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Hybrid Cooperative Positioning for
Vehicular Networks

Jun Xiong , Joon Wayn Cheong , Member, IEEE, Zhi Xiong, Andrew G. Dempster , Senior Member, IEEE,
Shiwei Tian , and Rong Wang

Abstract—This paper proposes a hybrid cooperative position-
ing (CP) algorithm suitable for vehicular network applications
which can fuse the measurements from global navigation satellites,
ground stations, signals of opportunity, inter-node ranging from
neighbouring vehicles and onboard inertial navigation systems
(INS). By applying the framework of generalized approximate
message passing (GAMP), the complex CP problem is transformed
into an iterative yet lower computational load process. In each
iteration, the time recurrence of navigation states and initialization
of GAMP computation are conducted based on Kalman filter.
The proposed algorithm guarantees the overall positioning per-
formance of multiple vehicles in a hybrid navigation scenario, and
improves the robustness and accuracy of CP navigation systems.
Simulation results show that the proposed algorithm has better
estimation accuracy than traditional CP algorithms, and has 20
times less computational load than the best existing algorithm with
equivalent accuracy.

Index Terms—Approximate message passing, Cooperative
positioning, Kalman filter, Vehicular networks.

I. INTRODUCTION

POSITIONING is a fundamental issue for vehicles. To
guarantee the safety and efficiency of systems, many ap-

plications such as intelligent transportation systems (ITS) [1],
location-based services (LBS) [2] and automatic drive [3] are
very dependent on accurate navigation solutions. However, for
a classical vehicle onboard navigation system, most are inte-
grated navigation systems based on global navigation satellite
system (GNSS) and inertial navigation systems (INS). The
main defect of this navigation scheme is that the positioning
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performance largely depends on the GNSS for correcting its
drift errors. If the number of available satellites is not enough
for positioning calculation, it is difficult to maintain a reliable
and durable positioning solution. To deal with this problem,
one effective approach is to enhance the positioning accuracy
using a fixed known positioning base station, such as the Real
Time Kinematic (RTK) technique. However, this method needs
large numbers of expensive base stations to guarantee system
continuity. Another way is to equip external navigation sensors
such as millimeter-wave radar, camera, or Lidar to augment the
navigation system. However for most vehicle applications, it is
rare to carry large numbers of navigation sensors due to restricted
working scenarios and cost constrains.

Therefore, to obtain more navigation information for vehi-
cluar positioning, the concept of hybrid positioning has been
proposed [4]–[6]. The receiver uses radio frequency signals
from signals of opportunity (SOOP), such as GSM/UMTS base
stations, Wi-Fi and digital television DVB signals, to use as
navigation measurements. However, such a hybrid navigation
system relies on the direct line of sight measurements between
the receiver on the vehicles and the SOOP signal sources. The
hybrid system becomes unavailable when the vehicle is out of
signal range. To reduce this deficiency, cooperative methods
have been proposed in [7], [8] to overcome the lack of navigation
measurement, which can provide reliable and better navigation
performance with some inter-node measurements such as ultra-
wideband (UWB) communication and Bluetooth.

Some researchers have focused on non-Bayesian cooperative
positioning (CP) [9]–[11], transforming the CP problem to a
least squares (LS) problem, using Gauss-Newton or steepest
descent to iteratively calculate the optimal results. However, the
CP problems involve many variables and are not always a convex
problem, so it is difficult to find the optimal results for a multi-
variable nonlinear problem. So, relaxing the non-Bayesian CP
problem to a semi-definite programming problem (SDP) [12]
or a cone programming problem [13] becomes a more robust
solution.

The main shortcoming of non-Bayesian CP methods is the
error accumulation caused by deterministic estimation of states,
which can lead to severe performance degradation [14]. The
Bayesian CP method can solve such problems, as it treats the
navigation states as random variables. Based on the Bayesian
deduction of navigation states, several belief propagation (BP)
methods have been proposed to improve the navigation perfor-
mance of single nodes in a network [15]–[17]. The research
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in [18] presented a sum-product algorithm for wireless net-
work (SPAWN) based on a net-factor graph and net-message
passing schedule. The BP was applied to estimate the posterior
marginal probability density function (PDF) of the agent’s po-
sition. Simulation results showed that the cooperative scheme
largely improves the absolute positioning ability of every single
node. To make full use of GNSS data, research in [8] proposed
a hybrid SPAWN (H-SPAWN) method which combines the
ranging information from neighbour nodes and the pseudoranges
obtained from GPS/GNSS “anchor nodes”. This extends the
application of SPAWN to more complex scenarios. Although the
BP methods obviously have excellent positioning performance,
their iterative computation of marginal PDF requires the inte-
grals, which is typically computed using Monte Carlo integration
with importance sampling. Therefore, they need large numbers
of weighted samples (particles) to describe cooperative mes-
sages [19]. Such a heavy computation load restricts the practical
application of the CP algorithm due to their weak real-time
performance. To decrease the high computation complexity of
classical CP, the universal cooperative localizer (UCL) [20]
was proposed to simplify the message passing procedure to
a generalized linear mixing problem. However, its application
scenario is restricted to two-dimensional (2D) positioning, and
when expanded into 3D to include the height dimension as re-
quired by many vehicular navigation applications (e.g. to detect
if the vehicle is entering a ramp), it becomes computationally
untenable.

Although the Bayesian CP methods mentioned above have
good positioning performance, many of them are applied in
a static scenario, or just describe the movement of nodes via
simple motion models such as a constant velocity model [21]
or a delta function without move direction [18]. Therefore, such
CP methods will have performance degradation in a complex
dynamic application environment. To overcome this problem,
one effective approach is to combine CP method with Dead
Reckoning (such as INS) to further improve the estimation
accuracy. However, it is hard to directly insert Dead Reckoning
computation into the CP structure. Also, combining traditional
CP method with Dead Reckoning via a secondary estimator is a
more practical approach.

Therefore, in this paper we propose a new hybrid-CP method
based on generalized approximate message passing (GAMP)
and Kalman filter for vehicular network applications, which
can make full use of navigation measurements from an on-
board INS, GNSS receiver, SOOP sources, ground stations and
inter-node measurements of neighbour vehicles. Our method
adopts the framework of GAMP [22] which exploits the central
limit theorem and Taylor expansion to simplify the classical
sampling mechanism in BP to a numerical computation process.
For initialisation, we used a Kalman filter to provide the initial
states and parameters to the GAMP.

The main contribution of this paper is to extend the GAMP
to a hybrid cooperative positioning scenario in three dimensions
(3D), and combine the GAMP with INS through a Kalman filter,
which can provide cooperative navigation solutions for vehicles
more precisely and efficiently. Results show that it has better
positioning performance than multiple traditional CP methods.

Fig. 1. Vehicular cooperative positioning in urban scenario.

They also show that the positioning performance of hybrid-CP
in hybrid positioning scenarios improves with growing numbers
of useful navigation measurements and cooperative neighbor
nodes.

II. OBSERVATION MODEL

Consider a group of vehicles that carry out a mission (see
Fig. 1) in an urban area, where the number of available satellites
is not adequate for all vehicles. All vehicles share navigation
and sensor data through a wireless network, and they are ca-
pable of receiving the signals from SOOP sources, such as
digital television signals and GMS/UMTS signals. The math-
ematical model is composed of a set of vehicles and ground
control stations of cardinality N, a set of satellites S and a
set of SOOP signal sources O. Position variables of vehicle
i are denoted by xi = [xi yi zi ], velocity variables are de-
noted by vi = [ vi,x vi,y vi,z ], the location and velocity for
N vehicles in a group are denoted by a concatenated vector
q = [ · · · xi · · · · · · vi · · · ].

Here it should be notice that the concatenated vector q is also
written as q = [· · · , qi, · · · ] in the follow parts, where qi means
the i-th element of state vector q.

In the considered scenario, five types of measurements are
used:

A. Double Differenced GNSS Pseudoranges

The GNSS pseudorange between satellite and vehicle is ex-
plained as:

ρ̃αn↔i = Rαn↔i + cδαn
+ cδi + ζαn↔i + bρ̃ + εαn↔i (1)

where αn ∈ S, i ∈ N, c is the speed of light, Rαn↔i is the
distance between vehicle i and satellite αn, δαn

is the clock
error of satellite αn, δi is the clock error of onboard receiver
of vehicle i, ζαn↔i is the error due to ionosphere, troposphere,
and orbit of satellite αn, bρ̃ is the error caused by multipath
or non-line-of-sight (NLOS), and εαn↔i is the error caused by
receiver thermal noise. In (1), ζαn↔i and δαn

are the same
for all vehicles within the communication range and can be
eliminated by differencing the observation of any pair of onboard
receivers, i.e., i and j, which observe a same satellite. In [23], the
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double differencing can eliminate the errors caused by receivers’
clock errors and correlated errors of GNSS observations by
two receivers and two satellites. Then, it is well-known that
the double differenced GNSS pseudorange observations can be
defined as:

Δ∇ρ̃αnαm↔i,j = (eαn − eαm) (xj − xi)
T + bΔ∇ρ̃ + ερ (2)

where αn, αm ∈ S, i, j ∈ N, eαn and eαm are the unit vectors
from vehicle i to the satellite αn and αm respectively. xi is the
location of vehicle i in an Earth Centred Earth Fixed (ECEF)
frame, bΔ∇ρ̃ is the error for multipath or NLOS that cannot
be removed by double differencing, the error ερ for double
differenced GNSS measurements can be denoted by an additive
white Gaussian noise (AWGN) which is caused by the receiver
thermal noise.

According to (2), the double differenced GNSS pseudorange
Doppler shifts for vehicles i, j and satellites αn, αm can be
obtained as:

Δ∇ϑ̃αnαm↔i,j =
1

λG
(eαn − eαm)T (vj − vi) + εϑ (3)

where λG is the wavelength of GNSS signal, vj is the velocity
of vehicle i in an ECEF frame, εϑ is AWGN for measurements.

B. UWB Ranges

UWB transceivers are widely used as a communication
and ranging sensor in both indoor and outdoor environ-
ments [24], [25]. There were many researches that using UWB as
the vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
ranging sensor [26], [27], [28]. In this paper, UWB ranging is
used as the V2V and V2I (ground station) measurements. The
UWB ranging between node i and j is:

r̃i↔j = ‖xi − xj‖+ br̃ + εr (4)

where the symbol ‖ ‖ denotes the Euclidean distance, br̃ is
the bias caused by NLOS, εr is AWGN for inter-node range
measurements.

C. TDOA Measurements From SOOP Sources

Although the GNSS receiver can provide reliable navigation
measurements in most cases, GNSS signals are often blocked
by the urban buildings or any other certain terrain. Several
novel positioning methods based on signals of opportunity
were proposed to solve this problem [29], [30]. In this work,
the SOOP measurements based on time-difference of arrival
(TDOA) were used to provide more navigation information.
TDOA based SOOP signal are widely used in opportunistic
positioning because they do not require clock synchronization.
The SOOP signal from vehicle j to vehicle i via the SOOP source
g can be denoted as:

d̃j→i = (‖xg − xj‖ − ‖xg − xi‖) + bd̃ + εd (5)

where g ∈ O, xg is the location of SOOP signal source in an
ECEF frame, bd̃ is the NLOS or multipath bias, εd are zero mean
Gaussian to model errors for TDOA measurements.

D. Closed-Loop Doppler Measurements

In the area of ITS positioning techniques, dedicated short-
range communications (DSRC) are considered as a promising
supplement navigation sensor. Many methods were proposed
recently using DSRC Doppler as the additional measurements
to augment the existing navigation system [31], [32]. The DSRC
Doppler is essentially the Closed-loop Doppler [33], the mea-
surements between node i and j is defined as:

d̃pi↔j =
(vi − vj) · ei→j

λR
+ εf (6)

where ei→j is the unit vector between vehicle i and vehicle j, λR

is the wavelength of the ranging signal in meters, εf is AWGN
for Doppler measurements.

III. HYBRID COOPERATIVE POSITIONING

Fig. 2 shows the architecture of the proposed hybrid coop-
erative positioning method. It is essentially a tight integration
between the GAMP algorithm and Kalman filter. In this archi-
tecture, GAMP is a centralized way to process the measurements
of all vehicles, and the Kalman filter is a decentralized processing
for each vehicle.

GAMP is used to fuse all the possible navigation measure-
ments. It will output the position estimation and the correspond-
ing variance information after convergence, these data will be
used in the initialization of covariance matrix for the Kalman
filter. The Kalman filter can fuse the information from GAMP
and INS to get a further estimation. The posterior covariance
matrix of Kalman filter and the modified INS data will then be
used in the initialization of GAMP at the next epoch.

In most Kalman filter based CP methods, their time updates
of the navigation states and covariance matrix are based on the
Kalman filter itself. But for the proposed method, its covariance
matrix and navigation states are updated based on the GAMP
estimation. And for the common GAMP application such as the
UCL in [20], it is more like a “snapshot” algorithm without the
temporal cooperation. In the proposed method, the navigation
states and variance estimation of GAMP is doing a further
temporal cooperation based on the INS and Kalman filter.

A. Problem Model

It is reasonable to assume that the location and velocity of all
vehicles at epoch t are independent, so the prior distribution of
navigation states for all vehicles can be denoted as:

p

(
q(t)

μ(t)

)
=
∏
i

p

(
q
(t)
i

μ
(t)
i

)
(7)

where μ(t) is the vector of a priori navigation states (i.e. po-
sition and velocity). It can be initialised from the navigation
results of GPS/INS integration system, q(t)i is the i-th element

of navigation state q(t), μ(t)
i is the i-th element of μ(t).

Also, each measurement for every vehicle at epoch t is inde-
pendent, the posterior distribution of all measurements can be
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Fig. 2. Structure of hybrid cooperative positioning.

described as:

p

(
m̃(t)

f (t)

)
=
∏
j

p

(
m̃

(t)
j

f
(t)
j

)
(8)

where f (t) is the set of all functions between navigation states
and measurements, m̃

(t)
j is the j-th measurement set of all

measurements m̃(t) at epoch t, f (t)
j is the j-th function of the set

of functions at epoch t. In a normal case, the measurement errors
used in the proposed method are assumed always to be normal
distributed. For the faulty cases caused by non-line-of-sight
(NLOS) or multipath, such faulty measurements can be removed
by some integrity methods [34], [35]. Although the problem of
faulty measurements is not within the scope of this paper, we still
take the NLOS and multipath into consideration in the simulation
(Section IV).

Based on the definition above, the goal of hybrid cooperative
localizer is to find the posterior distribution of q(t) at epoch t
based on all measurements m̃(t). In this work, the movement of
every vehicle is modelled as a Markov process [36]. Then, the
posterior distribution of all navigation states q(t) at epoch t can
be simplified as:

p

(
q(t)

μ(t), m̃(t)

)
= p

(
m̃(t)

q(t)

)
p

(
q(t)

μ(t)

)/
p

(
m(t)

μ(t)

)

∝ p

(
m̃(t)

q(t)

)
p

(
q(t)

μ(t)

)

=
∏

p

(
m̃

(t)
n

f
(t)
n

)∏
p

(
q
(t)
i

μ
(t)
i

)
(9)

Then the relationship between the navigation states q(t) and
the measurements m̃(t) can be described by a factor graph as
in Fig. 3. It consists of factor nodes and variable nodes, which
represent the relationship between measurement and navigation
state respectively.

Fig. 3. Factor graph for navigation states.

B. Generalized Approximate Message Passing

To simplify the notation, the superscript (t) is omitted in this
section, and the superscript (k) denotes k-th iteration of GAMP
computation at epoch t.

Fig. 3 shows the GAMP model definition. Δ
(k)
fi←qj

is the
message from variable node to factor node, and indicates the
cooperative contribution from the variable distribution of q(k)j

during cooperative estimation. Δ
(k)
fi→qj

is the message from
factor node to variable node, and represents the cooperative
modification information from measurements to the variable.

In the context of GAMP, the messages Δ(k)
fi←qj

, Δ(k)
fi→qj

, Δ(k)
qj

always refer to the log probability distribution of the measure-
ment function fi in case of navigation state estimation qj

(k), the
navigation state qj

(k) in case of measurement function fi and
navigation state qj at k-th GAMP iteration, respectively.

The message Δ
(k)
fi←qj

and Δ
(k)
fi→qj

can be defined as [22]:

Δ
(k)
fi←qj

= cΔ + log p

(
q
(k)
j

μ
(k)
j

)
+
∑
fl 	=fi

Δ
(k)
fl→qj

(10)
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Δ
(k)
fi→qj

= cΔ + log

∫
p

(
m̃

(k)
i

f
(k)
i

)∏
r 	=j

expΔ
(k)
fi←qr

(11)

where cΔ is the constant value.
Based on the GAMP model definition, if the marginal poste-

rior distribution of the j-th vehicle’s navigation state qj achieves
convergence after n GAMP iterations, it can be calculated from
(10) by incorporating (11):

Δqj = cΔ + log p

(
q
(n)
j

μ
(n)
j

)
+
∑

fi∈Mj

Δ
(n)
fl→qj

(12)

where Mj is the set of measurements related to vehicle j. The
terminal condition of convergence is discussed in section D.

The set of all available measurements for all vehicles is
defined as:

m̃ =
[
r̃ Δ∇ρ̃ Δ∇ϑ̃ d̃p d̃

]T
(13)

where, r̃ = [ . . . r̃i↔j · · · ]T is the vector of inter-node
range measurements, Δ∇ρ̃ = [ . . . Δ∇ρ̃snsm↔i,j · · · ]T is the
vector of double differenced GNSS pseudoranges, Δ∇ϑ̃ =
[ . . . Δ∇ϑ̃snsm↔i,j · · · ]T is the vector of double differenced

GNSS pseudorange Doppler, d̃p = [ . . . d̃pi↔j · · · ]T is the

vector of Doppler measurements from neighbour nodes, d̃ =
[ · · · d̃j→i · · · ]T is the vector of TDOA measurements from
SOOP signal sources.

To simplify the description of cooperative messages via CLT,
GAMP applies linearization to model relationships between
measurements and states [22]. By taking the Taylor expansion,
the measurement m̃ can be linearly approximated by the follow-
ing, given estimated navigation state q̂(k):

m̃(k) = m̂(k) +A(k)
[
q(k) − q̂(k)

]
+ n (14)

where m̂(k) is the expected (apriori) measurements given esti-
mated navigation state q̂(k), n is the AWGN noise vector, A(k)

is Jacobian matrix:

A(k) =
∂m

∂q

∣∣∣∣
q=q̂(k)

(15)

Then the measurement vector of all vehicles m̃ in (15) can be
rewritten as:

m̃ = f
(
q(k)

)
+ n (16)

where f(q(k)) = A(k)q(k) + [m̂(k) −A(k)q̂(k)].
Therefore, the message Δ

(k)
fi→qj

emitted by factor nodes in
(11) is approximated by:

Δ
(k)
fi→qj

≈ cΔ + log

∫
p

(
m̃i

[f
(
q(k)

)
]i

)∏
r 	=j

expΔ
(k)
fi←qr

(17)

where m̃i is the i-th element of measurement m̃, [·]i denotes the
i-th element of vector. Here, we define G(k) as the posteriori
residual vector computed as:

G(k) = m̂(k) −A(k)q̂(k) (18)

So, according to CLT, the messageΔ(k)
fi→qj

emitted by a factor
node can be further derived as:

Δ
(k)
fi→qj

≈ cΔ +H
(
p̂
(k)
i , m̃i, τ

(k)
i,p

)
(19)

where function H(·) is the simplified representation, p̂(k)i and

τ
(k)
i,p are the estimated mean and variance of i-th measurement

function fi respectively (see (61), (62)). Taking the second order
Taylor-expansion of message Δ

(k)
fi→qj

, we can rewrite (20) as:

Δ
(k)
fi→qj

≈ cΔ +
(
ŝ
(k)
i a

(k)
i,j + τ

(k)
i,s a

(k)2
i,j q

(k)
fi←qj

)
q
(k)
j

− τ
(k)
i,s

2
a
(k)2
i,j q

(k)2
j (20)

where, q(k)fi←qj
is the estimate of j-th navigation state q

(k)
j at

k-th iteration, ŝ(k)i and τ
(k)
i,s are the first and second order terms

of message Δ
(k)
fi→qj

(see (64), (65)). Substituting the message
emitted by factor node in (21) into the message from variable
node to factor node Δ

(k)
fi→qj

in (11), the message emitted by

variable node q
(k)
j is rewritten as:

Δ
(k)
fi←qj

≈ cΔ + log

[
p

(
q
(k)
j

μ
(k)
j

)
N
(
q
(k)
j ; r̂

(k)
fi←qj

, τ
(k)
r,j

)]

(21)
where, N(a; b, c) is the Gaussian function of variable a with b

and c as its mean and variance respectively, r̂(k)fi←qj
and τ

(k)
r,j are

the estimated mean and variance of all incoming messages from
factor nodes to variable node q

(k)
j (see (67), (68)) respectively.

The detailed derivations of (19)∼(21) are summarized in the
appendix.

According to (21), the message of the j-th navigation state in
(12) can be simplified as:

Δ(k)
qj

= cΔ + log

[
p

(
q
(k)
j

μ
(k)
j

)
N
(
q
(k)
j ; r̂

(k)
j , τ

(k)
r,j

)]
(22)

Finally, the marginal distribution of the j-th navigation state
in k-th iteration q

(k)
j is:

p

(
q
(k)
j

μ
(k)
j , r̂

(k)
qj ; τ

(k)
r,j

)
∝ p

(
q
(k)
j

μ
(k)
j

)
N
(
q
(k)
j ; r̂

(k)
j , τ

(k)
r,j

)
(23)

Taking the mean of this distribution yields the minimum mean
squared error (MMSE) estimate of navigation state q

(k)
j . A ter-

mination judgment is needed to decide whether the calculation
of q(k)j was converged to a proper value.

In summary, under the framework of GAMP, the message
passing procedure in traditional BP becomes a scalar compu-
tation procedure. The first part is to initialize the navigation
state q(0) and calculate the Jacobian matrix A(k) in (15) and
G(k) in (18) according to the observation model in (2)∼(6). The
second part is to compute the mean p̂

(k)
i and variance τ

(k)
i,p of

i-th measurement function fi in (19); first order term ŝ
(k)
i and

second order term τ
(k)
i,s of message Δ

(k)
fi→qj

in (20); mean τ
(k)
r,j
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and variance r̂(k)j in (22); and the j-th navigation state estimation

in k-th iteration q
(k)
j of (23). The final part is the termination

judgment: the algorithm will re-iterate until navigation state q(k)j

is within a tolerance. After all the q
(k)
j converges to the certain

value, GAMP will output the priori position estimation of all
the states:

q(t/t−1) =
[
· · · , q(k)j , · · ·

]
(24)

The step-by-step procedure of GAMP based hybrid-CP is intro-
duced in section D.

C. INS/GAMP Integration

Filters are per se estimation engines to refine the estimation
through mobility models, which can give a second estimation
of navigation state [21]. To make full use of onboard INS of
vehicles, an INS/GAMP integration method is used to enhance
the performance of GAMP.

Noticing that the GAMP used in this work belongs to a long
line of methods based on Gaussian and quadratic approximation
of belief propagation (BP), which is the simplification of sum-
product BP for computations of MMSE estimates. According to
the analysis and results in references [22], [37], [38], if the noise
in the input function for GAMP follows a zero-mean Gaussian
distribution, the estimated results will also follow the Gaussian
distribution, their mean will converge to the true value after cer-
tain iteration, and the estimation will asymptotically approach
the Cramer-Rao lower bound. Therefore, for the application
of GAMP in CP, if the measurement noises for vehicles are
obeying the zero-mean Gaussian distribution in normal case,
the estimated navigation states of GAMP will also following
Gaussian distributions with the mean of the true value, which is
the foundation of INS/GAMP integration.

The INS error equation is used as the system state equation:

X = [φe, φn, φu, δve, δvn, δvu, δL, δλ, δh,

εb,x, εb,y, εb,z, εr,x, εr,y, εr,z,∇x,∇y,∇z] (25)

where, φe, φn, φu are the misalignment angle errors;
δve, δvn, δvu are the velocity in an east, north, and up (ENU)
coordinates; δL, δλ, δh are the latitude, longitude and height
respectively; εb,x, εb,y, εb,z, εr,x, εr,y, εr,z are the gyro constant
drift errors and the first-order Markov drift errors respectively;
∇x,∇y,∇z are the accelerometer biases.

The state error equation of the INS is:

Ẋ = FX+BW (26)

where F is the linearized INS error states matrix, B is the
noise transfer matrix, W is the system process noise which is
determined by the parameters of the accelerometer and gyro, and
has zero mean multivariate normal distribution with variance Q.

The observation model of integration is:

YG = HGX+VG (27)

where, YG is the observation vector related to GAMP estima-
tion,HG is the observation matrix,VG is the measurement noise
of GAMP with variance matrix RG.

The observation vector, observation matrix and noise and
variance matrix are defined as:

YG =

[
x− xins

v − vins

]
(28)

HG =

[
03 03 diag [RM , RN cosL, 1] 03×9

03 I3 03 03×9

]
(29)

RG = diag [τx, τv] (30)

where, x and v are the position and velocity estimates, which
come from the GAMP estimated concatenated vector q(t/t−1)

in (24), RM and RN are the curvature radii of the reference
ellipsoid in longitude and latitude circles of the earth, τx and
τv are their corresponding variance in (50).

Having F, B, HG, Q and RG, the standard equations of the
Kalman filter for the proposed hybrid-CP method can now be
implemented via [39].

In the Kalman filter, the posteriori estimate variance matrix
P+ can be used to evaluate the estimation accuracy, which is
updated using the following equation:

P(t)+ = [I−K(t)HG(t)]P(t)− [I−K(t)HG(t)]
T

+K(t)RG(t)K(t)T (31)

where,P− is the priori variance matrix,K is the filter gain and I
is the corresponding identity matrix. The priori variance matrix
P− and filter gain K are calculated by:

P(t)− = F(t)P(t− 1)+F(t)T +BQBT (32)

K(t) = P(t)−HG(t)[
HG(t)P(t)−HG(t)

T +RG(t)
]−1

(33)

The variance of the estimated state vector can be predicted by
(33), which is largely depend on the GAMP generated variance
matrix RG and the INS determined variance matrix Q.

In each Kalman filter iteration, each vehicle i can compute
its filtered position xi,ins and velocity vi,ins from onboard INS,
and update their variance τ i,x and τ i,v by the corresponding
diagonal elements in the posteriori variance matrix P+. Thus
the outputs of the Kalman filter are the posterior states estimation
q(t/t) and the corresponding posterior variance τ (t/t):

q(t/t) =
[ · · · xi,ins(t) · · · · · · vi,ins(t) · · ·

]
(34)

τ (t/t) =
[ · · · τ i,x(t) · · · · · · τ i,v(t) · · ·

]
(35)

Then the initial value of states and priori variance for GAMP in
the next epoch can be set according to the q(t/t) and τ (t/t).

D. Algorithm Description

Fig. 4 shows the procedure for the hybrid-CP algorithm.
Where the GAMP is used to fuse the multi-sensor measurements,
then Kalman filter can update the variance of the navigation state,
and INS is used to provide the navigation results.

1) Initialization: The first step is to initialize the parameters
for GAMP calculation. After the navigation algorithm starts,
if it is the first epoch of navigation, the initial navigation
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Fig. 4. Procedure for hybrid-CP.

states q(0) can be provided by a GPS/INS solution or initial
alignment of INS; otherwise it can be updated by the filtered
navigation state μ(0) = q(t/t) and its corresponding variance
τ (0) = τ (t/t). μ(0) = [ . . . μ

(0)
j . . . ] and τ (0) = [ . . . τ

(0)
j . . . ]

are the priori mean and variance of q(0) respectively; the ma-
trix A(0) is calculated based on q(0); the concatenated vector
ŝ(0) = [ . . . ŝ

(0)
i · · · ], where each element is set to 0, threshold

α is set to a small positive value, and the break condition is
‖q(k+1) − q(k)‖/‖q(k+1)‖ < α.

2) Calculation of mean p̂
(k)
i and variance τ

(k)
i,p of measure-

ment function fi in (19):

τ
(k)
i,p =

∑
l

a
(k)2
i,l τ

(k)
l (36)

p̂
(k)
i =

∑
l

a
(k)
i,l q

(k)
fi←qj

+ [G(k)]i (37)

According to the approximation deduced in [36], (37) can be
rewritten recursively as:

p̂
(k)
i =

∑
l

a
(k)
i,l q̂

(k)
j − τ

(k)
i,p ŝ

(k−1)
i + [G(k)]i (38)

3) Calculation of mean ŝ
(k)
i and variance τ

(k)
i,s of message

Δ
(k)
fi→qj

in (20):

ŝ
(k)
i =

1

τ
(k)
i,p

[
E
(
f
(k)
i |p̂(k)i , m̃i, τ

(k)
i,p

)
− p̂

(k)
i

]
(39)

τ
(k)
i,s =

1

τ
(k)
i,p

⎡
⎣1−

var
(
f
(k)
i |p̂(k)i , m̃i, τ

(k)
i,p

)

τ
(k)
i,p

⎤
⎦ (40)

where the expectation E(f
(k)
i |p̂(k)i , m̃i, τ

(k)
i,p ) is proportional to

p(
f
(k)
i

m̃i
)N(f̃

(k)
i ; p̂

(k)
i , τ

(k)
i,p ), and for hybrid-CP applications, the

distribution of relationships between navigation measurements

and navigation states are p(
f
(k)
i

m̃i
) ∼ N(f

(k)
i ; m̃i, σ

2
i ). So, (39)

and (40) become:

ŝ
(k)
i =

f
(k)
i − p̂

(k)
i

τ
(k)
i,p + σ2

i

(41)

τ
(k)
i,s =

1

τ
(k)
i,p + σ2

i

(42)

4) Calculation of mean r̂
(k)
fi←qj

and variance τ (k)rij of message

from all other factor nodes to variable nodes q(k)j (see(21)):

r̂
(k)
j = q

(k)
j + τ

(k)
r,j

∑
fn

ŝ(k)n a
(k)
n,j (43)

τ
(k)
r,j =

∑
fn

(
τ (k)n,sa

(k)2
n,j

)−1
(44)

5) Updating the GAMP navigation states estimation q
(k+1)
j

and its corresponding variance τ
(k+1)
j from:

q
(k+1)
j = E

[
q
(k)
j |μ(k)

j , r̂
(k)
j ; τ

(k)
r,j

]
(45)

τ
(k+1)
j = var

[
q
(k)
j |μ(k)

j , r̂
(k)
j ; τ

(k)
r,j

]
(46)

Because navigation state qj (see (23)) is proportional to

the distribution p(
q
(k)
j

μ
(k)
j

)N(q
(k)
j ; r̂

(k)
j , τ

(k)
r,j ), and the distribution

p(
q
(k)
j

μ
(k)
j

)obeys the Gaussian distributionN(q
(k)
j ;μ

(k)
j , τ

(k)
j ), then

(45) and (46) becomes:

q
(k+1)
j =

μ
(k)
j τ

(k)
r,j + r̂

(k)
j τ

(k)
j

τ
(k)
j + τ

(k)
r,j

(47)

τ
(k+1)
j =

τ
(k)
r,j τ

(k)
j

τ
(k)
j + τ

(k)
r,j

(48)

6) Threshold judgment: If the threshold value satisfies the
break condition in Step 1, the algorithm will stop and output the
GAMP based navigation estimation q(t/t−1), variance estima-
tion τ (t/t−1) and vector ŝ(t):

q(t/t−1) =
[
· · · q

(k+1)
j . . .

]
(49)

τ (t/t−1) =
[
. . . τ

(k+1)
j . . .

]
(50)

ŝ(t) =
[
. . . ŝ

(k)
i · · ·

]
(51)

Otherwise, it will update matrix A(k+1) through (15) and up-
dates the matrix G(k+1) using (18), go back to step 2.

7) Joint Estimation of GAMP and INS via Kalman Filter:
Using q(t/t−1) and τ (t/t−1) as the input observation and the
observation variance respectively, the estimation of GAMP can
be integrated with the onboard INS. The new variance τ (t/t)

from posteriori covariance matrix P+, and new navigation state
estimationq(t/t) from modified INS data can be used to initialize
the GAMP iteration in next epoch. Output the navigation results
q(t/t), and go back to step 1 for the next epoch.
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Fig. 5. Trajectories for simulated vehicles.

E. Computation Complexity for GAMP

For the GAMP algorithm, the main computation load comes
from the matrix multiplications in (36), (38), (43) and (44), so
the computation burden for variable j is mainly based on the
numbers of other variables that are related to it. In this way, the
computation load for variable j is O(IG|Mj |) for IG iteration,
where Mj is the set of measurements related to vehicle j. For
the message passing method using a sum-product algorithm
over a factor graph like SPAWN, its complexity is dominated
by message multiplication needed in messages from variable
nodes to factor nodes and messages between different factors for
every particle. So the SPAWN computation burden for variable
j which requires IB iterations andN particles isO(IBN |Mj |2).
Therefore, the hybrid-CP has lower computation complexity
than that of SPAWN and conventional BP based CP algorithms.

IV. SIMULATION RESULTS

A. Simulation Configuration

Based on the background of urban scenario, a multi-vehicle
system is simulated to verify the proposed hybrid-CP method.
To fully assess the performance, all the results in this section are
based on 200 Monte Carlo simulation trials.

Fig. 5 shows the trajectories for all vehicles during simulation,
all the vehicles have an INS and GPS receiver as the fundamen-
tal positioning equipment, using the Ultra-wideband (UWB)
and the Dedicated Short Range Communications (DSRC) as
the measurement method between two vehicles, their working
distances are set to 70 m [1] and 480 m [40] respectively. During
the simulation, one ground station and two SOOP sources are
simulated in view, and all the vehicles can communicate data
with peers if their distance is lower than a certain value.

Based on the measurement models in (1)–(6), in nominal
cases, the measurement noises are considered as AWGN. For
GNSS, the random part of measurement error for carrier-
smoothed-code pseudorange is lower than 2 m, according to
reference [41]. We set the standard deviation of pseudorange
and its Doppler shift to 1.4 m and 7 Hz (GPS L1 frequency) re-
spectively. For UWB ranging, if signal is line-of-sight (LOS), the
experimental results of our previous work shows the distribution
of UWB error is a zero-mean Gaussian distribution with variance
of 0.3 m2 [1]. Referring to the closed-loop Doppler configuration
of DSRC operating at 5.9 GHz, [31] shows the noise of DSRC

TABLE I
SENSOR CONFIGURATION AND SIMULATION PARAMETERS

TABLE II
MEASUREMENT BIASES CAUSED BY NLOS AND MULTIPATH

can be considered as a zero-mean Gaussian distribution with
standard deviation of 110 Hz. In case of SOOP, reference [42]
compared the ranging performance of several SOOP signals,
where the accuracy of digital television signal can reach 3 m.
The standard deviation of ground station ranging errors is set to
1 m based on the empirical value. Detailed sensor configuration
and parameters used in simulation are listed in Table I.

To simulate realistic scenarios which also consist of abnormal
cases where signals experience NLOS and multipath distortions,
measurement biases (i.e. non-zero error means) are simulated
to GNSS pseudorange, UWB and SOOP signals. For GNSS
pseudorange, signal multipath and NLOS will lead to the code
delay tracking [43], so that the code and carrier tracking accuracy
will be degraded, here we assume that each GNSS receiver has
an integrity method such as [44] or [45] to detect and remove
pseudorange measurements with large biases. However integrity
methods cannot remove small magnitude of biases, thus we
simulate the amplitude remaining pseudorange measurement
biases as 5 m∼10 m. For the UWB NLOS ranging case, [46]
proposed an identification and mitigation method to deal with
the NLOS signal, so the biases after mitigation are between
−5 m∼5 m, and 60% of biases are lower than 1 m. Referring
to the NLOS bias of the TDOA SOOP signal, we simulate
the TDOA NLOS biases according to the experimental results
in [47] where most of the NLOS errors are 0 m∼2 m. All the
simulated biases are listed in Table II.

In the simulation, there is randomness in the number of visible
satellites for each vehicle and the occurrence of multipath and
NLOS. The tag ‘% of bias observations’ in Table II means the
average percentage of bias observations compared to all the
observations in each simulation trials. The position of satellites
in view are listed in Table III, the average satellite visibility for
all vehicles during 200 simulation trials are showed in Fig. 6.
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TABLE III
SATELLITE POSITION IN ECEF FRAME

Fig. 6. Average satellite visibility for all the vehicles during 200 Monte Carlo
simulation trials.

The positioning estimation errors in all simulations are cal-
culated by:

E =
√

Err2
E + Err2

N + Err2
U (52)

where ErrE , ErrN , ErrU are estimation errors in three direc-
tions of east, north and up (ENU) respectively.

B. Comparing Between Non-Cooperative Case and Proposed
Hybrid-CP

This parts aims to demonstrate the effectiveness of hybrid-CP.
The measurements used in this part are GNSS pseudorange and
pseudorange Doppler, UWB ranging and closed-loop Doppler
between vehicles. SOOP sources and ground station are not con-
sidered. The comparisons are between the proposed Hybrid-CP,
and the tightly coupled GNSS/INS integrity system without CP
mechanism (Non-CP, details can be found in Chapter 12 of [48]).
For the proposed method, the GNSS measurements are the dou-
ble differenced pseudoranges and pseudorange Doppler between
vehicles. However, for the non-CP case, GNSS measurements
used in the tightly coupled GNSS/INS are the un-differenced
data.

The tightly coupled GNSS/INS system used in non-CP is
based on the Kalman filter. Its estimated states, system model
and observation model are defined as:

Xnon = [φe, φn, φu, δve, δvn, δvu, δL, δλ, δh,

δt, εbx, εby, εbz, εrx, εry, εrz,∇x,∇y,∇z] (53)

Fig. 7. CDF Comparison between hybrid-CP and non-CP for all vehicles
(positioning errors from 200 simulation trials).

Fig. 8. The example performance of position error for a single vehicle between
hybrid-CP and non-CP.

Ẋnon = FnonXnon +BnonWnon (54)

Ynon = HnonXnon +Vnon (55)

here, the states Xnon is similar to the states X in (25) where the
only difference is receiver clock error δt should be estimated,
because there is no double differenced data for a single vehicle.
Fnon,Bnon andWnon are the INS system model, noise transfer
matrix and system process noise respectively that taking the
clock error into consideration. Ynon is the observation vector
for pseudorange and pseudorange Doppler observations, Hnon

and Vnon are the corresponding observation matrix and mea-
surement noise.

Based on 200 simulation trials, Fig. 7 gives the simulation
results for two cases, cumulative distribution functions (CDF)
of estimation errors for all vehicles is used as performance
metric. As illustrated, the positioning performance of hybrid-CP
has better performance. In non-CP case, GNSS/INS integrated
systems are used to provide positioning information, and there
is no cooperative relationship between vehicles, thus the posi-
tioning accuracy is the lower than CP case. In hybrid-CP case,
the proposed method is seen to visibly improve the positioning
performance of all vehicles.

To compare the positioning performance under the hybrid-CP
and non-CP case more clearly, the example performances of
a single vehicle are illustrated in Fig. 8 and Fig. 9, where
positioning error and positioning RMSE are used as performance
metrics. Due to the effect of urban buildings or other vehicles,
the number of visible satellites for the example vehicle is al-
ways lower than the total number of satellites in Table II, and
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Fig. 9. The example performance of position estimation root mean square
error (RMSE) for a single vehicle between hybrid-CP and non-CP.

Fig. 10. Positioning error CDF comparisons for all vehicles: hybrid-CP, MDS
Filter, SPAWN, UCL, CP-EKF, non-CP (positioning errors from 200 simulation
trials).

signal NLOS and multi-path are frequently happened during the
trajectory.

Fig. 8 and Fig. 9 show the estimation error comparisons of
a single vehicle based on the condition of visible satellites in
Fig. 6. In the non-CP case, without the hybrid-CP, the vehicle
has the lower positioning accuracy. The positioning performance
of a single vehicle largely depends on its visible satellites and the
quality of measurements. Due to the relatively fewer number of
useful measurements and the existence of multipath and NLOS,
non-CP needs more time to converge at the beginning, and
has some large amplitude errors during the trajectory. For the
hybrid-CP case, under the proposed cooperative mechanism,
a single vehicle has a much better positioning accuracy and
stability. This is because all the measurements among the col-
laborators are used in Hybrid-CP processing, and the effect of
faulty measurements can be reduced by large numbers of normal
measurements.

C. Comparison of Different CP Algorithms

To compare the performance of proposed hybrid-CP with
other methods, several CP algorithms are simulated in this
section. The available observations for all vehicles are the same
as the simulation in Section B: GNSS, UWB and closed-loop
Doppler. The positioning error CDF of all vehicles is used as
the performance metric.

Fig. 10 shows the comparison results among MDS Filter [21],
UCL [20], SPAWN [18], Cooperative Extended Kalamn filter

(CP-EKF) [49] and non-CP, where non-CP is adopted as the
performance baseline. Here we present the details of each CP
algorithm.

1) MDS Filter: The method based on the multidimensional
scaling (MDS) and the maximum likelihood estimation. The
procedure of MDS Filter is mainly consists of iteration from
step 1 to step 3:

step 1: Obtaining the non-cooperative priori positioning es-
timation from a single vehicle, here we use the results Xnon of
non-CP in (53); step 2: Conducting MDS computation based on
the stress function in each iteration, using the inter-vehicle UWB
and DSRC measurements, until it meets the terminal threshold;
step 3: Estimating the covariance of CP results, and apply it to
a ML filter to make a further estimation.

2) UCL: A universal cooperative localizer using GAMP as
the CP estimator, which is similar to the description in part B,
Section III. However, UCL is not suitable for three-dimensional
(3D) positioning, and does not take multiple observations into
consideration at each computation epoch. For fairness of com-
parison, here we adapt it to the 3D positioning case and take
various types of observations into consideration.

3) SPAWN: The sum-product algorithm for wireless net-
work. This method is the typical positioning algorithm based on
belief propagation that uses the marginal distribution to estimate
the navigation states, which is widely considered has superior
performance. Its principle is message passing that is same as
equations (9) to (12). Here we adopt the importance sampling
method in [50] to obtain the marginal distribution. The number
of samples is set to 1000.

4) CP-EKF: A cooperative positioning method based on
EKF, which fuses the measurements of other collaborators and
local data. The estimated states and system model are the same as
equations (53) and (54), but take the cooperative measurements
from inter-vehicle ranging and Doppler into consideration in the
observation model.

Compared to SPAWN, hybrid-CP is a simplified method
using linearization during the message passing, which is sim-
ilar to the difference between particle filter (PF) and extended
Kalman filter (EKF). Thus, in Fig. 10, hybrid-CP can achieve
comparable and similar performance to SPAWN with much
lower computation complexity, where the slight performance
loss is caused by the linearization of GAMP. Compared to
other methods, hybrid-CP has better accuracy. For example,
the probability of errors smaller than 1 m (P (error < 1 m)) is
0.925 for hybrid-CP, but only 0.801, 0.741, and 0.594 for MDS
Filter, UCL and CP-EKF respectively. And we find that without
the cooperative scheme, the non-CP case has the worst per-
formance due to limited measurements and some measurement
biases.

To further analyze the efficiency of hybrid-CP, Fig. 11 com-
pares the computation load of the above methods in one example
trial, the processing time for each epoch (processing frequency
is 1 Hz) is used as the performance metric. The data are obtained
by using Matlab ‘tic’ and ‘toc’ functions to record the running
time of codes, which can by and large represent the algorithm
efficiency.
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Fig. 11. Example of processing time at each computation epoch: hybrid-CP,
MDS Filter, SPAWN, UCL, CP-EKF.

TABLE IV
SIMULATION COMPARISON FOR ALL SIMULATED CASES

For hybrid-CP, its computation load derives from the ma-
trix multiplications in GAMP and the Kalman filter. Thus the
processing times of hybrid-CP are slightly larger than that of
UCL, because UCL just uses GAMP. For the MDS filter, its
computation efficiency is similar to the hybrid-CP and UCL
but with relatively strong fluctuation. This is mainly because
the MDS Filter largely depends on non-cooperative priori po-
sitioning estimation from a single vehicle, which is affected by
measurement biases. Due to the low computation complexity,
CP-EKF has the lowest processing time as it is a one-step
computation for each epoch that does not involve iteration. For
SPAWN, its processing time is about 20 times larger than that
of equivalent existing methods, and our proposed method in
this scenario of 10 vehicles. It is well-known that the particle
filter-based SPAWN cannot scale well with a growing number
of vehicles as the number of particles has to grow exponentially
with increased dimensionality of the navigation states.

D. Comparison of Hybrid-CP in Case of Different Available
Observations and Cooperative Neighbor Nodes

The main benefit of hybrid-CP is the ability to fuse all the
possible navigation measurements and estimate the navigation
state cooperatively. Therefore this section will firstly evaluate the
proposed method in the case of different available observations.
The criteria for all cases are summarized in Table IV:

1) Case 1: All vehicles take part in hybrid-CP, using the ob-
servations from GNSS, UWB ranging and Close-loop Doppler,
but do not use the measurements from the ground station and
SOOP sources.

2) Case 2: All vehicles take part in hybrid-CP, and the mea-
surements from the ground station are also used during the
estimation.

3) Case 3: All vehicles take part in hybrid-CP, the measure-
ments from the ground station and SOOP sources are used.

Fig. 12. Hybrid-CP error CDF comparisons for all vehicles in different cases
of available observations.

Fig. 13. Positioning error CDF comparisons in different cases of available
neighbor nodes: 10, 15, 20, 25, 30.

Fig. 12 gives the performance curves of hybrid-CP in different
cases of available observations. As illustrated, the positioning
performance improves from Case 1 to Case 3. In Case 1,
the available observations are GNSS, UWB and Close-loop
Doppler, due to the limited navigation observation, its posi-
tioning accuracy is obviously lower than Case 2 and Case 3.
In Case 2, with the supplement measurements from ground
stations, its positioning accuracy has a obvious improvement
than Case 1. And with the increasing types of observations,
Case 3 is more accurate than Case 2.

Also, the performance of hybrid-CP should be discussed
in cases of different available neighbor nodes. Based on the
available observation condition Case 1 described in Table IV,
Fig. 13 shows the performance comparison of hybrid-CP in five
cases of available cooperative neighbor nodes: 10, 15, 20, 25 and
30. The hybrid-CP with 30 nodes has the best CP performance,
and it is obvious that the estimation accuracy is improving with
the number of vehicles. Also, we can find that the cooperative
performance gain is decreasing with the growing number of
cooperative neighbor nodes. This phenomenon is mainly caused
by the decay of the cooperative position error bound [51].

V. CONCLUSION

This paper proposes a hybrid-CP algorithm for vehicular
network application, which can fuse various navigation mea-
surements and estimate the navigation states cooperatively.
Using generalized approximate message passing (GAMP), the
cooperative messages can be approximated by CLT and Taylor



XIONG et al.: HYBRID COOPERATIVE POSITIONING FOR VEHICULAR NETWORKS 725

series expansion, and transform the CP problem to a linear
mixing problem. The time recurrence of navigation states is
conducted through the Kalman filter and onboard INS, which
can further improve the accuracy of GAMP and initialize GAMP
computation in the next epoch.

Simulation results show that, in the simulated scenario, the
proposed method provides obvious accuracy improvement over
the non-cooperative case. Its estimation accuracy is better than
the traditional CP algorithms such as MDS Fliter, UCL, CP-EKF,
and it can obtain comparable performance to SPAWN with much
lower computation complexity. Also, the performance of the pro-
posed method improves with additional types of measurements
and increasing number of cooperative neighbor nodes (vehicles).

APPENDIX A

The detail derivations of equations in (19)–(21) are demon-
strated in this part. Recall the message Δ(k)

fi→qj
emitted by factor

nodes:

Δ
(k)
fi→qj

= cΔ + log

∫
p

(
m̃

(k)
i

f
(k)
i

)∏
r 	=j

expΔ
(k)
fi←qr

(56)

And the function between navigation states and measurements:

f
(k)
i ≈

[
A(k)q(k) +G(k)

]
i

= a
(k)
i,j q

(k)
j +

∑
l 	=j

a
(k)
i,l q

(k)
j + [G(k)]i (57)

According to CLT, the distribution of f (k)
i follows the Gaussian

distribution with mean μ
f
(k)
i

and variance τ
f
(k)
j

:

μ
f
(k)
i

= a
(k)
i,j

(
q
(k)
j − q̂

(k)
fi←qj

)

+
∑
l

a
(k)
i,l q

(k)
fi←qj

+ [G(k)]i (58)

τ
f
(k)
j

=
∑
l 	=j

a
(k)2
i,l τ

(k)
fi←qj

(59)

Note that a(k)i,j is the element ofA(k) at i-th row and j-th column,

τ
(k)
fi←qj

is the variance of measurement i from neighbor node j.

Then message Δ
(k)
fi→qj

can be further expressed as:

Δ
(k)
fi→qj

= cΔ + log

∫ {
p

(
m̃i

f
(k)
i

)

× N
(
f
(k)
i ; a

(k)
i,j

(
q
(k)
j − q̂

(k)
fi←qj

)
+ p̂

(k)
i , τ

(k)
i,p

)}

� c+H
(
p̂
(k)
i , m̃i, τ

(k)
i,p

)
(60)

where,

p̂
(k)
i =

∑
l

a
(k)
i,l q

(k)
fi←qj

+ [G(k)]i (61)

τ
(k)
i,p =

∑
l

a
(k)2
i,l τ

(k)
fi←qj

(62)

Taking the second order Taylor-expansion of messageΔ(k)
fi→qj

in (58), it becomes:

Δ
(k)
fi→qj

= cΔ +
(
ŝ
(k)
i a

(k)
i,j + τ

(k)
i,s a

(k)2
ij q

(k)
fi←qj

)
q
(k)
j

− τ
(k)2
i,s

2
a
(k)
i,j q

(k)2
j (63)

where, according to the derivation in [36]:

ŝ
(k)
i =

d

dp̂i
H
(
p̂
(k)
i , m̃i, τ

(k)
i,p

)

=
1

τ
(k)
i,p

[
E
(
f
(k)
i |p̂(k)i , m̃i, τ

(k)
i,p

)
− p̂

(k)
i

]
(64)

τ
(k)
i,s = − d2

dp̂2
i

H
(
p̂
(k)
i , m̃i, τ

(k)
i,p

)

=
1

τ
(k)
i,p

⎡
⎣1−

var
(
f
(k)
i |p̂(k)i , m̃i, τ

(k)
i,p

)

τ
(k)
i,p

⎤
⎦ (65)

Substituting (63) to (10), the message Δ
(k)
fi←qj

emitted by

variable node q
(k)
j is rewrite as:

Δ
(k)
fi←qj

= cΔ + log

[
p

(
q
(k)
j

μ
(k)
j

)
N
(
q
(k)
j ; r̂

(k)
fi←qj

, τ
(k)
rij

)]

(66)
where, r̂

(k)
fi←qj

and τ
(k)
rij are the mean and variance of∑

fi 	=fi
Δ

(k)
fl→qj

(see (10)) respectively:

r̂
(k)
fi←qj

=

∑
fn 	=fi

(
ŝ
(k)
n a

(k)
n,j + τ

(k)
n,sa

(k)2
n,j q̂

(k)
fn←qj

)
∑

fn 	=fi

(
τ
(k)
i,s a

(k)2
n,j

) (67)

τ
(k)
rij =

∑
fn 	=fi

(
τ
(k)
i,s a

(k)2
n,j

)−1
(68)
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