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Design of Anti-Jamming Waveforms for
Time-Hopping Spread Spectrum Systems in

Tone Jamming Environments
Hyoyoung Jung, Binh Van Nguyen, Iickho Song, and Kiseon Kim

Abstract—We consider the problem of designing waveforms for
mitigating single tone jamming (STJ) signals with an estimated
jamming frequency in time-hopping spread spectrum (TH SS)
systems. The proposed design of waveforms optimizes the anti-
jamming (AJ) performance of TH SS systems by minimizing the
correlation between the template and STJ signals, in which the
problem of waveform optimization is simplified by employing a
finite number of rectangular pulses. The simplification eventually
makes the design of waveforms be converted into a problem
of finding eigenvalues and eigenvectors of a matrix. Simulation
results show that the waveforms designed by the proposed
scheme provide us with performance superior not only to the
conventional waveforms but also to the clipper receiver in the
mitigation of STJ. The waveforms from the proposed design
also exhibit a desirable AJ capability even when the estimated
frequency of the STJ is not perfect.

Index Terms—Anti-jamming, jamming mitigation, pulse de-
sign, spread spectrum, time-hopping, tone jamming, waveform
design.

I. INTRODUCTION

THE spread spectrum (SS) techniques, spreading the band-
width of a signal beyond that actually required, have been

developed not only for commercial communication but also
for covert communication. Systems adopting SS techniques
have been effectively utilized for the multiple access capability,
suppression of interference, alleviation of multipath fading
effects, and resilience against jamming signals [1]. In particu-
lar, among the three classes direct sequence (DS), frequency-
hopping (FH), and time-hopping (TH) of SS systems, the TH
SS systems, modulating the transmission signal by shifting
it arbitrarily in time, have been widely used due to their
better (compared to the DS and FH SS systems) capability
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of resolving multipath, easiness in implementation with low
complexity [2], and low probability of interception [1].

In addition to pulse position modulation (PPM), many pulse
amplitude modulation schemes such as the binary phase shift
keying (BPSK) and on-off keying [3] can be incorporated in
the TH SS systems. In [3–5], the bit error rate (BER) perfor-
mance of TH SS systems with various modulation schemes
has been analyzed in channels with additive white Gaussian
noise (AWGN), multipath fading channels, and multiple access
interference (MAI). In [6], the hard-input-hard-output capacity
of TH-BPSK system is analyzed in the presence of timing error
with interpath, interchip, and intersymbol interferences. In [7],
the MAI-plus-noise whitening filter was proposed to improve
the performance of a TH-BPSK system.

In the meantime, as the hardware and software technology
advances, modern jamming attacks become more complex and
intelligent from single tone jamming (STJ), a special case
of tone jamming (TJ), into the multi tone jamming (MTJ),
time-varying STJ (TV-STJ), and sweep jamming (SWJ), for
instance [8–11]. Nonetheless, the TJ (especially the STJ) is
commonly considered and assumed in the investigation of anti-
jamming (AJ) schemes for TH SS systems: This is because of
the fact that the bandwidths of the TH SS systems are far wider
than those of conventional systems [4] and that most jammers
would choose the STJ for its simplicity, effectiveness, and
jamming efficiency with a concentrated power on the channel
[12], [13].

Obviously, analyzing and improving the anti-TJ perfor-
mance of TH SS systems are of paramount importance and
have been investigated in various studies. For instance, the
BER performance of a TH SS system is analyzed under
multipath fading and TJ environment in [4], and design of
TH sequence and pulse shaping for a TH SS system in TJ
environment is addressed in [12]. In [14] and [15], designing
a notch filter and tuning of system parameters, respectively,
for mitigating the effects of TJ on TH SS systems have been
discussed. Let us also note that the joint optimization of power
allocation schemes with the channel selection of SS systems
and user scheduling are proposed for the AJ purpose under
some intelligent jamming scenarios in [9] and [16].

Analyses of the AJ performance of TH SS systems and
designing TH pulses for spectral efficiency [17], multiple
access performance [18], compliance with spectral emission
constraints [19], [20] have been carried out extensively. Yet,
it seems that design of waveforms for the purpose of AJ has
not attracted much interest so far. In this paper, to improve the
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anti-TJ performance of TH SS systems at the transmitter side,
we propose an optimal design of waveforms against STJ. In the
proposed design of waveforms, the AJ performance of TH SS
systems is optimized by minimizing the correlation between
the template signal of the TH systems and the estimated
jamming signal. The problem of designing waveforms is
first simplified by approximating the continuous waveform
to be designed via a linear combination of a finite number
of rectangular pulses. After some further manipulations, we
have shown that the simplified problem can be solved with
optimization techniques such as Powell’s conjugate–direction
method.

Simulation results confirm that the waveforms designed by
the proposed scheme enhance the AJ performance of TH SS
systems in the TJ environment even when the estimation of
the jamming frequency is imperfect. It is noteworthy that
design of waveforms is also one of the key elements of
the waveform reconfiguration in game-theoretic strategies for
developing intelligent AJ communication systems that react
against the counterpart in a timely manner [11], [21].

The main contributions of this paper can be summarized as
follows:

● An optimal design of waveforms for TH SS systems
against STJ is proposed for the improvement of anti-TJ
performance at the transmitter side.

● The problem of designing waveforms is simplified by
waveform approximations and analytic derivations. The
simplified problem can be solved by finding the eigenvec-
tors of a matrix, for which many common optimization
techniques can be employed.

● The waveforms designed by the proposed scheme out-
perform the conventional waveforms of TH SS systems
in the STJ environment for both the ideal and imperfect
estimation of the jamming frequency.

● The proposed design of waveforms could be employed as
a key function of waveform reconfiguration for develop-
ing game-theoretic AJ communication systems.

The remainder of the paper is organized as follows. In
Section II, we describe the system and jamming models
together with some preliminary notions in the proposed design
of waveforms for AJ purposes. Section III is devoted to the
description of the proposed procedure of designing waveforms,
followed by discussions on numerical and simulation results
in Section IV. Section V summarizes this paper.

II. SYSTEM AND JAMMING MODELS

A. TH SS System Model

A block diagram of TH systems is shown graphically in
Fig. 1. In this figure, δD(t) is the Dirac delta function [22]
and {dk} denotes a stream of data bits, in which each bit is of
duration Tb composed of Nf = Tb/Tf frames of duration Tf .
A frame in turn consists of Nc = Tf /Tc chips of duration Tc,
where Tc ≪ Tf in practice. The transmitted waveform wtr(t)
of the TH system, in the form of pulses with a very short
duration, is often called a monocycle. The duration Tp of a
monocycle is usually chosen to be Tp < Tc and is in the order
of 1 ns yielding a bandwidth in the order of 1 GHz.

Transmitter

Receiver

Channel

(AWGN,

Jamming)

Template 

Sig. Gen.

Demod.

(Correlator)

Hard/Soft

Decision

Pulse 

Shaper

Input 

bit data 
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Output

bit data 
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TH
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Fig. 1. Block diagram of TH systems.

For the transmission of the data stream {dk}, we first
generate a TH code {cm}

Nh

m=1, a set of independent and
identically distributed random variables over {1,2, ...,Nc}.
The TH code determines the location of a chip within a frame:
For example, when c5 = 3, we transmit a monocycle at the
third chip in the fifth frame. When the TH-PPM is employed,
a monocycle is delayed by the PPM shift δ and 0 for a data
bit ‘1’ and ‘0’, respectively. The transmitted waveform of the
TH-PPM can then be written as [2]

sPPM(t) =
∞
∑

m=−∞
wtr (t −mTf − cmTc − δd⌊m/Nf ⌋) , (1)

where ⌊⋅⌋ is the floor function. The signal r(t) received at the
receiver can subsequently be written as

r(t) = αsPPM(t − τ) + j(t) + n(t), (2)

where α is the channel gain, τ is a random variable over [0,∞)

representing the time asynchronism between the transmitter
and receiver, j(t) is the jamming signal, and n(t) is the
AWGN.

When a correlator receiver is employed, the received signal
r(t) is correlated with the template signal

vtr(t) = wtr(t) −wtr(t − δ) (3)

of the monocycle wtr(t). Assuming a perfect synchronization
(i.e., τ , cm, Tf , and Tc are available at the receiver), the output
of the correlator for the k-th bit can be expressed as

Rk =
(k+1)Nf−1

∑
m=kNf

∫

τ+(m+1)Tf

τ+mTf

r(t)

×vtr (t − τ −mTf − cmTc)dt

= Sk + Jk +Nk, (4)

where Sk, Jk, and Nk are the correlator outputs corresponding
to the TH signal sPPM(t), jamming signal j(t), and AWGN
n(t), respectively. The decision hypothesis that a data bit of
‘0’ is sent is chosen if Rk ≥ 0: Specifically,

d̂k =
1

2
{1 − sgn (Rk)} (5)

is the estimate of dk.
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B. Tone Jamming Models

When a jamming signal has a single and a multitude of
frequencies, it is called an STJ and a MTJ signals, respectively
[10]. In this paper, we assume the STJ model, which can be a
serious attack with a concentrated power. The jamming signal
j(t) in (2) can be expressed more specifically as

jSTJ (t; fJ , θJ) =
√

2PJ cos (2πfJ t + θJ) , (6)

where PJ , fJ , and θJ are the power, frequency, and phase,
respectively, of the STJ signal.

C. Correlation between TH and Jamming Signals

Let us denote the correlation function between the jamming
and template signals by

Rtr,T (z; θJ , fJ , Tc)

= ∫

Tc

0
vtr(t) cos(2πfJ (t + z) + θJ)dt

(7)

using (6) for an STJ, where the constant
√

2PJ is omitted for
simplicity.

Since the template signal vtr (t − τ −mTf − cmTc) has non-
zero values only during one chip duration of Tc, i.e.,

mTf + cmTc ≤ t − τ ≤mTf + (cm + 1)Tc (8)

per one frame, the correlator output Jk in (4) of the jamming
signal for the k-th bit can be expressed in general as

Jk =
(k+1)Nf−1

∑
m=kNf

∫

τ+(m+1)Tf

τ+mTf

j(t)vtr (t − τ −mTf − cmTc)dt

=

(k+1)Nf−1

∑
m=kNf

∫

τ+mTf+(cm+1)Tc

τ+mTf+cmTc

j(t)

×vtr (t − τ −mTf − cmTc)dt

=

(k+1)Nf−1

∑
m=kNf

Rtr,T (∆m; θJ , fJ , Tc), (9)

where

∆m = τ +mTf + cmTc (10)

denotes the time shift between the template signal
vtr (t − τ −mTf − cmTc) of the TH system and jamming
signal j(t) at the m-th frame. It is noteworthy that possible
values of the time shift ∆m in (9) under the influence of the
STJ signal (6) are

mod (mod (nTJ − τ, Tc) , TJ) , (11)

where n is an integer and TJ = 1/fJ is the period of the
jamming signal. Since τ is a random variable and Tc is not
an integer multiple of TJ in general, ∆m is also a random
variable.

PSD of Received Signal (TH ( ) + AWGN + STJ)

Fig. 2. PSD of the received signal with the components of TH signal, STJ
signal, and noise specified.

D. Clipper

Fig. 2 shows an example of the power spectral density
(PSD) Prec(f) of the received signal r(t) under the STJ model
in terms of the TH, STJ, and AWGN components when the
Gaussian doublet

wG2 (t + Tm) = A

⎧⎪⎪
⎨
⎪⎪⎩

1 − 4π (
2t

Tp
)

2⎫⎪⎪
⎬
⎪⎪⎭

exp

⎧⎪⎪
⎨
⎪⎪⎩

−2π (
2t

Tp
)

2⎫⎪⎪
⎬
⎪⎪⎭

,(12)

one of the waveforms employed most commonly in TH
systems, is used as the monocycle, where A is the amplitude
and Tm denotes the center of the waveform.

The clipper [23], a simple AJ filter with a threshold, limits
the signal based on the second largest value of ∣Prec(f)∣:
Normally, an STJ signal exhibits the maximum peak of the
PSD due to its concentration at a frequency, and the second
largest value is max ∣PTH(f)∣, where PTH(f) is the PSD
of the TH signal. Therefore, the clipping threshold λC is
determined as

λC =Kmax ∣PTH(f)∣, (13)

where the constant K is often selected in the interval [1,1.5]:
In this paper, we choose K = 1.2, and assume a clipper at the
receiver for all the waveforms later in the comparisons and
further investigation of the AJ performance of the waveform
from the proposed design.

III. DESIGN OF WAVEFORMS

A. Problem Formulation

We now consider the design of waveforms to enhance the AJ
capability of the TH system against the STJ. The correlation
function Rtr,T in (9) is a sinusoidal function of ∆m. Since
the maximum value of the correlator output with respect to
∆m determines the AJ performance, the cost function is

max
∆m

∣Rtr,T (∆m; θJ , fJ , Tc)∣ . (14)
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Time

Amplitude 

Fig. 3. Approximation of waveform wtr(t) as a weighted sum of N = 5
rectangular pulses

Let us try to find the optimal waveform ŵtr(t) that min-
imizes the cost function under the constraint ∥ŵtr(t)∥

2
= 1.

We assume that Tc is given and θJ is equal to zero, and thus
the term θJ will not be shown explicitly from now on. Then,
denoting by f̂J the estimate of the actual jammer frequency
fJ , the problem of waveform design can be formulated as

ŵtr,f̂J (t) =arg min
wtr

max
∆m

∣Rtr,T (∆m; f̂J , Tc)∣

such that ∥ŵtr(t)∥
2
= 1.

(15)

B. Problem Simplification

The problem (15) is rather intractable mainly due to the min-
imization and maximization over continuous spaces involved
in the optimization. To make the problem somewhat tractable,
we consider an approximation

wN(t) =
N

∑
i=1
airect

⎛

⎝

t − (2i − 1) Tc

4N
Tc

2N

⎞

⎠
(16)

of the TH waveform ŵtr,f̂J (t), where {ai}
N
i=1 are the weights

for the N rectangular pulses rect(⋅) of duration Tp/N with
Tp = Tc/2 as shown in Fig. 3. Then, with the template signal

vN(t) = wN(t) −wN (t −
Tc
2

) , (17)

the correlation Rtr,T in (9) can be expressed as

RN,T (∆m; fJ , Tc)

= AN (fJ ;Tc)BN (∆m, fJ ,{ai} ;Tc) (18)

by substituting (16) and θJ = 0 in (7), where

AN (f ; t) =
2

πf
sin

πft

2
sin

πft

2N
(19)

and

BN (α, f,{ai} ; t) =
N

∑
i=1
ai sin{πf (

N − 1 + 2i

2N
t + 2α)}.

(20)

By noting that AN (fJ ;Tc) is independent of ∆m, that
BN (∆m, fJ ,{ai} ;Tc) is a sum of sinusoids at the same
frequency, and that the sum of sinusoids of the same frequency
with possibly different phases and amplitudes is also a sinusoid
at that frequency, we have

FN (fJ ,{ai} ;Tc) = ∣AN (fJ ;Tc)∣

×max
∆m

∣BN (∆m, fJ ,{ai} ;Tc)∣

= ∣AN (fJ ;Tc)∣
√

X 2
N +Y2

N (21)

from (18)-(20), where

FN (f,{ai} ; t) = max
α

∣RN,T (α; f, t)∣ , (22)

XN =
N

∑
i=1
ai cos

N − 1 + 2i

2N
πfJTc, (23)

and

YN =
N

∑
i=1
ai sin

N − 1 + 2i

2N
πfJTc. (24)

Employing (21) in (15), we can express the problem of
designing waveforms with the estimated frequency f̂J as

ŴN,f̂J
=arg min

{ai}Ni=1
FN (f̂J ,{ai} ;Tc)

such that
N

∑
i=1
a2
i = 1,

(25)

where

ŴN,f̂J
= {âk}

N
k=1 (26)

denotes a set of N coefficients of ŵN,f̂J (t), an approximation
of the optimal waveform ŵtr,f̂J (t) defined in (15) with N
rectangular pulses.

Let us in passing note that

AN (f ;Tc) = 0 (27)

if fTc = 2kN for an integer k. In addition, AN (f ;Tc)
decreases rather fast as f increases beyond f = 2N

Tc
. Therefore,

we will concentrate on the range from 0 to 2N
Tc

Hz of jamming
frequency.

C. Solutions and Algorithms

Let us note that the maximum FN in (25) can now be
rewritten as

FN (f̂J ,{ai} ;Tc) = ∣AN (f̂J ;Tc)∣

×

¿
Á
ÁÀ

N

∑
i=1
a2
i + 2

N−1

∑
n=1

cos
πnf̂JTc
N

N−n
∑
k=1

akak+n

= ∣AN (f̂J ;Tc)∣
√
aT Ca

(28)

from (21), where a = [a1, a2, ..., aN ]
T and the matrix C has

ci,j = cos(
πf̂JTc ∣i − j∣

N
) (29)

as its (i, j)-th elements. The problem (25) of designing
waveforms with (28) can thus be represented as a minimization
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Algorithm 1: Design of AJ waveforms against STJ with
Powell’s method

Data: An estimate f̂J of fJ , h(a) = aT Ca,
Initial ai

Result: â← ai

1 while Cai ≠ λai for some λ > 0 do
2 [u1,u2, ...,uN ]← [e1,e2, ...,eN ].
3 i← 1.
4 Initialize ai.
5 while not converged do
6 p0 ← ai
7 for k = 1,2...N do
8 γ̂k ← arg minγk h (pk−1 + γkuk).
9 pk ← pk−1 + γ̂kuk.

10 end
11 i← i + 1.
12 for j = 1,2, ...,N − 1 do
13 uj ← uj+1.
14 end
15 uN ← pN − p0.
16 γ̂ ← arg minγ h (p0 + γuN).
17 ai ← p0 + γ̂uN .
18 end
19 end

of aT Ca, for which the solution should satisfy the Karush-
Kuhn-Tucker (KKT) conditions [24]

aT (C − λI) = 0; aTa = 1; λ > 0. (30)

The KKT conditions (30) imply that the solution to the
minimization of aT Ca will be the normalized eigenvectors
of the positive eigenvalues of the matrix C. The waveform
solution to (25) for mitigating the STJ can thus be obtained,
for example, by Powell’s conjugate-direction method [25]
after taking the conditions (30) into account as described in
Algorithm 1, where [u1,u2, ...,uN ] denotes a set of initial
direction vectors and ei is the standard unit vector.

D. Challenges and Possible Solutions in Other Jamming Sce-
narios

The proposed design of waveforms provides us with an
optimality against STJ; yet, we will probably encounter in
practice with other more complex and intelligent jamming
scenarios. Let us briefly describe how we can generalize and
extend the proposed waveform design for coping with the
challenges in such various jamming scenarios.

Many intelligent jamming (IJ), such as the MTJ, TV-STJ,
and SWJ as mentioned before, schemes are based on the con-
cepts of optimization, awareness, game theory, and software
defined communications for the efficiency and effectiveness
of jammers. With the knowledge of the protocol, IJ schemes
are shown to perform (from the viewpoint of jammers) better
than the trivial continuous high power noise jamming while
also retaining its effectiveness: More specifically, IJ schemes
are reported to be more efficient than the periodic and trivial

jammings by one to two and five, respectively, orders of
magnitude [26].

Now, although application of the proposed waveforms
against STJ directly to the MTJ cases may not be promising,
the design of waveforms against MTJ can be formulated, for
example, as

ŵtr,F̂J
(t) =arg min

wtr

max
∆m

Ω

∑
ω=1

∣Rtr,T (∆m; f̂J,ω, Tc)∣

such that ∥ŵtr(t)∥
2
= 1

(31)

by extending (15) to take the multiple estimates

F̂J = {f̂J,ω}
Ω

ω=1 (32)

of jamming frequencies into consideration. We expect that
simplification and/or approximation of the problem (31) for the
design of waveforms against MTJ would provide us with some
insight or solution for possible practical implementation. We
would also like to note that MTJ with the jamming frequencies
falling inside (a small portion of) the bandwidth of the TH
SS systems can statistically be considered as a STJ in the
perspective of the AJ performance [4].

The TV-STJ is a subclass of random jamming, in which sev-
eral tones varying in time are employed [16]. The waveforms
designed by the proposed technique can clearly be employed
within periods the TV-STJ. When the variation of the TV-
STJ is very fast, the problem could possibly be modeled and
solved with the methods of signal detection and classification,
widely developed by utilizing energy detectors, higher-order
statistical features, and statistical tests [27]: They can also be
achieved by using learning methods based on techniques of
neural networks as shown in [28], [29].

For SWJ, which swepdf a narrow-band jamming signal over
a wide frequency band, sinusoidal signals are widely used with
a linear sweep method because of simplicity and usefulness
[8]. By viewing the SWJ as a TV-STJ, the technique described
above against the TV-STJ can similarly be applied against
SWJ by optimizing waveforms periodically. Alternatively, by
generalizing (15) again, we can design a waveform against the
SWJ over the bandwidth of the SWJ as

ŵtr,F̂J
=arg min

wtr

max
∆m
∫

f̂J,u

f̂J,l
∣Rtr,T (∆m; f, Tc)∣df

such that ∥ŵtr(t)∥
2
= 1,

(33)

for example, where F̂J = {f̂J,l, f̂J,u} now denotes the set of
estimates of the lower and upper jamming frequencies of the
SWJ. The problem (33) is applicable to the partial-band noise
jamming signal as well, but is rather intractable for a direct
solution mainly due to the minimization, maximization, and
integration over continuous spaces involved in the optimiza-
tion. Apparently, simplification and/or approximation of the
problem (33) would constitute a good topic for a future study.

IV. NUMERICAL AND SIMULATION RESULTS

In this section, we discuss the performance of the proposed
method of designing waveforms via numerical and simulation
results for N = 5 and Tc = 1 ns with the pulse duration
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Fig. 4. Spectrogram of the optimal waveforms. Each row represents the PSD
of the waveform optimized for the estimated jammer frequency f̂J .

Tp = Tc/2 = 0.5 ns and approximate bandwidth of 5 GHz
as in [12]. Normally, TH SS systems are deployed in network
applications; yet, to focused fully on the effects of jammer
[4], we consider scenarios with one-node-only and static
setup without taking mobility, Doppler’s effect, and inter-node
interference into consideration.

A. Numerical Results

From (19)-(24), we have

F5(fJ ,{ai} ; 1) = ∣A5(fJ ; 1)∣
√

X 2
5 +Y

2
5 , (34)

where
A5(f ; 1) =

2

πf
sin

πf

2
sin

πf

10
, (35)

X5 =
5

∑
i=1
ai cos

i + 2

5
πfJ , (36)

Y5 =
5

∑
i=1
ai sin

i + 2

5
πfJ , (37)

and fJ is in GHz.
Fig. 4 shows the spectrogram of the waveform optimized for

the estimated jammer frequency f̂J , where the color density
represents the PSD of the waveform. It is clearly observed
that the lowest PSD is located at the frequency for which the
waveform is optimized: i.e., colors on the diagonal line are
generally darker blue (meaning lower PSD values) than those
away from the diagonal line.

Let us next consider the BER performance of some wave-
forms with simulation parameters Nf = 3, Nc = 4, Np = 100,
Tf = 4 ns, Tm = 0.25 ns, Tp = 0.5 ns, δ = 0.5 ns, and
a sampling interval of 0.02 ns for all signals [4]: We have
chosen Tf = 4 for simplicity in the simulations although
it does not completely satisfy the condition Tf ≫ Tc of
practical cases. Fig. 5 simulates the BER performance of the
TH system with the waveforms optimized for the estimated
jammer frequency f̂J versus the actual jammer frequency fJ .
The BER performance along the diagonal line is very close

Fig. 5. BER performance of the optimal waveform at fJ versus f .

to the minimum simulated BER of 2.5 × 10−7: This implies
that the proposed design of waveforms improves the BER
performance of the TH system when the estimate f̂J is close
to fJ . As the BER is observed to decrease sharply over 8
GHz, we will mainly focus on the interval [0,9] GHz from
now on.

In the following simulations, we mainly show the results
for the actual jamming frequency fJ of 1.5, 3.0, and 6.6
GHz for a clarity reason in the figures: Let us mention that
we have nonetheless performed simulations from 0 to 9 GHz
in an interval of 0.3 GHz. The AJ performance of the TH
systems with the optimized waveforms ŵ5,1.5(t), ŵ5,3.0(t),
and ŵ5,6.6(t) are compared with that of the TH system with
the conventional waveform and that of the TH system with
the clipper receiver described by the threshold (13). Here,
the ‘conventional’ waveform we considered is the Gaussian
doublet

wG2(t + 0.25) = A (1 − 64πt2) exp (−32πt2) (38)

with the unit of t in ns [2], and the optimized waveforms
ŵ5,1.5(t), ŵ5,3.0(t), and ŵ5,6.6(t) can be expressed by

Ŵ5,1.5 = {−0.441, 0.717, −0.517,0.013, 0.157} , (39)

Ŵ5,3.0 = {0.487, 0.523, 0.656, 0.241, 0.032} , (40)

and

Ŵ5,6.6 = {−0.282, 0.662, 0.197, 0.370, −0.554} , (41)

respectively, as obtained by solving (25) numerically with
Algorithm 1. The waveforms wG2(t), ŵ5,1.5(t), ŵ5,3.0(t), and
ŵ5,6.6(t) are shown in Fig. 6 with STJ signals at 1.5, 3.0, and
6.6 GHz.

In Fig. 7, we compare the BER of the TH systems employ-
ing ŵ5,1.5 (the yellow curve with ‘◻’ markers), ŵ5,1.5 with
clipping (the red curve with ‘☆’ markers), wG2 (the purple
curve with ‘+’ markers), and wG2 with clipping (the blue
curve with ‘O’ markers) over an AWGN channel with signal-
to-jamming ratio (SJR) of −10 dB and fJ = 1.5 GHz. The
BER of the TH system with the optimized waveform ŵ5,1.5 is
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(a) (b)

(c) (d)

Fig. 6. Proposed waveforms of the TH system (the blue curve) with N = 5
against STJ signals of SJR=0 dB at 1.5 (the red curve with ‘O’ markers), 3.0
(the yellow curve with ‘+’ markers), and 6.6 GHz (the purple curve with ‘△’
markers): (a) wG2, (b) ŵ5,1.5, (c) ŵ5,3.0, and (d) ŵ5,6.6.

Fig. 7. Comparison of BER of the TH systems with ŵ5,1.5 (the yellow
curve with ‘◻’ markers), with ŵ5,1.5 and the clipper (the red curve with ‘☆’
markers), with wG2 (the purple curve with ‘+’ markers), and with wG2 and
the clipper (the blue curve with ‘O’ markers) in an AWGN channel with STJ
of SJR=−10 dB at 1.5 GHz.

clearly lower than that with the conventional Gaussian doublet
wG2 even with clipping.

Additionally, ŵ5,1.5 exhibits the same BER performance
regardless of the clipper at the receiver. This implies that
the clipper does not provide an additional improvement of
performance beyond the optimization of waveform design.
We have confirmed that the same observation holds when the
jammer frequency is of other values between 0 and 9 GHz
although not specifically shown in this figure for brevity. In
order to investigate the advantages of the proposed design
technique of waveforms conservatively, we assume the clipper
receiver is embedded in TH systems from now on.

Fig. 8. BER performance versus jammer frequency fJ of the TH systems
employing the optimized waveform ŵ5,f̂J=fJ

(the red curve with ‘☆’
markers) and Gaussian doublet wG2 (the blue curve with ‘O’ markers) over
an AWGN channel of Eb/N0 = 15 dB and SJR=−30 dB.

B. Simulation Results

Fig. 8 presents the BER performance versus the actual
jammer frequency fJ of the TH systems employing the opti-
mized waveform ŵ5,f̂J=fJ (the red curve with ‘☆’ markers)
and Gaussian doublet wG2 (the blue curve with ‘O’ markers)
over an AWGN channel with the bit energy to noise power
spectral density (Eb/N0) 15 dB and SJR=−30 dB. At almost
all values from 0 to 9 GHz of the jammer frequency, the
simulation results again show that the optimized waveforms
generally outperform the conventional scheme with clipping.
The improvement of AJ performance with the optimized
waveforms over the Gaussian doublet becomes very large
when the jammer frequency is 3, 5, and 6.5 GHz, at which
the Gaussian doublet has most of its power.

In Fig. 9, we consider the BER performance of the TH
systems with the optimized waveform ŵ5,3.0 (the red curve
with ‘☆’ markers) and with the Gaussian doublet wG2 (the
blue curve with ‘O’ markers) for the STJ at fJ = 3 GHz when
Eb/N0 = 15 dB. The BER of the TH systems with wG2 (the
yellow curve with ‘◻’ markers) and with ŵ5,6.6 (the purple
curve with ‘+’ markers) for the STJ at fJ = 6.6 GHz are
also shown. We observe that the optimized waveforms ŵ5,3.0

and ŵ5,6.6 provide a stable AJ performance of BER=10−6 even
when the SJR of the STJ varies. On the other hand, the BER of
the TH system with wG2 becomes worse as the SJR decreases.
In addition, when the SJR increases, the BER performance of
wG2 for fJ = 3.3 GHz is saturated at the level of 10−5, a value
(roughly 10 times) higher than that of the proposed waveform.
We have confirmed that the same observation holds at other
values in the range [0,9] GHz of the jammer frequency.

C. Imperfect Estimation of Jamming Frequency

We have so far assumed idealistically perfect estimation
of fJ , which is not always possible in practical scenarios



ACCEPTED TO IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 8

Fig. 9. BER performance of the TH systems with the optimized waveform
ŵ5,3.0 (the red curve with ‘☆’ markers) and Gaussian doublet wG2 (the
blue curve with ‘O’ markers) against an STJ at 3 GHz, and the optimized
waveform ŵ5,6.6 (the purple curve with ‘+’ markers) and Gaussian doublet
wG2 (the yellow curve with ‘◻’ markers) against an STJ at 6.6 GHz.

Fig. 10. BER performance of the TH systems employing ŵ5,f̂J
versus the

mean of the estimation error εf = f̂J − fJ when the standard deviation of
the estimation error is 0 over an AWGN channel of Eb/N0 = 15 dB and
STJ of SJR=−10 dB at 1.5 (the blue curve with ‘+’ marker), 3 (the red curve
with ‘O’ markers), 4.5 (the yellow curve with ‘*’ markers), and 6.6 GHz (the
purple curve with ‘▽’ markers).

especially when the jammer power is not strong enough. Let
us now consider the scenario that an estimation error

εf = f̂J − fJ (42)

occurs in estimating the jammer frequency fJ . The estimation
error εf is commonly assumed to follow a Gaussian distribu-
tion, i.e.,

εf ∼ N (µεf , σ
2
εf

) , (43)

where µεf and σεf are the mean and standard deviation of εf ,
respectively [30].

Fig. 10 shows the BER performance of the TH system
with ŵ5,f̂J

versus µεf when σεf = 0 for several values of

Fig. 11. BER performances of the TH systems employing ŵ5,f̂J
versus

the standard deviation of the estimation error εf = f̂J − fJ over an AWGN
channel of Eb/N0 = 15 dB and STJ of SJR=−10 dB at 1.5 (the blue curve
with ‘+’ marker), 3 (the red curve with ‘O’ markers), 4.5 (the yellow curve
with ‘*’ markers), and 6.6 GHz (the purple curve with ‘▽’ markers).

STJ frequency. The simulation results in this figure indicate
that the proposed design of waveforms provides a reasonable
BER level of 2 × 10−5 even when the mean of the estimation
error is from -1.5 to 1.5 GHz. When µεf = −1.5 and 0.9
GHz, the AJ performance of the TH system with the proposed
design of waveforms degrades mostly under the STJ with
fJ = 3 GHz: Yet, even this most severe degradation provides
a BER of 10−5 approximately, a value much better than the
BER 8 × 10−5 with wG2 (shown in Fig. 9). In the cases of
1.5 and 6.6 GHz of fJ , the estimation error from -1.5 to
0.3 GHz does not influence the AJ performance of the TH
systems with the proposed design of waveforms significantly.
The proposed design of waveforms also exhibits a robustness
property against estimation errors from −1.5 to 1.2 GHz for
an STJ of fJ = 4.5 GHz.

Fig. 11 presents the BER performance of the TH system
with ŵ5,f̂J

versus σεf when µεf = 0 under STJ with various
values of jamming frequency. It is observed that σεf of the
estimator should be less than 0.46, 0.54, 0.9, and 0.43 GHz
when fJ = 1.5,3,4.5, and 6.6 GHz, respectively, to ensure
a BER level of 10−4. The proposed design of waveforms
clearly provides a BER performance of 10−5 when the standard
deviation of the estimation error is less than 0.3 GHz for
almost all values from 0 to 9 GHz of jammer frequency
although we have shown the results only for fJ = 1.5,3,4.5,
and 6.6 GHz for a brevity reason in this figure. In addition, we
have considered the influence of the mean and variance of the
estimation error only for limited cases: Yet, we believe that the
standard deviation σεf of the estimation error is more crucial
than the mean µεf of the estimation error when estimating the
jammer frequency fJ in the design of AJ waveforms.

V. CONCLUSION

In this paper, the problem of designing waveforms with
an aim of improving the anti-jamming performance against
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STJ has been addressed. The problem of designing waveform
is formulated and simplified by analyzing the correlation
between the TH and jamming signals. Assuming an estimate
of the frequency of STJ signal is available, an algorithm is
provided for the design of suboptimal waveforms.

The waveforms designed with a perfect estimate of the
jamming frequency outperform the conventional Gaussian
doublet regardless of the clipper for almost all values from 0
to 9 GHz of jammer frequency. We have in addition observed
that the proposed design can provide us with waveforms that
overcome the unavoidable saturation of the BER performance
of the conventional Gaussian waveform even with a clipper.

In the case of non-ideal estimation of the jamming fre-
quency, simulation results showed that the AJ capability the
waveforms designed with the proposed scheme still maintain
a reasonable BER level of 2 × 10−5 even when the mean
of estimation error is in the range of [−1.5,1.5] GHz. In
addition, the proposed design of waveforms can provide a
BER performance of 10−5 when the standard deviation of the
estimate is less than 0.3 GHz for almost all values from 0 to
9 GHz of jammer frequency. We have also observed that the
standard deviation of the estimation error from the estimation
of jammer frequency is more influential than the mean of
the estimation error in the design of AJ waveforms. Finally,
the proposed design of waveforms exhibits robustness to the
estimation errors of the jammer frequency.

We wish to add that consideration of complex and intelligent
jamming scenarios (including the MTJ, TV-STJ, and SWJ) in
the design of waveforms, and investigation of joint optimiza-
tion of power allocation schemes and waveform design are
expected to be highly promising and fruitful topics for further
studies.
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