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Abstract—Accurate and robust battery models are required for 

the proper design and operation of battery-powered systems. 
However, the parametric identification of these models requires 
extensive and sophisticated methods to achieve enough accuracy. 
This paper shows a general and straightforward procedure, based 
on Simulink and Simscape of Matlab®, to build and parameterize 
Li-ion battery models. The model parameters are identified with the 
Optimization Toolbox of Matlab®, by means of an iterative process 
to minimize the sum of the squared errors. In addition, this 
procedure is applied to a selection of five different models available 
in the literature for electric vehicle applications, obtaining a 
comparative study between them. Also, the performance of each 
battery model is evaluated through two current profiles from two 
driven profiles known as the Urban Driving Cycle (ECE-15 or UDC) 
and the Hybrid Pulse Power Characterization (HPPC). The 
experimental results obtained from a Li-ion polymer battery have 
been compared with the data provided by the models, confirming 
the effectiveness of the proposed procedure, and also, the application 
field of each model as a function of the required accuracy.  
 

Index Terms— ECE15, HPPC, Li-ion battery models, Matlab, 
Parameter estimation, Simscape, Simulink. 
 

I. INTRODUCTION 
N recent years, rechargeable batteries are playing an essential 
role as energy storage and as power sources for some 

electrical systems such as communications systems, renewable 
power systems, electric vehicles, electric buses, etc. [1], [2]. 
Lithium-ion batteries are being an essential technology in 
powertrain electrification of hybrid electric vehicles (HEV) and 
pure electric vehicles (EV), which allow reducing fuel 
consumption and decreasing greenhouse gas emissions [3]. 
This kind of battery presents some performances very suitable 
for transportation applications, such as high energy/power 
density ratio, slow self-discharge, high cycle life and lack of 
hysteresis effect in some of them [4].  
In the state-of-the-art, numerous battery models have been 
reported for system-level modeling. Choosing between those 
models is a trade-off between model complexity, parameter 
estimation effort, and accuracy. 
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In general, battery models can be classified into three 
categories: electrochemical, mathematical, and electrical. 
Electrochemical models consist of a set of partial differential-
algebraic equations along with a wide range of limitations [5], 
[6]. The estimation of the electrochemical model is very 
accurate [7]. However, simulation with these models can be 
time-consuming, since it requires to solve a complex set of 
equations to identify the electrochemical properties [8]. 
Mathematical models are an alternative based on empirical 
formulas approaches [9],[10]. These models are empirical 
functions with parameters derived from datasheet or from static 
measurements and use a fewer number of equations. However, 
these models cannot represent the dynamic information 
correctly and provide inaccurate results in the order of 5%-20% 
error. Finally, circuit-based or electrical models are able to 
accurately exhibit the current-voltage characteristics of the 
batteries while maintaining simulation efficiency. The accuracy 
of these electrical models lies between electrochemical and 
mathematical models [11]. These models are based on resistors 
and capacitors connected to controlled voltages sources, and 
they can represent the fast dynamic of the battery with a high 
level of accuracy [12]. 

In the literature, several papers develop a comparative study 
among different models. So, [13] shows a systematic review of 
ten models, using nonlinear identification technique with the 
dual Extended Kalman Filter (dual-EKF).  This paper concludes 
the RC model provides the best dynamic response and 
accuracy. In addition, [14] examines eleven electrical circuits 
models in which parameters are estimated with a genetic 
algorithm (GA), and it concludes that the higher and constant 
RC networks have better robustness considering parameter 
variations and sensor errors.  

The main contribution of this paper is the proposal of a 
general and straightforward offline-procedure in order to 
estimate the battery model parameters. The identification 
method is based on the interface of MATLAB System 
Identification Toolbox, which uses numerical optimization to 
minimize the error between the measured and the estimated 
battery voltage. In order to verify the identification procedure, 
a comparative analysis of the most used battery models for 
electric vehicle applications is performed. The selected models 
can represent the most important battery effects that affect the 
control and battery. 

The next sections are organized as follows: Section II 
describes the parameter estimation procedure for battery 
models using Simulink and Simscape. In Section III, the 
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experimental setup is described. Section IV presents a 
description of different battery models and their main 
parameters. Section V shows the models of experimental 
validation using the ECE15 and HPPC dynamic driving cycle. 
Finally, in Section VI, the conclusions are presented. 

II. PARAMETER ESTIMATION PROCEDURE 
Battery models can be used in two ways: online and offline. 

Online models are used in real-time battery management 
systems for the state of charge (SOC) estimation, with tracking 
algorithms on different parameters [15],[16], [17]. On the other 
hand, an offline battery model is used for system-level design, 
to value the battery state of health or for simulation [18], [19]. 
The accuracy of these models greatly depends on carefully 
identified model parameters [20], [21]. 

However, from a practical point of view, this paper proposes 
to estimate and validate multiple parameters of the model at the 
same time, as it is made in the Optimization Toolbox of 
Matlab®. This parameter identification proposal can be used in 
both types of applications, offline and online, with some 
differences in the parameter estimation procedure. In this paper, 
this procedure is applied to offline modeling.  

The identification of the model parameters p is performed by 
minimizing the cost function F(p) (1), which is the minimum of 
the sum of the squared errors between the experimentally 
measured output voltage Vm and the model output voltage Vs, as 
shown in Fig. 1. 

𝐹(𝑝) =∑(𝑉𝑚(𝑡𝑖) − 𝑉𝑠(𝑡𝑖 , 𝑝))
2

𝑛

𝑖=0

 (1) 

The optimization method used for parameter identification is 
known as Nonlinear Least Squares, described in [22]. This 
method is used since the quadratic cost function is easier to 
minimize than other cost functions, and it is sufficiently 
accurate for this type of application. 

 

 
Fig. 1:  Schematic diagram of the general parameter estimation. 

 
Fig. 2 shows the battery model identification procedure to 

estimate the optimum parameter values once the identification 
current profile, model, and identification method have been 
chosen. Fig. 2a shows a general equivalent circuit model that 
represents many of the battery electric models available in the 
literature. Each model uses a different combination of elements, 
as it is shown in Section IV. OCV represents the open-circuit 
voltage; Vv(SOC) represents a variable voltage depending on 
the state of charge (SOC); Ri and Ro are resistors, R1C1 to RnCn 
represent resistors and capacitors in parallel, and RpCp represent 

resistors and capacitors in series. This equivalent circuit model 
could be implemented in Simulink, Fig. 2b, or Simscape, Fig. 
2c, where the identification current profile is the input signal, 
and the voltage and SOC are the outputs signals of the model.  

In addition, the model could use different lookup tables, 
variable voltage sources, nonlinear resistors, and nonlinear 
capacitors to represent the nonlinear behavior of the battery 
[23].  

Also, a detailed general identification procedure is depicted 
in Fig. 2d.  

The procedure for using the tool includes several and 
straightforward steps: 

A. Parameter Estimation 
1) Build the equivalent circuit model. It can be a block 

diagram in Simulink or a circuit in Simscape. 
2) Import experimental data for parameter estimation in the 

tool Parameter Estimation of Simulink. 
3) Choose the parameters to estimate and their limits. 
4) Set up optimization options and parallel compute 

options to accelerate the numerical estimation. 
5) Run the estimation task and get the parameters after the 

needed iteration to optimize the cost function. 
6) Verify the model response by comparing the 

experimental results to the simulated data (obtained 
using the estimated parameters). If the error is not small 
enough, in this order, or return to step 1 to change the 
Model ( in Fig. 2c), or change the Identification 
method and return to step 3 ( in Fig. 2c), or modify 
the Identification current profile and return to step 2 
( in Fig. 2c). 

B. Validation 
7) Import new application or verification current profile to 

the model, with the estimated parameters. 
8) Obtain the voltage simulated response. 
9) Verify the model response by comparing the real voltage 

and the simulated voltage data. If the error is not small 
enough, in this order, or return to step 1 to change the 
Model ( in Fig. 2c), or change the Identification 
method and return to step 3 ( in Fig. 2c), or modify 
the Identification current profile and return to step 2 
( in Fig. 2c). 

III. EXPERIMENTAL SETUP 

A. Battery testing system 
The experimental setup is shown in Fig. 3a. It includes a 

battery cell along with a data acquisition system and dynamic 
load. Experiments have been conducted on pouch lithium-ion 
polymer HRB 8048145, which specifications are listed in Table 
I. In order to verify the battery model's accuracy when is used 
in automotive applications, the experimental current profile and 
the data acquisition system are conducted using the following 
set of equipment: 

1) DC electronic load: Chroma 63206A-600-420 that 
reproduces DC motor current consumption periods. 

2) DC power source: Sorensen SGI400/38 to inject energy 
from the regenerative braking.  
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Fig. 2: Parameter estimation: (a) general equivalent circuit model, (b) equivalent circuit model in Simulink, (c) equivalent circuit model in Simscape, and (d) 
general identification procedure. 

 

 
3) Datalogger: Agilent 34970A to measure cell voltage and 

current. 
4) Shunt resistor: Newtons 4th HF200 (0.5mΩ) to measure 

the cell current. 
All these elements have been synchronized by LabVIEW® 

software in order to produce all current pulse and specific 
current profile to verify the equivalent model of the battery.  

 
TABLE I 

LITHIUM ION POLYMER HRB 8048145 SPECIFICATION 

Parameter Value 

Nominal voltage 3.7 V 
Nominal capacity 5 Ah 
Upper cut-off voltage 4.20 V 
Lower cut-off voltage 
Charging current 
Continuous discharge current 

3.0 V 
5 C 
50 C 

B. Battery test schedule 
The parameter identification procedure uses for each model, 

either a constant current profile test or a pulsating current 
discharge profile test, in order to obtain parameter estimation.  

Fig. 3b shows the battery discharge curve obtained at 
constant current (generally equal to 20% of the rated capacity 
until the cut-off voltage). From this curve, the real battery 
capacity is obtained, Q=5.58Ah, by integrating the current as a 
function of time.  

On the other hand, the state of charge (SOC) estimation is a 
challenging task due to the battery aging and temperature effect. 
Some techniques are presented in [24], where the tendency of 
estimation is a mixture of probabilistic and artificial 
intelligence techniques. 

The Coulomb counting method is used in this paper for SOC 
calculation because it is simple and provides good accuracy. In 
order to obtain the data for battery model identification, current 
pulses of 10% SOC are applied, as shown in Fig. 3c. 
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 Fig. 3:  a) Battery testing system. Current profiles for identification: (b) constant and (c) pulsating current discharge profile for verification: d) HPPC and e) 
ECE15 

 
In addition, to verify the robustness and accuracy of the 

battery models, two verification test profiles are applied: HPPC 
profile and ECE15 profile. These profiles are widely used in the 
battery and supercapacitor modeling, in electric vehicles.  

Fig. 3d shows the HPPC test, described in [25]. It is applied 
repeatedly for almost one hour to validate how robust is the 
battery model long-time response. Fig. 3e shows the ECE15 
test, described in [26], which is applied repeatedly for almost 
one hour. 

IV.  BATTERY MODELS 
This section analyses five battery models selected from the 

literature, on which the procedure shown in Section II has been 

applied. 
In [27], different datasets of an HEV Li-polymer cell was 

used to compare mathematical models, where enhanced-self-
correcting with 4 filters states gave the best performance in all 
cases, at the cost of greater complexity. An overview of generic 
battery models (mathematical and electrical) was presented in 
[28], where the continuous and transients current test of the RC 
model showed a higher performance.  

Another comparative study between several models was 
performed in [29], where the third-order RC model with 
hysteresis shows a better performance. In addition, [30] shows 
a systematic comparative study of equivalent circuit models, in 
which the 2RC model has better accuracy. However, if one-
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state hysteresis is added to the model (2RCH), the accuracy and 
the reliability do not improve for LiMNC cells.  

In this paper, the selected models are the Sheperd Model 
[31], the Nonlinear Model [32], PNGV Model [33],  the 3rd 
Order RC Model with One-State Hysteresis [29] and the Three 
RC Network Model [34].  These models were selected to cover 
most of the applications, and they are briefly reviewed below. 

A. Shepherd Model 
The Li-ion battery model proposed in [31] is used due to the 

fact that this model requires only a few data from manufacturer 
datasheet and the battery discharge curve. This model is based 
on the modified Shepherd model, and it can accurately reflect 
the macro-level characteristics of current and voltage that are 
important for system-level simulations, as shown in Fig. 4. 

  

  
Fig. 4:  Shepherd mathematical model in Simulink. 

 
This battery model is implemented in Simulink, and it is 

composed of a controlled voltage source and an internal 
resistance. The controlled voltage source value depends on two 
expressions, one for battery discharge and other for battery 
charge. Where E0 is the battery constant voltage (V), K is the 
polarization constant (V Ah-1), Q is the maximum battery 
capacity (Ah), i* is the filtered battery current (A), it is the 
actual battery charge (Ah), A is the exponential zone amplitude 
(V), B is the exponential zone time constant inverse (Ah-1), Tc 
is the battery time constant (s), and R is the battery internal 
resistance (Ω) [35].  

Applying a discharge curve of 0.2C and using the Parameter 
Estimation tool shown in Section II along with the battery 
model in Simulink, the different estimated parameters for this 
model are obtained, as shown in Table II. 

 
 TABLE II 

SHEPHERD MODEL BATTERY PARAMETERS  

Parameter Value 

E0 3.7380 V 
K 1.4932 103 V Ah-1 
Q 5.5832 Ah 
A  0.5307 V 
B 0.5612 Ah-1 
R 5.4238 103 Ω 
Tc 10.02 s 

B. The Nonlinear Model 
The proposed model in [32] is demonstrated to be more 

appropriate than the well-known Randles’s battery circuit 
model applied for lead-acid battery technologies. Despite the 
good results obtained with the modified Randles’s model, 
however, for lithium-polymer battery, this model is not 
appropriated due to the battery nonlinearly behavior. For this 
reason, a nonlinear RC  battery model is proposed in [36]. The 
proposed model consists of a nonlinear voltage source, Open 
Circuit Voltage, OCV(SOC) as a function of SOC in order to 
represent nonlinear characteristics; a capacitance Cp to model 
polarization effect; a propagation resistor Rb; a diffusion 
resistor Rp; and an ohmic resistance Rt, as shown in Fig. 5a. 

 

 
a)  

 
b) 
 

Fig. 5:  Nonlinear RC Battery: a) model structure and b) OCV vs. SOC 
 

The obtained parameter values are shown in Fig. 5b and 
Table III, after using the identification procedure proposed in 
Section II. The model parameters depend on the state of charge 
at each current level during discharging. 

 
TABLE III 

BATTERY DYNAMIC MODEL PARAMETERS  

Parameter Value 

Cp 8946.5 F 
Rb 5.4646 103 Ω 
Rp 0.4418 Ω 
Rt  1.616 103 Ω 
Vp 3.9163 V 

 
 

+

-

*iit

Integrator

Low-pass filter

+

-

vbatt

ibatt

Discharge model

Charge model

 * 0i 

 * 0i 

R

0

t



1
1 cs T 

 * *
0, , B it

d
Q Qf it i i E K i K it A eQ it Q it

         
 

 * *
0, , 0.1

B it
c

Q Qf it i i E K i K it A eit Q Q it
         

  

OCV(SOC) Cp

Rb Rp

Rt +

-

Vbatt



 

C. Partnership for a New Generation of Vehicles (PNGV) 
Model 

The PNGV model is accurate and able to describe the battery 
behavior during the discharge process [33]. In [37], research 
about Li-ion battery enhances the PNGV model by adding 
variable RC components, as shown in Fig. 6a. This model is 
composed of the OCV0 represents the initial constant voltage 
source (V), and  C0(SOC) represents a variable capacitor, both 
connected in series represent the nonlinear voltage 
characteristics of the battery, which is dependent on SOC. 
R0(SOC) represents the battery internal resistance (Ω), and also 
two parallel networks based on R1, C1, R2, and C2 as a function 
of SOC. The values of the different parameters estimated for 
this model, with the procedure described in Section II, are 
shown in the Appendix and are depicted in Fig. 6b. 

 

 
a) 

 
b) 

 Fig. 6: PNGV model: a) electric circuit and b) parameter values. 

D. The 3rd Order RC Model with One-State Hysteresis 
The Thevenin circuit with three RC parallel networks with 

hysteresis is proposed in [29]. In this model, a hysteresis 
voltage Vh is added in series with an ohmic resistance and three 
RC parallel networks, Fig. 7a. The battery hysteresis model, 
proposed in [27], is defined by (2): 

  
( ) ( )( ) exp ( ) 1 exp sgni k t i k th k h k i k

Q Q
        

           
    

 
(2) 

The hysteresis voltage, Vh (in the order of few millivolts), is 
Mh(k), where M is the maximum hysteresis value,  adjusts the 

changing rate of hysteresis voltage and Q is the total capacity. 
In [38], the authors provide a robust and consistent 
methodology to assess the OCV of different chemistry lithium-
ion cells. This method is applied to the under-test cell to get a 
variation of 10% of SOC using a 1C current until the cut-off 
voltage, as shown in Fig. 7b. This information allows to obtain 
the parameter used in (2) needed to calculate Vh. 

 

 
a) 

 
b) 

Fig. 7.  The 3rd Order RC Model with One-State Hysteresis (3RCH): a) 

electric circuit and b) OCV versus SOC. 

Table IV shows the average values of RC and the average 
hysteresis parameters from charge and discharge curves. 

TABLE IV 
DYNAMIC MODEL BATTERY PARAMETERS  

Parameter Value 

R0 4.7  103 Ω 
R1 3.6  103 Ω 
R2 1.1  103 Ω 
R3  2.8865  105 Ω 
C1 6.9437  104 F 
C2 3.3455  104 F 
C3 4.5765  104 F 
M 0.0012 
 48.5745 

E. The Three RC Network Model 
Each element of the equivalent circuit of Fig. 8a is a function 

of SOC, with three RC networks that represent the slow, 
intermediate, and fast dynamic response of the battery. In [34], 
a comparison is made when one, two, and three branches are 
used, obtaining better accuracy as more branches in parallel are 
used. The disadvantage of using a higher number of RC 
branches is that the mathematical model becomes more 
complex since it includes more lookup tables [22]. 
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In this case, three RC branches are used in order to obtain 
better precision, without increasing the complexity of the model 
response, where OCV represents the open-circuit voltage, R0 
represents the internal resistance of the battery, and three 
parallel networks based on R1, C1, R2, C2, R3, and C3. The values 
of the different parameters estimated for this model, with the 
procedure described in Section II, are shown in the Appendix 
and are depicted in Fig. 8b. 

 

 
a) 

 
b) 

Fig. 8.  Three RC Network Model: (a) electric circuit and (b) parameter 
values. 

V. COMPARISON RESULT AND DISCUSSION 
After obtaining parameters for each model, using in all cases, 

the same procedure shown in Section II, the output voltage 
accuracy and robustness analysis for the five models of the 
polymer Li-ion battery is performed with the HPPC test and the 
ECE15 test. The results are illustrated in Fig. 9a-9d for HPPC 
test and Fig. 9e-9h for the ECE15 test. In these figures, the 
current profiles are shown in Fig. 9a and Fig. 9e, the simulated 
and the experimental voltage are shown in Fig. 9b and Fig. 9f, 
the voltage relative error is shown in Fig. 9c and Fig. 9g, and 
the maximum and average voltage relative error are shown in 
Fig. 9d and Fig. 9h.  

In Fig. 9c the 3rd Order RC Model with One-State Hysteresis 
(3RCH) and the Three RC Network Model (3RC(SOC)) have a 
lower mean and maximum voltage relative error, as well as with 
convergent tendency compared to other models, while the 
Nonlinear RC Model (Nonlinear RC) has the highest average 

voltage relative error without a convergent tendency. The 
Partnership for a New Generation of Vehicles (PNGV) Model 
has a good response for a short simulation time but without 
enough convergent tendency for a long simulation time. A 
summary of the results is shown in Table V and Fig. 9d, for the 
HPPC profile. 

 
TABLE V 

OUTPUT VOLTAGE ERROR WITH HPPC TEST 

Model Maximum voltage 
relative error (%) 

Average voltage 
relative error (%) 

Shepherd 6.3026 0.4635 
Nonlinear RC 3.5664 1.2211 
PNGV 3.2684 0.4853 
3RCH  2.1933 0.2300 
3RC(SOC) 2.2356 0.1068 

 
The obtained results under the ECE15 test are shown in Fig. 

9g, where again the 3rd Order RC Model with One-State 
Hysteresis (3RCH) and the Three RC Network Model 
(3RC(SOC)) have a lower average voltage relative error with a 
convergent tendency. However, the Nonlinear RC Model 
(Nonlinear RC) has a higher average and maximum voltage 
relative error without a convergent tendency. The Partnership 
for a New Generation of Vehicles (PNGV) Model has a good 
response for a short simulation time but without enough 
convergent tendency for a long simulation time, as in the HPPC 
test. The Shepherd Model (Shepherd) has the maximum voltage 
peak error and similar voltage relative error to the PNGV 
model, with a convergent tendency. A summary of the results 
is shown in Table VI and Fig. 9h. 

 
TABLE VI 

OUTPUT VOLTAGE ERROR WITH ECE15 TEST 

Model Maximum voltage 
relative error (%) 

Average voltage 
relative error (%) 

Shepherd 2.8041 0.3864 

Nonlinear RC 2.7446 1.1457 

PNGV 1.4791 0.4752 

3RCH  1.7342 0.2141 

3RC(SOC) 1.2663 0.1831 

 
In general, models based on RC networks have a greater 

capacity to reproduce the different effects that appear in the 
battery, whether short, medium or long term, since with a 
sufficient number of RC networks  all phases of polarization of 
the battery can be represented.  

However, the PNGV model produces long-term accumulation 
of voltage on the capacitor, which increases the model voltage 
error. 

The results obtained indicate that the Three RC Network 
Model, followed by the 3rd Order RC Model with One-State 
Hysteresis are the two models with the best results, although 
most of the parameters of the 3rd Order RC Model with One-
State Hysteresis are constant, so this model is easier to 
implement. 
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Fig. 9: Time response of lithium-ion battery: (a) – (d) current profile HPPC and (e) – (h) current profile ECE15. a) current profile HPPC, b) simulated and 
experimental voltage, c) voltage relative error, d) maximum and average voltage relative error; e) current profile ECE15,  
f) simulated and experimental voltage and g) voltage relative error and h) maximum and average voltage relative error. 



 

VI. CONCLUSION 
This paper describes a general parameter identification 

procedure with a reduced number of steps and an easy user 
interface, which requires circuits or equations to implement any 
type of battery model. The Parameter Estimation Tool is 
available in Simscape or Simulink of Matlab, and it can 
estimate and validate multiple parameters of the model at the 
same time, using multi-experiment data with specific bounds 
for each parameter. This parameter identification proposal can 
be used in offline applications. 

A comparative study of five different battery models available 
in the literature has been made. In all cases, the model 
parameters have been obtained from the proposed general 
parameter identification procedure. 

The comparison result obtained from the five models 
indicates that the Shepherd Model is straightforward, and it can 
be used as a first approximation, needing only the discharge 
curve of the battery to be parameterized. However, when it is 
used for a long simulation time, this model produces a 
cumulative voltage error, and it cannot represent the voltage 
peaks of the battery response.  

The PNGV model is excellent for a short simulation time; 

however, once again, this model produces long-term 
accumulation of voltage on the capacitor, which increases the 
model voltage error.  

The Nonlinear RC model does not accurately reflect the 
dynamic characteristics of the battery because this model 
cannot reflect the polarization phases of the Li-ion battery. 
Therefore, its accuracy is limited. 

The 3RCH and 3RC(SOC) models do not show a cumulative 
error in long simulation time, and the simulated voltage is better 
than the previous ones. The 3RCH includes the hysteresis 
phenomenon that depends on the battery chemistry, and it is 
simpler to estimate than the 3RC(SOC) model, which is more 
accurate, although more complex. Therefore, it can be 
concluded that both models have higher accuracy and 
robustness than the other models in order to show the static and 
dynamic battery voltage. A tradeoff between complexity, 
robustness, and accuracy is obtained with the 3RCH model. 

Considering these results, Shepherd Model is recommended  
for short simulation time and 3RCH model for medium and 
long simulation time. 

 
APPENDIX 

Models parameters of Nonlinear, PNGV and Three RC 
Network Models are shown in Tables VII, VIII, and IX. 

 
TABLE VII 

NONLINEAL MODEL PARAMETERS 

Parameters SOC(%) OCV(V) 

Values 

11.0821 3.5805 

20.0061 3.6896 

28.9002 3.7291 

37.7848 3.7730 

46.6761 3.7890 

55.5755 3.8307 

64.4555 3.9113 

73.3533 4.0019 

82.2332 4.1140 

91.1255 4.1364 

100 4.2301 
 

TABLE VIII 
PNGV MODEL PARAMETERS 

Parameters SOC(%) OCV(V) C0(kF) R0(mΩ) C1(kF) R1(mΩ) C2(kF) R2(mΩ) 

Values 

11.0821  68.7420 2.2213 12.3630 5.2583 199.580 4.0208 

20.0061  28.7140 4.4317 17.4650 3.4383 376.300 10.662 

28.9002  110.730 4.9254 63.5560 6.0789 13.9700 1.9166 

37.7848   45.1290 4.1839 147.000 3.2660 17.3140 3.0477 

46.6761  87.0250 4.5333 596.420 13.8250 14.673 3.9884 

55.5755  42.0530 4.2388 298.630 0.1776 153.620 1.6512 

64.4555  19.4130 4.5360 154.120 6.8301 21.8720 2.8152 
73.3533  42.8830 3.4158 34.4120 6.1388 7.4790 4.6487 

82.2332  8.8560 4.1868 26.0930 2.2758 1.4473 0.26945 

91.1255  47.5230 2.9751 19.2730 9.8609 13.3610 2.4883 

100  5.3872 0.9459 24118 0.18918 264.170 0.0332 
 

 
 

TABLE IX 
THEVENIN MODEL PARAMETERS 

Parameters SOC(%) OCV(V) R0(mΩ) R1(mΩ) C1(kF) R2(mΩ) C2(kF) R2(mΩ) C2(kF) 

Values 

11.0821 3.6904 68.7420 2.2213 12.3630 5.2583 199.5800 4.0208 27.8980 

20.0061 3.7244 28.7140 4.4317 17.4650 3.4383 376.300 10.6620 336.020 

28.9002 3.7619 110.730 4.9254 63.5560 6.0789 13.9700 1.9166 24.6160 

37.7848 3.7825 45.1290 4.1839 147.000 3.2660 17.3140 3.0477 9.7176 

46.6761 3.8042 87.0250 4.5333 596.420 13.8250 14.673 3.9884 49.015 

55.5755 3.8389 42.0530 4.2388 298.6300 0.1776 153.620 1.6512 42.709 

64.4555 3.8969 19.4130 4.5360 154.1200 6.8301 21.8720 2.8152 11.177 

73.3533 3.9524 42.8830 3.4158 34.4120 6.1388 7.4790 4.6487 89.624 

82.2332 4.0462 8.8560 4.1868 26.0930 2.2758 1.4473 0.26945 1.1646 

91.1255 4.1280 47.5230 2.9751 19.2730 9.8609 13.3610 2.4883 167.580 

100 4.2192 5.3872 0.9459 24118 0.18918 264.170 0.0332 3.960 
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