n]

)

≥ τ, ∀k, (14b)

0 ≤ Gk[n] ≤ Gk,max[n], ∀k, n, (14c)

1

N

N
∑

n=1

c1‖v[n]‖3 +
c2

V1[n]
+

c2‖a[n]‖2
g2V1[n]

≤ Plim, (14d)

Vmin ≤ V1[n], ∀n, (14e)

V 2
1 [n] ≤ ‖v[n]‖2, ∀n, (14f)

‖v[n]‖ ≤ Vmax, ∀n, (14g)

(1)− (4).

It can be shown that at the optimal point of (P1.1), the inequality constraint in (14f) holds

with the equality, since otherwise we can enlarge the feasible region corresponding to (14d) by

increasing V1[n]. Therefore, we can conclude that (P1.1) is equivalent to (P1). Thanks to the

new auxiliary variables {V1[n]}, constraints (14d) and (14e) now become convex, while (14b),

(14c), and (14f) are still non-convex in general.

To address these constraints, we employ the SCA methods. First, it can be checked that

constraint (14b) is given by a difference of two concave functions. Hence, the convex surrogate

function R̂ub
k [n] for R̂k[n] can be computed from a first order Taylor approximation as

R̂ub
k [n] , Γ̂k[n]

K
∑

j=1,j 6=k

(Gj,l+1[n]−Gj,l[n]) + log2

(

1 +
K
∑

j=1,j 6=k

Gj,l[n]

)

≥ R̂k[n], (15)

where Gk,l[n] indicates a solution of Gk[n] attained at the l-th iteration of the SCA process and

Γ̂k[n] , log2 e/(1 +
∑K

j=1,j 6=kGj,l[n]). Next, to identify the surrogate functions of (14c) and

(14f), we present the following lemmas.

Lemma 1: Denoting {ql[n]} as a solution for {q[n]} calculated at the l-th iteration, the concave

surrogate function Glb
k,max[n] for Gk,max[n] can be expressed as

Glb
k,max[n] , Ppeakγ0

(

−‖ql+1[n]−wk‖2
H4

+Bk[n](ql+1[n]−wk)
T (ql[n]−wk) + Ck[n]

)

≤ Gk,max[n], (16)
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where the constants Bk[n] and Ck[n] are respectively given as

Bk[n] , 2

(

1

H4
− 1
(

‖ql[n]−wk‖2 +H2
)2

)

,

Ck[n] ,
1

‖ql[n]−wk‖2 +H2
+

2‖ql[n]−wk‖2
(

‖ql[n]−wk‖2 +H2
)2 −

‖ql[n]−wk‖2
H4

.

Proof: Please refer to Appendix A.

Lemma 2: From a solution {vl[n]} obtained at the l-th iteration, the concave surrogate function

of ‖vl+1[n]‖2 can be computed as

−‖vl+1[n]‖2 + 2vT
l (2vl+1[n]− vl[n]) ≤ ‖vl+1[n]‖2. (17)

Proof: Applying a similar process in Appendix A, we can conclude that the function in

(17) satisfies the conditions for a concave surrogate function [23].

With the aid of Lemmas 1 and 2, at the (l + 1)-th iteration, the non-convex constraints in

(14c) and (14f) can be approximated as

0 ≤ Gk[n] ≤ Glb
k,max[n], (18)

V 2
1 [n] ≤ −‖vl+1[n]‖2 + 2vT

l (2vl+1[n]− vl[n]) . (19)

As a result, with given solutions {ql[n], vl[n], Gk,l[n]} at the l-th iteration, we solve the following

problem at the (l + 1)-th iteration of the SCA procedure

(P1.2) : max
{ql+1[n],vl+1[n],a[n]}

{Gk,l+1[n],V1[n],τ lb}

τ lb (20a)

s.t.
1

N

N
∑

n=1

(

log2

(

1 +
K
∑

m=1

Gm,l+1[n]

)

− R̂ub
k [n]

)

≥ τ lb, ∀k, (20b)

(1)− (4), (14d), (14e), (14g), (18), (19),

where τ lb denotes the lower bound of τ in the original problem (P1). Since (P1.2) is a convex

problem, it can be optimally solved via existing convex optimization solvers, e.g. CVX [25].

Based on these results, we summarize the proposed iterative procedure in Algorithm 1.

Algorithm 1: Proposed algorithm for (P1)

Initialize {q0[n],v0[n], Gk,0[n]}, ∀k, n and let l = 0.

Repeat

Compute {ql+1[n],vl+1[n], Gk,l+1[n]} for (P1.2) with given {ql[n],vl[n], Gk,l[n]}.
Update l ← l + 1.

Until Convergence.

Obtain pk[n] =
Gk,l+1[n]

hk,l+1[n]
.
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For the convergence analysis of Algorithm 1, let us define the objective values of (P1) and

(P1.2) at the l-th iteration as τl and τ lb
l , respectively. Then we can express the relationship

τl = τ lb
l ≤ τ lb

l+1 ≤ τl+1, (21)

where the first equation holds because the surrogate functions in (15), (16), and (17) are tight at

the given local points, the second inequality is derived from the non-decreasing property of the

optimal solution of (P1.2), and the third inequality follows from the fact that the approximation

problem (P1.2) is a lower bound of the original problem (P1).

From (21), we can conclude that the objective value τ in (P1) is non-decreasing for every

iterations of Algorithm 1. Since the objective value τ in (P1) has a finite upper bound value and

at given local points, the surrogate functions in (15), (16), and (17) obtain the same gradients

as their original functions, it can be verified that Algorithm 1 is guaranteed to converge to at

least a local optimal solution for (P1) [23], [24].

B. Energy Efficiency Maximization

In this subsection, we consider the EE maximization problem (P2). First, by applying (12)-

(13), and introducing an auxiliary variable {V1[n]}, (P2) can be transformed as

(P2.1) : max
{q[n],v[n],a[n]}
{Gk [n],V1[n],η}

η
∑N

n=1 c1‖v[n]‖3 + c2
V1[n]

+ c2‖a[n]‖2

g2V1[n]

(22a)

s.t. W
N
∑

n=1

(

log2

(

1 +
K
∑

m=1

Gm[n]

)

− R̂k[n]

)

≥ η, ∀k, (22b)

(1)− (4), (14c), (14e)− (14g).

Similar to (P1.1), we can see that (P2.1) is equivalent to (P2), but (P2.1) is still non-convex due

to the constraints in (14c), (14f), and (22b).

To tackle this issue, we can employ the similar SCA process presented in Section III-A. By

adopting (15) and Lemmas 1 and 2, a convex approximation of (P2.1) at the (l+1)-th iteration

is given by

(P2.2) : max
{ql+1[n],vl+1[n],a[n]}

{Gk,l+1[n],V1[n],ηlb}

ηlb

∑N

n=1 c1‖v[n]‖3 + c2
V1[n]

+ c2‖a[n]‖2

g2V1[n]

(23a)

s.t. W
N
∑

n=1

(

log2

(

1 +
K
∑

m=1

Gm,l+1[n]

)

− R̂ub
k [n]

)

≥ ηlb, ∀k (23b)

(1)− (4), (14e), (14g), (18), (19),
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where ηlb denotes the lower bound of η in the original problem (P2).

It can be shown that (P2.2) is a concave-convex fractional problem, which can be optimally

solved via the Dinkelbach’s method [26], [27]. Then, denoting µ =
∑N

n=1 c1‖v[n]‖3 + c2
V1[n]

+

c2‖a[n]‖2

g2V1[n]
with a given constant λm, (P2.2) can be converted to (P2.3) as

(P2.3) : max
{ql+1[n],vl+1[n],a[n]}

{Gk,l+1[n],V1[n],ηlb}

ηlb − λmµ (24a)

s.t. (1)− (4), (14e), (14g), (18), (19), (23b).

Based on (P2.3), we summarize the proposed iterative procedure in Algorithm 2. The convergence

and the local optimality of Algorithm 2 can be verified similar to Algorithm 1, and thus the

details are omitted for brevity.

Algorithm 2: Proposed algorithm for (P2)

Initialize {q0[n],v0[n], Gk,0[n]}, ∀k, n and let λ0 = 0, m = 0, and l = 0.

Repeat

Repeat

Compute {ql+1[n],vl+1[n], Gk,l+1[n]} for (P2.3) with given

{ql[n],vl[n], Gk,l[n]}, ∀k, n and λm.

Update l ← l + 1.

Until Convergence.

Let F (λm) = ηlb − λmµ and λm+1 = ηlb/µ.

Update m← m+ 1.

Let {q0[n],v0[n], Gk,0[n]} = {ql+1[n],vl+1[n], Gk,l+1[n]}, ∀k, n and l = 0.

Until Convergence.

Obtain pk[n] =
Gk,l+1[n]

hk,l+1[n]
, ∀k, n.

It is worthwhile to note that we need to initialize the trajectory variables {q[n],v[n]} for (P1) and

(P2). However, it is not trivial to find such variables satisfying the UAV movement constraints

(1)-(5) and the propulsion power constraint (10d). This will be clearly explained in Section IV-C.

IV. CIRCULAR TRAJECTORY SYSTEM

Now, we examine the circular trajectory system which will be used as a baseline scheme.

First, we choose the center of the circular trajectory c = [x0 y0]
T as the geometrical mean of

the GNs c =
∑K

k=1
wk

K
. Denoting r as the radius of the trajectory and θ[n] as the angle of the

circle along which the UAV flies at time slot n, the horizontal coordinate of the UAV q[n] can

be obtained by q[n] = [r cos θ[n] + x0 r sin θ[n] + y0]
T . Also, the location of GN k wk can be
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represented as wk = [ζk cosϕk+x0 ζk sinϕk+y0]
T , where ζk and ϕk equal the distance and the

angle between the geometric center c and GN k, respectively. Thus, the distance dk[n] between

the UAV and GN k in (8) can be expressed as dk[n] =
√

r2 + ζ2k +H2 − 2rζk cos (θ[n]− ϕk).

By adopting the angular velocity ω[n] and the angular acceleration α[n], equations in (1)-(6)

can be rewritten as

ω[n] = ω[n− 1] + α[n− 1]δt, for n = 1, ..., N, (25)

θ[n] = θ[n− 1] + ω[n− 1]δt +
1
2
α[n− 1]δ2t , for n = 1, ..., N, (26)

θ[N ] = θ[0] + 2π, ω[0] = ω[N ], α[0] = α[N ], (27)

‖a[n]‖2 = ‖a‖[n]‖2 + ‖a⊥[n]‖2 = r2α2[n] + r2ω4[n] ≤ a2max, for n = 0, 1, ...N, (28)

ωmin ≤ ω[n] ≤ ωmax, for n = 0, 1, ..., N, (29)

Pprop[n] = c1r
3ω3[n] + c2

rω[n]
+ c2rω

3[n]
g2

+ c2rα
2[n]

g2ω[n]
, for n = 0, 1, ..., N, (30)

where a‖[n] and a⊥[n] are the tangential and centripetal accelerations, respectively, and ωmin ,

Vmin/r and ωmax , Vmax/r indicate the minimum and maximum angular velocity, respectively.

Similar to Section III, we address the minimum average rate maximization problem and the

EE maximization problem for the circular trajectory, which are respectively formulated as

(P3) : max
{θ[n],ω[n],α[n]}

{r,pk[n],τ}

τ (31a)

s.t. rmin ≤ r ≤ rmax, (31b)

(10b)− (10d), (25)− (29),

(P4) : max
{θ[n],ω[n],α[n]}

{r,pk[n],η}

η
∑N

n=1 Pprop[n]
(32a)

s.t. (10c), (11b), (25)− (29), (31b),

where rmin , VminT
2π

and rmax , min

(

VmaxT
2π

, amax

max(
√

ω4[n]+α2[n])

)

denote the minimum and

maximum radius of the circular trajectory, respectively. It is emphasized that (P3) and (P4)

are difficult to solve because of the non-convex constraints and objective functions. To deal with

the problems (P3) and (P4), similar SCA frameworks in Section III are applied.
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A. Minimum Average Rate Maximization and EE maximization

For the minimum average rate maximization problem (P3), we first find {r, pk[n]} with

given {θ[n], ω[n], α[n]} and then updates {θ[n], ω[n], α[n], pk[n]} for a fixed r. For given

{θ[n], ω[n], α[n]}, we adopt the change of variable Sk[n] and Sk,max[n] as

Sk[n] , pk[n]hk[n] =
pk[n]γ0

(r − ζk cos (θ[n]− θk))
2 + ζ2k sin

2 (θ[n]− θk) +H2
, (33)

Sk,max[n] , Ppeakhk[n] =
Ppeakγ0

(r − ζk cos (θ[n]− θk))
2 + ζ2k sin

2 (θ[n]− θk) +H2
. (34)

Similar to the method in Section III-A, we employ the SCA to Sk,max[n]. Based on Lemma 1,

the concave surrogate function S lb1
k,max[n] of Sk,max[n] with a solution rl at the l-th iteration can

be chosen as

S lb1
k,max[n] , Ppeakγ0

(

−
(

rl+1 − b̌k[n]
)2

Ǎ2
k[n]

+ B̌k[n]
(

rl+1 − b̌k[n]
)(

rl − b̌k[n]
)

+ Čk[n]

)

≤ Sk,max[n], ∀n, (35)

where the constants b̌k[n], Ǎk[n], B̌k[n], and Čk[n] are respectively given by

b̌k[n] , ζk cos (θ[n]− θk) ,

Ǎk[n] , ζ2k sin
2 (θ[n]− θk) +H2,

B̌k[n] , 2







1

Ǎ2
k[n]
− 1
(

(

rl − b̌k[n]
)2

+ Ǎk[n]
)2






,

Čk[n] ,
1

(

rl − b̌k[n]
)2

+ Ǎk[n]
+

2
(

rl − b̌k[n]
)2

(

(

rl − b̌k[n]
)2

+ Ǎk[n]
)2 −

(

rl − b̌k[n]
)2

Ǎ2
k[n]

.

By applying (15), (P3) for fixed {θ[n], ω[n], α[n]} can be reformulated as an approximated

convex problem at the (l + 1)-th iteration of the SCA

(P3.1) : max
{rl+1,Sk,l+1[n],τ lb1}

τ lb1 (36a)

s.t.
1

N

N
∑

n=1

(

log2

(

1 +

K
∑

m=1

Sm,l+1[n]

)

− R̆ub
k [n]

)

≥ τ lb1, ∀k, (36b)

0 ≤ Sk[n] ≤ S lb1
k,max[n], ∀k, n, (36c)

(10d), (31b),



14

where R̆ub
k [n] , Γ̆k[n]

(

∑K

j=1,j 6=k (Sj,l+1[n]− Sj,l[n])
)

+log2

(

1 +
∑K

j=1,j 6=k Sj,l[n]
)

and Γ̆k[n] ,

log2 e

1+
∑K

j=1,j 6=k Sj,l[n]
. (P3.1) can be successively solved by the CVX until convergence.

Next, we present a solution for (P3) with a given r. To obtain the concave surrogate function

of Sk,max[n], we introduce the following lemma which identifies the surrogate function of the

cosine function.

Lemma 3: For any given φl, the concave surrogate function of cosφ can be computed as

−(φ− φl + sinφl)
2

2
+ cos φl +

sin2 φl

2
≤ cosφ. (37)

Proof: With a similar process in Appendix A, we can conclude that the function in (37)

satisfies the conditions for a concave surrogate function [23].

By inspecting Lemmas 1 and 3, the concave surrogate function S lb2
k,max[n] for Sk,max[n] can be

identified as

S lb2
k,max[n] , Ppeakγ0






−
rζk

(

θl+1[n]− b̂k[n]
)2

Â2
k[n]

+ B̂k[n] sin(θl[n]− θk)
(

θl+1[n]− b̂k[n]
)

+ Ĉk[n]







≤ Ppeakγ0

rζk

(

θl+1[n]− b̂k[n]
)2

+ Âk[n]
≤ Sk,max[n], (38)

where b̂k[n], Âk[n], B̂k[n], and Ĉk[n] are given by

b̂k[n] , θl[n]− sin (θl[n]− θk) ,

Âk[n] , r2 + ζ2k +H2 − rζk
(

2 cos (θl[n]− θk) + sin2 (θl[n]− θk)
)

,

B̂k[n] , 2rζk







1

Â2
k[n]
− 1
(

rζk sin
2(θl[n]− θk) + Âk[n]

)2






,

Ĉk[n] ,
1

rζk sin
2(θl[n]− θk) + Âk[n]

+
2rζk sin

2(θl[n]− θk)
(

rζk sin
2(θl[n]− θk) + Âk[n]

)2 −
rζk sin

2(θl[n]− θk)

Â2
k[n]

.
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By utilizing (15) and (38), at the (l + 1)-th iteration of the SCA algorithm with a given r,

(P3) can be approximated to the following convex problem.

(P3.2) : max
{θl+1[n],ω[n],α[n]}

{Sk,l+1[n],τ
lb2}

τ lb2 (39a)

s.t.
1

N

N
∑

n=1

(

log2

(

1 +

K
∑

m=1

Sm,l+1[n]

)

− R̆ub
k [n]

)

≥ τ lb2, ∀k, (39b)

0 ≤ Sk[n] ≤ S lb2
k,max[n], ∀k, n, (39c)

(10d), (25)− (29).

We then successively solve (P3.2) by the CVX until convergence. Similar to Algorithm 1, a

solution of problem (P3) is obtained by alternately solving (P3.1) and (P3.2) until the objective

value converges.

For the EE maximization problem (P4) in the circular trajectory case, we can apply similar

methods in Section III-B. Based on (P3.1) and (P3.2), given {θ[n], ω[n], α[n]} and r, (P4) can

be transformed into two concave-convex fractional problems. By using Algorithm 2, we can

alternately solve these problems until convergence.

B. Trajectory Initialization

To initialize the proposed algorithms, we employ a simple circular path concept in [12]. First,

the initial angular velocity ω0 is set to ω0 =
2π
T

, which implies θ0[n] = 2π n
N

, ∀n. Next, the initial

radius r0 is chosen to fulfill the constraints in (4), (5), and (10d), which can be expressed as

VminT
2π
≤ r0 ≤ min

(

VmaxT
2π

, amax

ω2
0

)

, (40)

c1r
3
0ω

3
0 +

c2
r0ω0

+
c2r0ω

3
0

g2
≤ Plim. (41)

We can simply find r0 which maximizes the minimum rate in (P1) and (P3) under constraints

(40) and (41) via one-dimensional line search. For the EE maximization problems (P2) and (P4),

r0 can be computed in the range of (40). As a result, the initial trajectory q0[n] can be written

by q0[n] = [r0 cos 2π
n
N
+ x0 r0 sin 2π

n
N
+ y0]

T (n = 0, 1, ..., N) and the initial velocity v0[n]

can be simply obtained as v0[n] = (q0[n+1]− q0[n])/δt (n = 0, 1, ..., N − 1) assuming δ2t ≈ 0

in (2).
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Fig. 2. Optimized UAV trajectories for different periods T with Plim = 150 W.

V. NUMERICAL RESULTS

In this section, we provide numerical results to validate the effectiveness of the proposed

algorithms. For the simulations, we consider K = 6 GNs which are distributed as in Fig. 2 where

the locations of the GNs are marked with the triangles. The constant altitude, the bandwidth, the

reference SNR, and the peak transmission power are set to be H = 100 m, W = 1 MHz, γ0 = 80

dB, and Ppeak = 10 dBm, respectively. Also, the minimum velocity, the maximum velocity, and

the maximum acceleration of the UAV are determined as Vmin = 3 m/sec, Vmax = 100 m/sec, and

amax = 5 m/sec2, respectively. For the propulsion power consumption model in (6), the constants

c1 and c2 are set as c1 = 9.26 × 10−4 and c2 = 2250, respectively, which make the minimum

propulsion power consumption Pprop,min = 100 W when ‖v‖ = 30 m/sec.

We first demonstrate the performance of the minimum rate maximization algorithms. Fig. 2

illustrates the optimized UAV trajectories with various T for Plim = 150 W. It is observed that

when T is smaller than 150 sec, as T increases, the UAV tries to get closer to all GNs in order

to improve the channel conditions from the GNs. In contrast, if T is sufficiently large (T = 400

sec), the UAV is now able to visit all the GNs within a given time period. Thus, the UAV can
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Fig. 3. Max-min rate with respect to the period T with Plim = 150 W.

hover over each GN for a while by traveling smooth path around the GNs. This is different

from the results in [12] where the UAV does not have practical movement constraints. This can

be explained as follows: Due to the constraints on the velocity and the propulsion power, the

UAV cannot stay at fixed positions as in [12]. Therefore, the UAV continuously moves around

as close to the GNs as possible to maintain good communication channels without exceeding

the propulsion power limit Plim.

Fig. 3 shows the maximized minimum (max-min) rate performance of the proposed algorithm

as a function of T . We compare the performance of the proposed algorithm with the following

circular trajectory based methods.

- Circular with optimum r, ω, α, and p: radius, angular velocity, angular acceleration, and

uplink transmit power are jointly optimized with (P3) in Section IV-A with the circular

trajectory.

- Circular with optimum r and p: radius and uplink transmit power are jointly optimized with

(P3.1) in Section IV-A with the circular trajectory.

- Circular with optimum r: radius is optimized with Ppeak as the initial circular trajectory in
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Fig. 4. Optimized UAV trajectories for different propulsion power limit Plim with T = 400 sec.

Section IV-B

First, it can be verified that the proposed algorithm outperforms the baseline schemes regardless

of the time period T . Also, we can see that the max-min rate in the proposed algorithm

monotonically increases with T , since more time is available at the UAV to hover around each

GN. In contrast, in the baseline schemes which are restricted in circular shape trajectory, the

max-min rate performance first increases as T grows, and then decreases after a certain T . This

is due to a fact that in order to satisfy the propulsion power constraint, the radius of the circular

trajectory should increase as T gets large, and thus the UAV may become too far away from the

geometric center of the GNs after a certain T . Therefore, we can expect the performance gain

of the proposed algorithm over baseline schemes is to grow with T .

Fig. 4 illustrates the optimized UAV trajectories for various propulsion power limit Plim with

T = 400 sec. It can be shown that for Plim = 110 W, the trajectory of the UAV is restricted to a

smooth path with a large turning radius to consume a low propulsion power. However, as Plim

gets larger, we observe quick changes along the trajectory path. Thus the UAV can move with

a much smaller turning radius, which enhances the max-min rate performance.
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Fig. 5. Max-min rate with respect to the propulsion power limit Plim with T = 400 sec.

In Fig. 5, we depict the average max-min rate of various schemes as a function of the

propulsion power constraint Plim. For both the proposed algorithm and the baseline schemes,

the max-min rate first increases as Plim grows and then gets saturated. This can be explained

as follows: With a large Plim, the trajectory and the velocity of the UAV change more freely to

attain good channel conditions, and thus the max-min rate increases. However, even if a large

Plim is given, the max-min rate cannot continue to increase because there are practical limits on

the velocity and acceleration. Similar to Fig. 3, we can see that the proposed algorithm provides

significant performance gains over the baseline schemes.

Next, in Fig. 6, we investigate the optimized trajectory of the EE maximization problem with

various T . As T increases, the overall patterns are similar to Fig. 2. Nevertheless, to balance

between the rate performance and the propulsion power consumption, the EE maximization

trajectory shows a smooth path with a relatively large turning radius, and thus the average

propulsion power consumption becomes lower.

To present the impact of the energy efficient UAV communication designs, Fig. 7 depicts the

UAV speed of the proposed EE maximization method with T = 400 sec. For comparison, we
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TABLE I

PERFORMANCE COMPARISON WITH MAX-MIN RATE AND EE MAXIMIZATION FOR T = 400 SEC

Average Average Average Average Energy

speed acceleration max-min rate power efficiency

(m/sec) (m/sec2) (bps/Hz) (Watts) (kbits/Joule)

Max-min rate Proposed 18.42 4.73 0.99 553.01 1.80

w/o Plim Circular 13.50 1.88 0.53 541.41 0.98

EE maximization Proposed 25.73 2.71 0.79 122.14 6.47

Circular 15.35 0.27 0.47 151.33 3.10

also consider the max-min rate scheme without the propulsion power constraint. It is observed

that for the max-min rate case, the UAV tries to fly between the GNs as fast as possible and

stay over the GNs with a low speed. On the other hand, the EE maximization scheme keeps the

speed of the UAV at around 30 m/sec in order not to waste the propulsion energy.

Finally, Table I presents the performance comparison of the max-min rate without propulsion

power constraint and the EE maximization designs for both the proposed and the baseline

schemes with T = 400 sec. We can see that the max-min rate methods consume much higher

propulsion power by allowing a large variation of the speed and the average acceleration. In

contrast, the speed of the proposed EE maximization design slowly varies with low acceleration,

and thus much higher EE can be achieved. We observe that the proposed EE maximization

algorithm exhibits about 259 % gain over the max-min rate without the propulsion power

constraint and 109 % gain over the circular baseline EE maximization scheme.

VI. CONCLUSION

In this paper, we have studied the UAV-aided wireless communication optimization under

the practical propulsion energy constraint at the UAV. For both the minimum average rate

maximization problem and the EE maximization problem, the UAV trajectories and the uplink

transmit power of the GNs have been jointly optimized. By applying the SCA technique, we

have proposed efficient iterative algorithms which find local optimal solutions. Numerical results

have demonstrated that the proposed algorithms provide substantial performance gains compared

to the baseline schemes.
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APPENDIX A

PROOF OF LEMMA 1

Let us define a function f1(u) ,
1

ρ‖u‖2+z
for u = [ux uy]

T where z and ρ are positive constants.

For any given ul ∈ R
2×1, in order for arbitrary function g1(u|ul) to be a concave surrogate

function of f1(u), it must satisfy the following conditions: f1(ul) = g1(ul|ul), ∇g1(ul|ul) =

∇f1(ul), and g1(u|ul) ≤ f1(u), ∀u [23]. Denoting the function g1(u|ul) as

g1(u|ul) , −
ρ‖u‖2
z2

+BuTul + C, (42)

where B , 2ρ
(

1
z2
− 1

(ρ‖ul‖2+z)2

)

and C , 1
ρ‖ul‖2+z

+ 2ρ‖ul‖
2

(ρ‖ul‖2+z)2
− ρ‖ul‖

2

z2
, it can be easily shown

that f1(ul) = g1(ul|ul), i.e., g1(u|ul) fulfills the first condition for the surrogate function.

Also, the gradient of f1(u) and g1(u|ul) with respect to u can be respectively computed as

∇f1(u) = −
−2ρu

(ρ‖u‖2 + z)2
, (43)

∇g1(u|ul) = −
2ρu

z2
+Bul. (44)

Since two gradients in (43) and (44) become identical at u = ul, g1(u|ul) satisfies the second

condition for the surrogate function.

To prove the global lower bound condition, we can calculate the Hessian matrix ∇2
u
h1(u|ul)

of the function h1(u|ul) , f1(u)− g1(u|ul) as

∇2h1(u|ul) = D

[

E + 4ρz2u2
x 4ρz2uxuy

4ρz2uxuy E + 4ρz2u2
y

]

, (45)

where D ,
2ρ

z2(ρ‖u‖2+z)3
> 0 and E , ρ3‖u‖6 + 3ρ2z‖u‖4 + 2ρz2‖u‖2 ≥ 0. One can easily

check that the Hessian in (45) is a positive semi-definite matrix, which implies that h1(u|ul) is

a convex function.

Since ∇h1(u|ul) = 0 at u = ul from (43) and (44), the global minimum of h1(u|ul) is

achieved at u = ul with h1(ul|ul) = 0. As a result, we can show that h1(u|ul) is greater than

or equal to 0 for any given ul, and thus the third condition for the surrogate function holds. By

substituting u = ql+1[n]−wk, ul = ql[n]−wk, z = H2, and ρ = 1 and multiplying f1(u) and

g1(u|ul) by Ppeakγ0, Lemma 1 is thus proved.
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