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Abstract

In this paper, we propose a new beam allocation strategy aiming to maximize the average successful tracking

probability (ASTP) of time-varying millimeter-wave MIMO systems. In contrast to most existing works that employ

one transmitting-receiving (Tx-Rx) beam pair once only in each training period, we investigate a more general

framework, where the Tx-Rx beam pairs are allowed to be used repeatedly to improve the received signal powers

in specific directions. In the case of orthogonal Tx-Rx beam pairs, a power-based estimator is employed to track

the time-varying AoA and AoD of the channel, and the resulting training beam pair sequence design problem

is formulated as an integer nonlinear programming (I-NLP) problem. By dividing the feasible region into a set

of subregions, the formulated I-NLP is decomposed into a series of concave sub I-NLPs, which can be solved

by recursively invoking a nonlinear branch-and-bound algorithm. To reduce the computational cost, we relax the

integer constraints of each sub I-NLP and obtain a low-complexity solution via solving the Karush-Kuhn-Tucker

conditions of their relaxed problems. For the case when the Tx-Rx beam pairs are overlapped in the angular space,

we estimate the updated AoA and AoD via an orthogonal matching pursuit (OMP) algorithm. Moreover, since no

explicit expression for the ASTP exists for the OMP-based estimator, we derive a closed-form lower bound of the

ASTP, based on which a favorable beam pair allocation strategy can be obtained. Numerical results demonstrate

the superiority of the proposed beam allocation strategy over existing benchmarks.

Index Terms

Millimeter wave, time-varying channel, beam training, beam tracking, training beam sequence design.

I. INTRODUCTION

In recent years, with the rapid penetration of mobile broadband Internet and multimedia applications, the

ever-increasing data rate demand has made current sub-6GHz bands unprecedentedly crowded. Thanks to
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the rich available spectrum, millimeter-wave (mmWave) communication ranging from 30GHz to 300GHz

emerged as a promising solution. However, due to the high frequency, mmWave signals suffer from severe

propagation loss and atmospheric absorption [2], [3]. Fortunately, the short operating wavelength enables

a large antenna array to be integrated in a compact form, providing a considerable beamforming gain

to compensate for the path loss in mmWave radio links [4]. Nevertheless, such beamforming requires

accurate channel state information (CSI) at the transmitter and receiver, which is usually difficult to

obtain in mmWave communications. To be specific, the high cost and power consumption of mixed-signal

hardware with high sampling rates limit the number of radio-frequency (RF) chains in practical mmWave

transceivers [5], making fully-digital processing techniques such as the traditional least-squared method

impractical [6]. On the other hand, mmWave channels usually have a limited number of propagation paths,

and therefore it is sufficient to only estimate channel parameters of these paths, which include angle of

arrivals (AoAs), angle of departures (AoDs), and propagation gains.

There have been extensive work on channel estimation or beam training for mmWave systems over

the years [7]–[13]. A widely used channel estimation method is to sequentially transmit highly direc-

tional training beams steering to different directions over time and pick the direction with the largest

received signal-to-noise ratio (SNR) [7]. Nevertheless, this method is time-consuming and the required

number of training beams is usually large in order to achieve a favorable estimate of the channel. This

problem becomes even more challenging in mobile scenarios, where the channel keeps changing and

the transmitter needs to frequently send training beams to update the estimation results, increasing the

training overhead considerably. Therefore, an efficient and accurate beam training strategy is crucially

important in mobile scenarios. In [8]–[10], adaptive compressed sensing (CS) algorithms have been used

to estimate the mmWave channels, which essentially search potential paths using hierarchical multi-

resolution codebooks. These adaptive CS algorithms can achieve a favorable estimation performance but

require excessive feedback, which may significantly exacerbate the system overhead. Meanwhile, all the

aforementioned channel estimation algorithms fail to capture the temporal correlation between consecutive

channel realizations in mobile mmWave communications.

Recently, it has been shown in [14]–[19] that the temporal correlation between channel realizations

can be exploited to further improve the beam training efficiency. Specifically, the CSI in current channel

realization is closely related to that of the previous one, and this relationship can be used to speed up

the beam training procedure. This type of priori-aided beam training technique is referred to as channel

tracking or beam tracking in the literature [14]–[17]. To date, most existing works that investigate beam

tracking techniques for mmWave channels have focused on the assumption that the values of AoA and

AoD vary smoothly. In [15]–[19], the temporal variation of AoA/AoD over the considered period of time
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is assumed to follow a Markov process, and the AoA’s and AoD’s deviations between two consecutive

channel realizations are modeled as small Gaussian random variables, based on which various Kalman

filter-based beam tracking algorithms have been developed. It is also worth mentioning that the authors

in [20]–[23] have proposed to employ the mobile users’ location and trajectory information to reduce the

beam training overhead. However, these strategies are limited to vehicular networks and not universal.

To incorporate the abrupt changes of mmWave channels due to blockage or other environmental

obstructions, several works have proposed to employ the discrete Markov process to model the temporal

variations of AoA/AoD [24]–[28]. It has been shown in [24] that the problem of tracking the time-

varying AoA and AoD can be transformed into finding the support of the sparse beamspace channel,

which is solved by invoking an approximate message passing algorithm. In [25]–[28], codebook-based

training beamforming vectors (beams) are adopted to reduce the design complexity. Specifically, a set of

codewords (a beam codebook consists of a sequence of codewords and each codeword is a beamforming

vector steering to a specific direction) that can minimize the Cramer-Rao lower bound averaged over the

priori distribution of AoD are selected for beam tracking in [26] and [27], and the maximum likelihood

(ML) and maximum a posteriori (MAP) criteria are respectively used to estimate the true direction of

AoD. In [28], the beam tracking problem is equivalent to a partially observable Markov decision process

(POMDP), where the selected training beams serving as actions of the POMDP depend on the belief vector,

observation information and reward. In the high SNR regime, the observations of the beam (angular) space

based on signal detection are reliable, and hence the selections of training beams using this POMDP

framework are appropriate. However, the consequent high power consumption will significantly increase

the dynamic range of the power amplifiers, considerably increasing the hardware cost. On the other hand,

when SNR goes low, the observations of the beam space will be inaccurate, and therefore selecting the

optimal training beam sequence based on this POMDP framework are unreliable and the true AoAs/AoDs

can be lost.

To address the aforementioned problems, we develop a new beam pair allocation strategy aiming to

maximize the average successful tracking probability (ASTP) of time-varying mmWave multiple-input

multiple-output (MIMO) systems, which can work effectively for all SNR regimes. Motivated by [26]–

[28], the temporal variations of AoA and AoD within the considered period of time are modeled as two

discrete Markov processes, described by their associated transition probabilities respectively, which are

assumed to be known. Highly directional transmitting (Tx) and receiving (Rx) training beams picked from

two predefined codebook matrices are used to combat the severe propagation loss. To further increase the

received signal powers in specific directions and consequently improve the beam tracking performance,

we allow the Tx-Rx beam pairs steering to these directions to be used repeatedly in the beam training
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period, which is different from most existing works1. In the following, we summarize the methodologies

and main contributions of this paper:

1) In the case of orthogonal Tx-Rx beam pairs, a power-based estimator that returns the direction

with the largest received signal power is employed to track the time-varying AoA and AoD, leading to a

closed-form expression for the (one-step) ASTP. Since the number of repetitions of each Tx-Rx beam pair

can only be an integer, selecting the optimal set of the Tx-Rx beam pairs and determining their associated

repetition times to maximize the ASTP is shown to be equivalent to an integer nonlinear programming

(I-NLP). Though determining the optimal Tx-Rx beam pair sequence is NP-hard, we prove that the Tx-Rx

beam pair with a higher transition probability should be used more times than those with lower transition

probabilities in order to achieve the maximal ASTP.

2) It is very challenging to optimize the exact repetition times of each Tx-Rx beam pair due to the

complicated expression for the ASTP. Therefore, we derive a tractable approximation for the ASTP as

the new objective function of the formulated I-NLP. Afterward, we divide its feasible region into a set of

subregions and construct a series of concave sub I-NLPs, which can be solved via recursively invoking

a nonlinear branch-and-bound (N-BB) algorithm. To avoid the computational cost of the iterative N-BB

algorithm, we relax the integer constraints of each sub I-NLP and obtain a promising solution by solving

the Karush-Kuhn-Tucker (KKT) conditions of these relaxed subproblems following a similar recursive

manner as in the iterative N-BB algorithm.

3) For the more general scenario where the Tx-Rx training beam pairs are overlapped in the angular

space, the power-based estimator performs poorly due to the non-negligible inter-beam interference. In

this case, we modify the power-based estimator and propose to track the time-varying AoA and AoD via

an orthogonal matching pursuit (OMP) algorithm, which essentially exploits the inter-beam interference

to improve the ASTP. Moreover, since no explicit expression for the ASTP exists when the OMP-based

estimator is adopted, a closed-form lower bound of the ASTP can be derived, based on which a favorable

beam pair allocation strategy to maximize the ASTP is obtained. Our numerical results demonstrate the

superiority of the proposed beam pair allocation strategy over the uniform and proportional allocation

strategies.

The rest of the paper is organized as follows. In Section II, we describe the considered mmWave system

model and the adopted beam training protocol. In Section III, orthogonal Tx-Rx training beam pairs are

assumed and a power-based estimator is used to track the time-varying AoA and AoD. In Section IV,

1It is worth mentioning that the Tx-Rx training beam pairs are also allowed to be used repeatedly in [29]. However, since an online

stochastic optimization known as multi-armed bandit algorithm is considered, one feedback of the received energy is needed after each

measurement, which may significantly exacerbate the system overhead.
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we consider a more general scenario where the Tx-Rx training beam pairs are overlapped in the angular

space. Numerical results are provided in Section V, followed by the conclusions in Section VI.

Notations: Bold uppercase A and lowercase a represent matrices and column vectors respectively, and

non-bold letters are scalars. A∗, AT, and AH represent the conjugate, transpose, conjugate transpose of A,

respectively. A[m, :], A[:, n] and A[m,n] are the m-th row, the n-th column, and the (m,n)-th element of

A, respectively. A⊗B is the Kronecker product of A and B. (b1•b2)N , b1+N(b2−1). CN (a,A) denotes

a complex Gaussian distribution with mean a and covariance matrix A. I is the identity matrix. a , vec(A)

is the vectorization operation by stacking the columns of A into a vector a.
{
a1, · · · , an

}∖{
b1, · · · , bk

}

represents the set
{
a1, · · · , an

}
excluding

{
b1, · · · , bk

}
.

(
n

k

)

is the number of k-combinations of an n-

element set. exp is the exponential function. Pr
{
S2 = b2 ← S1 = b1

}
represents the transition probability

from S1 = b1 to S2 = b2, while Pr
(
S2 = b2 | S1 = b1

)
is the probability of S2 = b2 conditioned on

S1 = b1. N+ and N++ denote the nonnegative integer set and positive integer set, respectively.

II. SYSTEM MODEL

We consider a mmWave MIMO system, in which a base station (BS) equipped with NT antennas

communicates with a mobile station (MS) equipped with NR antennas. Denote the NT × 1 transmitting

beamforming vector and the NR × 1 receiving beamforming vector by f and w respectively, which are

normalized to satisfy ‖f‖2 = ‖w‖2 = 1. Moreover, the pilot symbol is denoted by x =
√
P , where P is

the power consumed per transmission in the beam training period, and the received signal is then written

as

r = Hfx+ ñ, (1)

where H is the NR×NT channel matrix between the MS and BS, and ñ is the NR× 1 complex additive

white Gaussian noise, i.e., ñ ∼ CN (0, σ2
0I). The MS adopts the receiving beamforming vector w to

process the received signal r, given by

y = wHr = wHHfx+ n, (2)

where n = wHñ and n ∼ CN (0, σ2
0) due to ‖w‖2 = 1.

A. Millimeter-Wave Channel

Since mmWave channels have a very limited number of scatters, as in [30], we use the geometric

channel model to express H as

H =
√

NTNR

L∑

ℓ=1

αℓaR(θℓ)a
H
T(ϑℓ), (3)
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where L is the total number of propagation paths, αℓ, θℓ, ϑℓ are the complex gain, the normalized AoA and

AoD of the ℓ-th path respectively, and αℓ ∼ CN (0, σ2
α), ∀ℓ = 1, · · · , L. In addition, aR(θℓ) and aT(ϑℓ)

are termed antenna array response vectors. In this paper, we assume that uniform linear arrays (ULAs)

are used at the MS and BS, and therefore aR(θℓ) and aT(ϑℓ) can be respectively written as

aR(θℓ) =
1√
NR

[
1, ejθℓ , · · · , ej(NR−1)θℓ

]T
,

aT(ϑℓ) =
1√
NT

[
1, ejϑℓ , · · · , ej(NT−1)ϑℓ

]T
,

where j is the imaginary unit, i.e., j =
√
−1. Moreover, the relationship between the normalized AoA

(AoD) and the physical AoA (AoD) is expressed as [28]

θℓ =
2πd sin(θ̃ℓ)

λs
, ϑℓ =

2πd sin(ϑ̃ℓ)

λs
, ∀ℓ = 1, · · · , L,

where λs is the signal wavelength, d is the distance between two adjacent antenna elements, θ̃ℓ and ϑ̃ℓ are

the physical AoA and AoD of the ℓ-th path respectively. By letting d = λs

2
, we obtain that θℓ, ϑℓ ∈ [−π, π]

when θ̃ℓ, ϑ̃ℓ ∈ [−π, π].

B. Time-Varying AoA and AoD

In order to exploit the sparsity of the mmWave channels, as in [8], [11], [27], [28], we introduce two

beam codebook matrices AR =
[
aR(θ̄1), aR(θ̄2), · · · , aR(θ̄XR

)
]

and AT =
[
aT(ϑ̄1), aT(ϑ̄2), · · · , aT(ϑ̄XT

)
]
,

where

θ̄m =
2π(m− 1)

XR
− π(XR − 1)

XR
, m = 1, · · · , XR,

ϑ̄n =
2π(n− 1)

XT

− π(XT − 1)

XT

, n = 1, · · · , XT,

to divide the whole angular space [−π, π] into XR and XT directions, respectively. In addition, we follow

[5], [8], [28] and assume that {θℓ} and {ϑℓ} are respectively taken from the sets {θ̄m}XR
m=1 and {ϑ̄n}XT

n=1

for simplicity2.

In mobile scenarios, as mentioned earlier, the channel realizations between two consecutive transmission

blocks are correlated. Following [26]–[28], we model the temporal variations of each AoA (AoD) within a

set of transmission blocks as a discrete Markov process (see Fig. 1 and Fig. 2), described by the following

transition probability

Pr
{

θ
[τ ]
ℓ = θ̄k1 ← θ

[τ−1]
ℓ = θ̄k0

}

= Cβ |k1−k0|, (4)

2Though this on-grid assumption of the normalized AoAs/AoDs may not be rigorous, the resulting quantization errors are not significant

when XR and XT are large enough [5], [8], [28]. The off-grid case where the values of {θℓ} and {ϑℓ} are continuous is left as one of our

future works.
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Fig. 1. An example of the temporal variations of one AoA (AoD).

where k0, k1 ∈
{
1, · · · , XR

}
. The superscript τ denotes the τ -th beam training period or transmission

block, where τ = 2, · · · , T . The variable β ∈ [0, 1] indicates the variation speed of the AoAs, and C is

the normalization coefficient. According to (4), when β is small, e.g., β = 0.1, the updated AoA θ
[τ ]
ℓ is

very likely to be in the proximity to θ
[τ−1]
ℓ . On the other hand, when β = 1.0, the AoAs change rapidly

and θ
[τ ]
ℓ will be uniformly distributed in the set {θ̄m}XR

m=1, which corresponds to the abrupt changes in

mmWave channels. The associated transition probability of each AoD can be similarly expressed as in

(4), given by

Pr
{

ϑ
[τ ]
ℓ = ϑ̄i1 ← ϑ

[τ−1]
ℓ = ϑ̄i0

}

= C̃β̃ |i1−i0|, (5)

where i0, i1 ∈
{
1, · · · , XT

}
and β̃ is introduced to indicate the variation speed of the AoDs. Moreover,

the channel gains {αℓ} are assumed to change independently from one transmission block to another [28].

Finally, it is worth highlighting that the proposed beam pair allocation strategy can be extended to other

types of transition probabilities such as the ones used in [26] and [27].

C. Beam Training Protocol

To track the time-varying AoAs and AoDs, which can result from the mobility of the MS or the

reflection scatters, the BS transmits a sequence of pilot symbols via using a set of dedicated training

beams to the MS periodically, which also uses a set of dedicated beams to receive them in different

directions. As shown in Fig. 2, one transmission frame is assumed to consist of T transmission blocks,

and each transmission block is made up of MT symbol durations, where the first MC or MB symbol

durations are used for beam training and the rest are for data communication. For the conventional beam

training protocol shown in Fig. 2(a), as no priori information is used, in each beam training period the

BS and MS consume a fixed number of MC beams in MC symbol durations to estimate the AoAs and

AoDs. While for the adopted beam training protocol depicted in Fig. 2(b), traditional channel estimation

is performed in the first transmission block, since no priori information can be exploited at this block. In

each of the subsequent transmission blocks, MB training beams in MB symbol durations are selected to
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Data

Data Data

Data Data Data

Data Data

(a)

(b)

AoA/AoD estimation

Transmission block 1 Transmission block 2 Transmission block T

Transmission block 1 Transmission block 2 Transmission block T

One transimission frame

AoA/AoD tracking Data Data transmission

MCMT

MT MB

One transimission frame

Fig. 2. Frame structure of (a) conventional beam training and (b) adopted beam training.

execute beam tracking based on the previous estimate3 and the priori transition probabilities, which will

be introduced later. Moreover, as MB < MC, a larger fraction of time can be left for data communication,

leading to a higher throughput. Finally, since channel estimation techniques have been widely investigated

in the existing literature [7]–[11], we only consider the beam tracking strategy commencing from the

second beam training period.

In the rest of the paper, we focus on the τ -th beam training period unless otherwise specified, ∃τ ∈
{2, · · · , T}, such that θ

[τ−1]
ℓ = θ̄k0 and θ

[τ ]
ℓ = θ̄k1 are the previous and the current AoAs of the ℓ-th

path. In accordance with (5), the previous AoD and the current AoD of the ℓ-th path are represented by

ϑ
[τ−1]
ℓ = ϑ̄i0 and ϑ

[τ ]
ℓ = ϑ̄i1 , respectively. Moreover, while below we only consider a single-path channel

model and drop the subscript ℓ for the sake of convenience, the proposed beam tracking strategy can be

readily extended to the multi-path scenario, which is discussed at the end of Section IV.

III. SPECIAL CASE: UNITARY CODEBOOK MATRICES

In this section, to gain some insights, we follow [28] and assume that XT = NT and XR = NR, such

that the two beam codebook matrices AT and AR become two discrete Fourier transformation (DFT)

matrices.

3When one beam training period has finished, the MS feeds back the estimated AoAs and AoDs to the BS for the subsequent data

transmission and the next beam tracking procedure.
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A. Closed-Form ASTP

Similar to [26]–[28], we pick the Tx and Rx training beams from AT and AR, respectively, and when

f [m] = aT(ϑ̄i) and w[m] = aR(θ̄k) are chosen at the m-th symbol duration or measurement, ∃m =

1, · · · ,MB, the received symbol can be given by

yk,i = (w[m])HHf [m]x[m] + (w[m])Hñ[m]

= γαaH
R(θ̄k)aR(θ̄k1)a

H
T(ϑ̄i1)aT(ϑ̄i) + n[m]

(a)
=







γα + n[m], if k = k1 and i = i1,

n[m], otherwise,
(6)

where γ =
√
PNTNR and (a) is due to the fact that AT and AR are two unitary matrices.

In order to improve the received signal power in a specific direction, its associated Tx-Rx beam pair is

allowed to be used repeatedly. For convenience, we use Bk,i to denote the Tx-Rx beam pair w = aR(θ̄k)

and f = aT(ϑ̄i), and B ,
{
Bk,i | 1 ≤ k ≤ XR, 1 ≤ i ≤ XT

}
is the set consisting of all potential beam

pairs. Moreover, the repetition times of Bk,i during one beam training period is denoted by λk,i, and the

corresponding received symbols are expressed as yk,i[1], · · · ,yk,i[λk,i], respectively. By adding up the λk,i

received symbols, we obtain that

ξk,i =

λk,i∑

m=1

yk,i[m] ∼







CN
(
γαλk,i, σ

2
0λk,i

)
, if k = k1 and i = i1,

CN
(
0, σ2

0λk,i

)
, otherwise.

(7)

Recall that there are in total X , XT × XR distinct beam pairs in B. For notational simplicity, we

redefine Bn to represent the n-th beam pair, ∀n = 1, · · · , X , and obviously a one-to-one mapping exists

between Bn and Bk,i, which is denoted by n = (k • i)XR
. Accordingly, in the rest of the paper, we use ξn

and λn to replace ξk,i and λk,i, respectively.

In the current beam training period, without loss of generality, we denote the selected Tx-Rx training

beam pairs by Bz1 , · · · ,BzN , where z1, · · · , zN ∈ {1, · · · , X} remain to be optimized with N ≤ MB

since one beam pair might be used repeatedly. Following [33], a power-based estimator is introduced to

estimate the updated AoA and AoD for its simplicity, and when zn , (an • cn)XR
= (k1 • i1)XR

, the

successful estimation probability is given by

Γzn,|α|2 = Pr

(
N⋂

m=1,m6=n

|ξzn|2 > |ξzm|2
∣
∣
∣ α

)

. (8)

It can be observed from (7) that |ξzn|2 satisfies a non-central chi-squared distribution while |ξzm|2 follows

an exponential distribution, ∀m 6= n, and therefore we can rewrite (8) as

Γzn,|α|2 =

∞∫

0

h

(

u;λzn, |α|2
) N∏

m=1,m6=n

(

1− exp

(

− u

λzmσ
2
0

))

du, (9)
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where h(u;λzn, |α|2) is given by

h
(

u;λzn, |α|2
)

=
1

λznσ
2
0

exp

(

−u+ λ2
znγ

2|α|2
λznσ

2
0

)

I0

(√

4γ2|α|2u
σ2
0

)

, (10)

and I0(·) is the zero-th order modified Bessel function of the first kind. Moreover, we need to integrate

Γzn,|α|2 over the exponential distribution of |α|2, which is expressed as

Γzn =

∞∫

0

∞∫

0

h

(

u;λzn, |α|2
) N∏

m=1,m6=n

(

1− exp

(

− u

λzmσ
2
0

))
1

σ2
α

exp

(

−|α|
2

σ2
α

)

du d|α|2

=

∞∫

0

1

λ2
znγ

2σ2
α + λznσ

2
0

exp

(

− u

λ2
znγ

2σ2
α + λznσ

2
0

) N∏

m=1,m6=n

(

1− exp

(

− u

λzmσ
2
0

))

du

= 1−
N−1∑

κ1=1

(−1)κ1+1

(N−1
κ1

)
∑

κ2=1

1

1 +
∑κ1

κ3=1

(
λ2
znγ

2σ2
α + λznσ

2
0

) / (
σ2
0λκ1,κ2,κ3,−zn

) , (11)

where λκ1,κ2,κ3,−zn ∈ {λz1, · · · , λzN}
∖
{λzn}.

The (one-step) ASTP can be therefore expressed as

Γ̄1 =
N∑

n=1

πzn × Γzn, (12)

where πzn denotes the transition probability from
{

θ̄k0 , ϑ̄i0

}

to
{

θ̄an , ϑ̄cn

}

, which is directly calculated

from (4) and (5).

B. Problem Formulation

In this paper, we aim to seek the optimal Tx-Rx training beam pairs Bz1 , · · · ,BzN and their associated

repetition times λ = [λz1 , · · · , λzN ]
T that can maximize the ASTP, given the total number of pilot symbol

durations MB. To this end, the following optimization problem is formulated:

(P1) max
λ

Γ̄1(λ) (13)

s.t. λz1 + · · ·+ λzN = MB, (14)

λz1, λz2 , · · · , λzN ∈ N++, (15)

z1, z2, · · · , zN ∈ {1, · · · , X}. (16)

It is observed that (P1) is an integer nonlinear programming problem, which is in general NP-hard. In

the subsequent theorem, we show that the domain of (P1) can be substantially reduced.

Theorem 1. If the X possible beam pairs in B are sorted in a descending order according to their

associated transition probabilities, {B1, · · · ,BX} → {Bs1 , · · · ,BsX}, in order to achieve the optimal

ASTP, the numbers of used Tx-Rx beam pairs should satisfy λs1 ≥ · · · ≥ λsX .
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Proof: Refer to Appendix A.

Thanks to Theorem 1, in the following we can use {Bs1 , · · · ,BsN} to replace {Bz1, · · · ,BzN} and

rewrite (P1) as

(P2) max
λ

Γ̄1(λ) =

N∑

n=1

πsn × Γsn(λ) (17)

s.t. λs1 + · · · + λsN = MB, (18)

λs1, λs2, · · · , λsN ∈ N
++. (19)

It is still challenging to handle (P2) due to the complicated structure of its objective function in (17), and

therefore we first simplify it into a more tractable form.

Lemma 1. If Bs1 , · · · ,BsN are used in the beam training period, the ASTP with the power-based estimator

is lower bounded by

Γ̄lb
1 (λ) =

N∑

n=1

πsn

[

1− MB − λsn

λ2
snr0 + λsn

]

, (20)

and upper bounded by

Γ̄ub
1 (λ) =

N∑

n=1

πsn

[

1− F(N − 1)

λ2
snr0 + λsn

]

. (21)

Furthermore, Γ̄1(λ) can be approximated by

Γ̄apx
1 (λ) =

N∑

n=1

πsn

[

1− F(N − 1)

N − 1

MB − λsn

λ2
snr0 + λsn

]

, (22)

or equivalently

Γ̄apx
1 (λ) =

N∑

n=1

πsn

[

1− MB − λsn

N − 1

F(N − 1)

λ2
snr0 + λsn

]

, (23)

where r0 =
PNTNRσ

2
α

σ2
0

and F(N − 1) =
N−1∑

n=1

1

n
.

Proof: Refer to Appendix B.

C. Iterative Nonlinear Branch-and-Bound Algorithm

Since F(N − 1) < N − 1 and MB − λsn =
∑

m6=n λsm > N − 1, it is observed that

Γ̄lb
1 (λ) < Γ̄apx

1 (λ) < Γ̄ub
1 (λ). (24)

In general, while we can pick any of Γ̄lb
1 (λ), Γ̄

ub
1 (λ) and Γ̄apx

1 (λ) to replace Γ̄1(λ) as the new objective

function, in the subsequent sections, we use Γ̄apx
1 (λ) and construct a new optimization problem, given by

(P3) max
λ

Γ̄apx
1 (λ) (25)
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s.t. (18) and (19). (26)

Though the exact value of N in (25) is unknown, it has at most MB cases, i.e., N = 1, · · · ,MB, and we

can thus decompose (P3) into MB subproblems, with each one corresponding to a specific N . By solving

these subproblems, the optimal solution to (P3) can be obtained. Moreover, since these subproblems are

concave I-NLPs as demonstrated in Lemma 2, we can apply the nonlinear branch-and-bound method [39]

to solve them optimally.

Lemma 2. For a specific N , when we relax the integer variable λsn to a real variable λ̃sn , ∀n = 1, · · · , N ,

Γ̄apx
1 becomes a concave function with respect to λ̃s1, · · · , λ̃sN .

Proof: Refer to Appendix C

A closer observation of Γ̄apx
1 shows that we may not need to solve all the MB subproblems of (P3). To

be specific, when

Γ̄apx
1 (λN) =

N∑

n=1

πsn

[

1− F(N − 1)

N − 1

MB − λsn

λ2
snr0 + λsn

]

<
N∑

n=1

πsn ≤ ∆, (27)

where λN = [λs1 , · · · , λsN ]
T denotes a solution to the N-th subproblem, ∃N ∈ {2, · · · ,MB}, and ∆ is a

constant, we can see that

Γ̄apx
1 (λK) =

K∑

n=1

πsn

[

1− F(K − 1)

K − 1

MB − λsn

λ2
snr0 + λsn

]

<

K∑

n=1

πsn < ∆, (28)

where K = 2, · · · , N − 1. In other words, when Γ̄apx
1 (λN) <

∑N
n=1 πsn ≤ ∆, the maximum value of

Γ̄apx
1 (λK) will be less than ∆ as well. By using this property, we can skip some subproblems to reduce

the computational cost of (P3). For clarity, the proposed iterative N-BB algorithm has been summarized

in Algorithm 1.

Algorithm 1: Proposed Iterative Nonlinear Branch-and-Bound Algorithm for (P3)

Input : The total number of training beam pairs MB.

Output: The optimal solution to (P3).

1 Initialization: λsn = 1, ∀n = 1, · · · ,MB, and ∆ = Γ̄apx
1 (λMB

).

2 Let N = MB − 1 and T (N) = πs1 + · · ·+ πsN .

3 while T (N) > ∆ do

4 Optimize Γ̄apx
1 (λN) via the N-BB method [39] and denote the maximal value by Γ̄apx

1 (λ⋆
N).

5 Update the objective value: ∆ = Γ̄apx
1 (λ⋆

N) if Γ̄apx
1 (λ⋆

N) > ∆, otherwise, ∆ remains unchanged.

6 Let N = N − 1.

7 end
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Seen from Algorithm 1, when N = MB, the associated subproblem has only one solution, given by

{λsn}MB
n=1 = 1, and its objective value Γ̄apx

1 (λMB
) is taken as a temporary lower bound of Γ̄apx

1 (λ). Next, we

set N = MB−1, which corresponds to λs1 = 2, {λsn}MB−1
n=1 = 1, and λsMB

= 0. We evaluate Γ̄apx
1 (λMB−1)

and compare it with the current lower bound Γ̄apx
1 (λMB

). If Γ̄apx
1 (λMB−1) is larger than Γ̄apx

1 (λMB
), we set

Γ̄apx
1 (λMB−1) as the new lower bound of Γ̄apx

1 (λ). Otherwise, the current lower bound remains unchanged.

We then consider N = MB− 2 by letting λsMB−1
, λsMB

= 0, and {λsn}MB−2
n=1 ≥ 1. Optimize Γ̄apx

1 (λMB−2),

compare its maximal value with the current lower bound and update the lower bound if applicable. This

procedure is repeated until the temporary lower bound of Γ̄apx
1 (λ) cannot improve. The current lower

bound is the global maximal value of Γ̄apx
1 (λ), and the corresponding solution is the optimal solution to

(P3).

D. A Low-Complexity Solution

Though the iterative N-BB algorithm is able to solve (P3) optimally, its computational cost is high.

In order to reduce the complexity, a suboptimal solution to (P3) is also provided by exploiting the

KKT conditions. To be more specific, we first relax the N-th integer subproblem to a convex nonlinear

optimization problem with respect to λ̃s1, · · · , λ̃sN , given by

(P4) min
λ

N∑

n=1

πsn(MB − λ̃sn)

λ̃2
snr0 + λ̃sn

(29)

s.t. λ̃s1 + · · ·+ λ̃sN = MB, (30)

λ̃s1, λ̃s2, · · · , λ̃sN ≥ 1. (31)

The associated Lagrangian of (P4) is then expressed as

L =

N∑

n=1

πsn(MB − λ̃sn)

λ̃2
snr0 + λ̃sn

+ µ0

(
N∑

n=1

λ̃sn −MB

)

−
N∑

n=1

µn

(

λ̃sn − 1
)

, (32)

where µ0, µ1, · · · , µN are the Lagrange multipliers, and the corresponding KKT conditions are given by

∂L
∂λ̃sn

=
πsn

r0

(

1

λ̃2
sn

− 2MB

λ̃3
sn

)

+ µ0 − µn = 0, ∀n = 1, · · · , N, (33a)

µn(λ̃sn − 1) = 0, µn ≥ 0, λ̃sn ≥ 1, ∀n = 1, · · · , N, (33b)
N∑

n=1

λ̃sn = MB. (33c)

It is worth mentioning that when we compute the partial derivative of L with respect to λ̃sn in (33a), we

approximate λ̃2
snr0 + λ̃sn by λ̃2

τnr0 since the SNR at the MS r0 = PNTNRσ2
α

σ2
0

≫ 1. By solving the above

KKT conditions, we can obtain that λ̃⋆
sn = max{1, bn}, where

bn =




πsnMB

µ0r0
+

√
(
πsnMB

µ0r0

)2

+

(
πsn

3µ0r0

)3




1/3

+




πsnMB

µ0r0
−
√
(
πsnMB

µ0r0

)2

+

(
πsn

3µ0r0

)3




1/3

, (34)
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and µ0 is chosen to guarantee that λ̃⋆
s1
+ · · ·+ λ̃⋆

sN
= MB. In general, these obtained solutions λ̃⋆

s1
, · · · , λ̃⋆

sN

are not integers, and therefore we need to truncate them to satisfy the integer requirement. Specifically,

we can round off λ̃⋆
s1, · · · , λ̃⋆

sN
to obtain an integer solution λ⋆

s1, · · · , λ⋆
sN

. However, due to the rounding

off operation, the constraint λ⋆
s1

+ · · · + λ⋆
sN

= MB may be slightly violated. To tackle this problem,

when λ⋆
s1
+ · · ·+ λ⋆

sN
= M > MB and K = M −MB, we calculate dn = λ⋆

sn − λ̃⋆
sn , ∀n = 1, · · · , N . If

dp1 > dp2 > · · · > dpN , we let λ⋆
spk

= λ⋆
spk
−1, ∀k = 1, · · · , K. On the other hand, when λ⋆

s1+ · · ·+λ⋆
sN

=

M < MB and K = MB−M , we compute dn = λ̃⋆
sn−λ⋆

sn , ∀n = 1, · · · , N , and if dp1 > dp2 > · · · > dpN ,

we let λ⋆
spk

= λ⋆
spk

+1, ∀k = 1, · · · , K. The other subproblems can be solved similarly and we summarize

the whole procedure in Algorithm 2 for clarity.

Algorithm 2: Exploit Karush-Kuhn-Tucker Conditions to Solve (P3)

Input : The total number of training beam pairs MB.

Output: A suboptimal solution to (P3).

1 Initialization: λsn = 1, ∀n = 1, · · · ,MB, and let ∆ = Γ̄apx
1 (λMB

).

2 Let N = MB − 1 and T (N) = πs1 + · · ·+ πsN .

3 while T (N) > ∆ do

4 Relax the I-NLP subproblem and solve the relaxed problem via using its KKT conditions. The

associated solution is expressed as λ̃⋆
sn = max{1, bn}, where bn is given by (34),

∀n = 1, · · · , N .

5 Truncate λ̃⋆
s1, · · · , λ̃⋆

sN
to obtain an integer solution

{
λ⋆
s1, · · · , λ⋆

sN

}
, where some modifications

might be needed to satisfy the constraint
∑N

n=1 λ
⋆
sn = MB.

6 Update the objective value: ∆ = Γ̄apx
1 (λ⋆

N) if Γ̄apx
1 (λ⋆

N) > ∆, otherwise, ∆ remains unchanged.

7 Let N = N − 1.

8 end

Remark 1: It is worth mentioning that the proposed beam pair allocation strategy is deduced by

assuming accurate knowledge of θ[τ−1] and ϑ[τ−1]. If the previous estimates of θ[τ−1] and ϑ[τ−1] are

inaccurate, the proposed strategy might worsen the τ -th and the subsequent beam tracking procedures,

as demonstrated in Section V. To alleviate the error propagation phenomenon incurred by the proposed

beam allocation strategy, when
∣
∣ξ

[τ−1]
zn

∣
∣2 −

∣
∣ξ

[τ−1]
zm

∣
∣2 < Ω, where

∣
∣ξ

[τ−1]
zn

∣
∣2 and

∣
∣ξ

[τ−1]
zm

∣
∣2 are the two largest

received signal powers in the (τ−1)-th beam training period and Ω is a pre-defined threshold, we employ

uniform allocation strategy instead of invoking the proposed allocation strategy in the τ -th beam training

period.
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IV. EXTENSION TO GENERAL NON-ORTHOGONAL CODEBOOK MATRICES

In this section, we consider a more general scenario in which NT < XT and NR < XR, such that

the two beam codebook matrices AT and AR are not DFT matrices any longer. In this case, even if the

adopted Tx-Rx beam pair is not perfectly aligned with the actual AoA and AoD, the MS can still receive

the pilot symbol with a considerable beamforming gain, which is different from the orthogonal case.

A. Power-Based Estimator

As before, we pick the columns from AT and AR as the Tx and Rx beams in each beam training

period, and when f [m] = aT(ϑ̄i) and w[m] = aR(θ̄k) are chosen at the m-th symbol duration, the received

symbol in (6) becomes

yk,i = γαaH
R(θ̄k)aR(θ̄k1)a

H
T(ϑ̄i1)aT(ϑ̄i) + n[m] = γνk,k1 ν̃i,i1α+ n[m], (35)

where ν̃i,i1 and νk,k1 are respectively expressed as

ν̃i,i1 = aH
T(ϑ̄i1)aT(ϑ̄i), (36)

νk,k1 = aH
R(θ̄k)aR(θ̄k1). (37)

It is easy to see that when i = i1 and k = k1, ν̃i,i1 = 1 and νk,k1 = 1, and (35) reduces to (6). Following

the previous description, the beam pairs Bz1 , · · · ,BzN with repetition times λz1, · · · , λzN are used in the

current beam training period, where zp = (ap • cp)XR
, p = 1, · · · , N . Based on this assumption, the

distribution of ξzp , which is first defined in (7), is given by

ξzp =

λzp∑

m=1

yzp[m] ∼ CN
(

γανap,k1 ν̃cp,i1λzp, σ
2
0λzp

)

. (38)

The successful estimation probability shown in (9) now becomes

Γzn,|α|2 =

∞∫

0

h

(

u;λzn, |α|2
) N∏

m=1,m6=n

(

1−Q1

(√

2λzmγ
2|νam,k1 ν̃cm,i1α|2

σ2
0

,

√

2u

λzmσ
2
0

))

du, (39)

where the non-central chi-squared distribution h(u;λzn, |α|2) is already given by (10) and Q1 is the first-

order Marcum Q-function. Furthermore, by integrating Γzn,|α|2 over the exponential distribution of |α|2,
we obtain

Γzn =

∞∫

0

∞∫

0

h

(

u;λzn, |α|2
) N∏

m=1,m6=n

(

1−Q1

(√

2λzmγ
2|νam,k1 ν̃cm,i1α|2

σ2
0

,

√

2u

λzmσ
2
0

))

× 1

σ2
α

exp

(

−|α|
2

σ2
α

)

du d|α|2. (40)
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It is challenging to derive a closed-form expression for Γzn in (40), which is therefore calculated via the

numerical method. Finally, similar to (12), the ASTP can be given by

Γ̄2 =
N∑

n=1

πzn × Γzn. (41)

B. OMP-Based Estimator

In general, the power-based estimator performs poorly due to the non-negligible inter-beam interference,

which actually can be used to improve the beam tracking performance. To show this, we first rewrite the

channel in (3) as

H =
√

NTNRαARVA
H
T, (42)

where V is termed the beamspace channel representation of H in some literature [30]. Based on the

on-grid assumption of the AoAs and AoDs, the matrix V is sparse with only L nonzero elements, e.g.,

V[k1, i1] in current transmission block.

By introducing the beamspace channel V, we can transform the AoA and AoD estimation problem

into a CS problem. To be more specific, we rewrite (6) as

yk,i = (w[m])HHf [m]x[m] + n[m] (43)

= γα(w[m])HARVA
H
Tf

[m] + n[m]

(a)
= γα[(AH

Tf
[m])T ⊗ ((w[m])HAR)]v + n[m]

(b)
= γα([ν̃i,1, · · · , ν̃i,XT

]⊗ [νk,1, · · · , νk,XR
])

︸ ︷︷ ︸

a
T
n

v + n[m],

where v = vec(V). In (43), we have applied the property vec(ABC) = (CT⊗A)vec(B) in (a) and (b) is

due to (36) and (37). Recall that Bz1 , · · · ,BzN are used, and if we collect their corresponding observations

into a vector, denoted by

y =
[

yz1 [1], · · · ,yz1[λz1 ], · · · ,yzN [1], · · · ,yzN [λzN ]
]T

,

we can obtain a CS problem, given by

y = Av + n, (44)

where n =
[

n[1], · · · , n[MB]
]T

. The sensing matrix A is written as

A =
[

az1 , · · · , az1
︸ ︷︷ ︸

λz1

, · · · , azN , · · · , azN
︸ ︷︷ ︸

λzN

]T

, (45)

where azn is shown in (43) through replacing k and i by an and cn, respectively, n = 1, · · · , N .
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The MS can use the OMP algorithm [34], [35] to estimate the nonzero element in v, which is also

termed the support of v [24]. By adopting the OMP algorithm, the estimated support of v is given by

supp(v) = argmax
1≤k≤X

|AHy|2 = argmax
1≤k≤X

|ξ|2, (46)

where ξ , AHy. This OMP-based estimator can be viewed as an improvement of the previous power-

based estimator, and the successful estimation probability conditioned on |α|2 is given by

Γn1,|α|2 = Pr

(
X⋂

n=1,n 6=n1

∣
∣ξ[n1]

∣
∣2 >

∣
∣ξ[n]

∣
∣2
∣
∣
∣ α

)

, (47)

where n1 = (k1 • i1)XR
. Moreover, we need to integrate (47) over the exponential distribution of |α|2,

given by

Γn1 =

∞∫

0

Γn1,|α|2 ×
1

σ2
α

exp

(

−|α|
2

σ2
α

)

d|α|2, (48)

and the ASTP of this OMP-based estimator is expressed as

Γ̄3 =
X∑

n1=1

πn1 × Γn1 . (49)

C. Problem Formulation

In this section, we replace Γ̄1 by Γ̄3 and construct a new optimization problem, given by

(P5) max
λ

Γ̄3(λ) (50)

s.t. (14), (15), and (16). (51)

However, different from Γ̄1 in (12), Γ̄3 has no closed-form expression, and therefore we derive a closed-

form lower bound for Γn1 , which is shown in Lemma 3.

Lemma 3. If the Tx-Rx beam pairs Bz1 , · · · ,BzN are used in the beam training period, where zm =

(am • cm)XR
, ∀m = 1, · · · , N , and their repetition times are respectively denoted by λz1, · · · , λzN , the

lower bound of Γn1,|α|2 is expressed as

Γlb
n1,|α|2

= 1−
X∑

n=1,n 6=n1

[

Q1

(√

An,n1 |α|2,
√

Bn,n1|α|2
)

−
∑N

m=1 λzm |νam,k1 ν̃cm,i1 |2
∑N

m=1 λzm

(

|νam,k1 ν̃cm,i1|2 + |νam,kν̃cm,i|2
)

× exp

(

−An,n1 |α|2 +Bn,n1|α|2
2

)

I0

(√

An,n1Bn,n1|α|2
)
]

, (52)

where n = (k • i)XR
and n1 = (k1 • i1)XR

. Accordingly, the lower bound of Γn1 is written as

Γlb
n1

= 1−
X∑

n=1,n 6=n1




1

2
− (Bn,n1 − An,n1)σ

2
α − 2

4
√

1 + (An,n1 +Bn,n1)σ
2
α + σ4

α(An,n1 −Bn,n1)
2
/
4




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+
X∑

n=1,n 6=n1

( ∑N
m=1 λzm |νam,k1 ν̃cm,i1 |2

∑N
m=1 λzm

[

|νam,k1 ν̃cm,i1|2 + |νam,kν̃cm,i|2
]

× 1
√

1 + (An,n1 +Bn,n1)σ
2
α + σ4

α(An,n1 − Bn,n1)
2
/
4

)

, (53)

where An,n1 and Bn,n1 are respectively given by

An,n1 =
2γ2

∣
∣
∣
∑N

m=1 λzmν
∗
am,kν̃

∗
cm,iνam,k1 ν̃cm,i1

∣
∣
∣

2

σ2
0

∑N
m=1 λzm

(

|νam,k1 ν̃cm,i1|2 + |νam,kν̃cm,i|2
) ,

Bn,n1 =
2γ2

(
∑N

m=1 λzm|νam,k1 ν̃cm,i1|2
)2

σ2
0

∑N
m=1 λzm

(

|νam,k1 ν̃cm,i1 |2 + |νam,kν̃cm,i|2
) .

Proof: Refer to Appendix D.

According to Lemma 3, the lower bound for the ASTP when using the OMP-based estimator can be

written as

Γ̄3 =

X∑

n1=1

πn1 × Γn1 >

X∑

n1=1

πn1 × Γlb
n1

, Γ̄lb
3 . (54)

Since we cannot directly optimize Γ̄3 in (50), we use Γ̄lb
3 as the new objective function, and the associated

optimization problem becomes

(P6) max
λ

Γ̄lb
3 (λ) (55)

s.t. (14), (15), and (16). (56)

Considering the complicated expression for Γ̄lb
3 , it is still very challenging to solve (P6) analytically.

Therefore, when MB is small, we propose to directly search for the MB Tx-Rx training beam pairs from

the two beam codebook matrices AT and AR that can maximize (55). On the other hand, when MB is

large, this exhaustive search method is prohibitive since there are XMB possible solutions. In this situation,

we can exploit a heuristic algorithm, such as the differential evolution [38], to obtain a promising solution

to (P6), whose details are omitted for brevity.

Remark 2: Both the power-based estimator and the OMP-based estimator can be readily extended to

the multi-path scenario as in [8], [27]. To be more specific, we can estimate the L ≥ 2 paths in an iterative

fashion, and only one path is estimated via using the power-based estimator or the OMP-based estimator

at each iteration. Following the idea of successive interference cancelation, the contribution of the paths

that have been estimated in the previous iterations is subtracted from the received sequence before finding

new paths. In addition, since jointly optimizing the MB Tx-Rx beam pairs is very challenging when

multiple paths exist, we optimize the MB/L training beams pairs for each of the L paths via solving an
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optimization problem similar to (P3) or (P6) separately. Though such a per-path beam allocation strategy

seems to be trivial, it can still achieve a favorable beam tracking performance.

V. NUMERICAL RESULTS

In this section, we provide numerical results to evaluate the tracking performance of the proposed beam

pair allocation strategy for time-varying mmWave MIMO systems. The average tracking error probability

(ATEP) is mainly used as the performance metric, which is expressed as 1 − ASTP. The geometric

channel model in (3) is adopted with L = 1 and σ2
α = 1. The SNR is defined as P/σ2

0 . To guarantee

a favorable angular resolution, we require that XT = XR = 64. In addition, one transmission frame

consists of T = 10 transmission blocks [24], [28] and the temporal variations of AoA and AoD among

these transmission blocks are assumed to follow two discrete Markov processes, described by (4) and (5),

respectively. Moreover, the first transmission block is assumed to have exact AoA and AoD knowledge by

using the traditional channel estimation algorithms such as [8]. For the remaining 9 blocks, we exploit the

previously estimated AoA and AoD to conduct the current beam tracking procedure. Several benchmark

methods are also introduced for comparison, which are presented as follows:

1) Proportional Allocation: The MB pilot symbol durations are distributed to B in proportion to their

associated transition probabilities;

2) Uniform Allocation: The MB pilot symbol durations are uniformly distributed to Bs1, · · · ,BsMB
;

3) Proposed Allocation ES: The MB pilot symbol durations are distributed to B via solving (P2) or

(P6) with an exhaustive search method;

4) Proposed Allocation BB: The MB pilot symbol durations are distributed to B via solving (P3) with

Algorithm 1;

5) Proposed Allocation KKT: The MB pilot symbol durations are distributed to B via solving (P4)

with Algorithm 2;

6) ML-Based Estimator: The time-varying AoA and AoD of a single-path channel are estimated based

on the ML criterion [26];

7) POMDP Framework: The time-varying AoA and AoD are estimated based on the belief states of

the formulated POMDP in [28].

A. Special Scenario: Orthogonal Tx-Rx Beam Pairs

The ATEP with respect to the training SNR is provided in Fig. 3, where we let NT = XT and NR = XR.

In this scenario, we see that the proportional allocation strategy outperforms the uniform allocation strategy

in the low SNR region, whereas it is inferior to the latter when the training SNR is high. The proposed
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Fig. 3. The ATEP with respect to the training SNR. NT = 64,

NR = 64, β = 0.1, β̃ = 0.1, and MB = 40.

0.1 0.2 0.3 0.4 0.5

Variation Speed of AoA

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A
T

E
P

power based estimator - proposed allocation ES
power based estimator - proposed allocation KKT
power based estimator - uniform allocation
power based estimator - proportional allocation

Fig. 4. The ATEP with respect to the variation speed of AoA. NT =

NR = 64, β̃ = 0.1, MB = 40, and SNR = -16dB.

beam allocation strategy performs better than the two benchmarks at the whole SNR range. In addition,

we note that the solution obtained by solving the MB relaxed subproblems with KKT conditions in (P4)

can achieve almost the same ATEP as that obtained via the ES method. It is also worth mentioning that

the ATEP curve of the iterative N-BB algorithm is not presented in Fig.3 for clarity, since it converges

to the curves of the ES and KKT-based methods.

The ATEP with respect to the AoA’s variation speed β is shown in Fig. 4, where we can see that the

proposed beam allocation strategy still performs better than the other three strategies, though the ATEPs

of the four aforementioned beam allocation strategies all deteriorate when β increases from 0.1 to 0.5.

Moreover, the ATEP gap between the proposed beam allocation strategy and the uniform allocation strategy

becomes narrower and narrower. The reason can be explained by observing (34), which demonstrates that

the repetition times of each training beam pair is directly determined by its associated transition probability.

Since the transition probability for each of the potential directions becomes more uniform when β is large,

according to (34), the proposed beam allocation strategy is asymptotically close to the uniform allocation

strategy.

The ATEP with respect to the total number of training beam pairs is presented in Fig. 5, where we can

see that the ATEP of the proposed allocation strategy decreases gradually when MB increases from 30 to

50. The ATEP of the KKT-based algorithm is very close to that of the iterative N-BB algorithm, which

achieves almost the same performance as the ES method, demonstrating the validity of Algorithm 1 and

Algorithm 2. Moreover, we observe that the ATEP of the uniform beam allocation strategy deteriorates

slightly as MB increases. According to (11) and (12), though more directions can be measured when we

increase MB, the interference in (11) also increases such that Γzn will decrease, and consequently the
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Fig. 5. The ATEP with respect to the number of training beam pairs.

NT = NR = 64, β = β̃ = 0.1, and SNR = -16dB.
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NT = NR = 64, β = β̃ = 0.1, MB = 40, and SNR = -16dB.
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Fig. 7. The ATEP (a) and average beamforming gain (b) with respect to SNR. NT = 48, NR = 48, β = 0.1, β̃ = 0.1, and MB = 40.

ATEP of the the uniform beam allocation strategy increases.

The ATEP with respect to the index of transmission block is shown in Fig. 6, in which we observe

that the performance of the POMDP framework is quite robust with the process of beam tracking. The

ATEPs of the ML-based estimator and the proposed power-based estimator degrade quickly compared to

that of the POMDP framework. However, by exploiting the modified beam allocation strategy depicted

in Remark 1, it is seen that the ATEP performance of the power-based estimator can be significantly

improved, where we set the threshold Ω = 5 in the simulations.
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Fig. 8. The ATEP with respect to the variation speed of AoA. NT =

48, NR = 48, β̃ = 0.1, MB = 40, and SNR = -16dB.
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Fig. 9. The ATEP with respect to the index of transmission block.

NT = NR = 48, β = β̃ = 0.1, MB = 40, and SNR = -16dB.

B. General Scenario

The ATEP with respect to the SNR when NT < XT and NR < XR is shown in Fig. 7(a), where we

can immediately see that the proportional allocation strategy cannot work in the whole SNR region. The

power-based estimator in (39) is inferior to the OMP-based estimator in (46) which exploits the inter-beam

interference to estimate the AoA and AoD. In addition, we also observe that the proposed beam allocation

strategy performs much better than the uniform and proportional allocation strategies. Moreover, since

two adjacent beams are overlapped in the angular space when NT < XT and NR < XR, the BS can

still transmit information to the MS with a considerable beamforming gain even if the estimates of the

true AoA and AoD are inaccurate. Therefore, we also provide the average beamforming gains4 of the

four aforementioned strategies in Fig. 7(b), in which we can observe that the proposed beam allocation

strategy is still significantly superior to the other three strategies, especially at the low SNR regime.

The ATEP with respect to β is depicted in Fig. 8, where we fix β̃ at 0.1. Similar to Fig. 4, while both

the ATEPs of the OMP-based estimator with the proposed beam allocation strategy and uniform allocation

strategy deteriorate when β increases from 0.1 to 0.5, the former strategy still performs better than the

latter. Moreover, as β increases, we see that the ATEP gap between the two strategies also becomes

narrower.

In Fig. 9, the ATEPs of the 10 transmission blocks are presented, where the AoA and AoD keep

changing from one transmission block to another. It is seen that the beam tracking performance of the

OMP-based estimator is significantly superior to that of the power-based estimator due to the inter-beam

4The average beamforming gain is expressed as E
[

|aH
R

(

θ̂[τ ]
)

aR

(

θ[τ ]
)

a
H
T

(

ϑ[τ ]
)

aT(ϑ̂
[τ ])|2

]

, where θ̂[τ ] and ϑ̂[τ ] represent the estimated

AoA and AoD in the τ -th beam training period.
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interference. The ML-based estimator performs better than the power-based estimator, whereas it is inferior

to the OMP-based estimator. Moreover, we also observe that the ATEP of the OMP-based estimator with

the proposed allocation strategy is much better than those of the benchmarks.

VI. CONCLUSIONS

In this paper, we have proposed a new beam pair allocation strategy for mmWave MIMO tracking

systems, which enables one Tx-Rx beam pair to be used repeatedly to improve the received signal power

at that direction. We have firstly considered a special scenario in which NT = XT and NR = XR. In this

case, the Tx-Rx beam pairs are orthogonal with each other and the training beam pair sequence design

problem can be approximately tackled by solving a set of concave I-NLPs. The obtained closed-form

solution shows that the repetition times of each Tx-Rx beam pair is directly determined by its associated

transition probability, and one beam pair with a higher transition probability should be used more times

than those with lower transition probabilities. In the case of NT < XT and NR < XR, we have derived a

closed-form lower bound for the ASTP when the OMP-based estimator is used to track the time-varying

AoA and AoD, based on which a favorable beam pair allocation strategy is obtained. Our numerical

results have validated the superiority of the proposed allocation strategy over the existing methods.

APPENDIX A

In order to prove Theorem 1, we first show that Γzn is an increasing function with respect to λzn , and

a decreasing function with respect to λzm , ∀zm 6= zn. To verify this conclusion, we relax the integer

variable λzn to a real variable λ̃zn , and derive the partial derivative of Γzn with respect to λ̃zn as

∂Γzn

∂λ̃zn

=
h2(λ̃zn)

h2
1(λ̃zn)

∞∫

0

exp

(

− u

h1(λ̃zn)

)(
u

h1(λ̃zn)
− 1

) N∏

m=1,m6=n

(

1− exp

(

− u

λzmσ
2
0

))

du (57)

=
h2(λ̃zn)

h2
1(λ̃zn)

∞∫

0
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(

− u

h1(λ̃zn)

)
∑

m6=n

u

λzmσ
2
0

exp

(

− u

λzmσ
2
0

)
∏

p 6=m,n

(

1− exp

(

− u

λzpσ
2
0

))

du,

where h1(λ̃zn) = λ̃2
znγ

2σ2
α + λ̃znσ

2
0 and h2(λ̃zn) = h′

1(λ̃zn) = 2λ̃znγ
2σ2

α + σ2
0 . It is then observed that

∂Γzn/∂λ̃zn is larger than zero, and hence we obtain that Γzn(λ) is an increasing function with respect

to λ̃zn or λzn . By relaxing λzm to a real variable λ̃zm and computing the partial derivative of Γzn with

respect to λ̃zm , we can similarly verify that Γzn(λ) is a decreasing function of λzm .

Next we prove this theorem. Firstly, when we assume that πzn ≥ πzm but λzn < λzm , we can obtain

that

Γzn(λ) =

∞∫

0
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λ2
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2σ2
α + λznσ

2
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2σ2
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)(
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(
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2
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))
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= Γzm(λ), (58)

where (a) comes from the fact that Γzn(λ) is an increasing function with respect to λzn and (b) is due

to exp
(

− u
λzmσ2

0

)

> exp
(

− u
λznσ

2
0

)

. In addition, λ−zm,zn , {λz1 , · · · , λzN}
∖
{λzm , λzn} and G(λ−zm,zn) is

expressed as

G(λ−zm,zn) =
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p=1,p 6=m,n
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1− exp
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− u

λzpσ
2
0
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. (59)

It is observed from (58) that Γzn < Γzm when λzn < λzm . By swapping the values of λzn and λzm while

keeping λ−zm,zn unchanged, i.e., λnew
zn = λzm , λnew

zm = λzn , λnew
zp = λzp , ∀p 6= m,n, we can see that

Γnew
zn = Γzm , Γnew

zm = Γzn and Γnew
zp = Γzp . The variation of the ASTP after swapping the values of λzn

and λzm is given by

δΓ̄1 =

N∑

p=1

πzpΓ
new
zp −

N∑

p=1

πzpΓzp =
(

πzn − πzm

)(

Γzm − Γzn

)

> 0, (60)

which shows that the ASTP Γ̄1(λ) can increase when we exchange the values of λzn and λzm . By repeating

this procedure, we obtain that in order to achieve the maximal Γ̄1, the numbers of used Tx-Rx beam pairs

in B should satisfy λs1 ≥ λs2 ≥ · · · ≥ λsN .

APPENDIX B

In order to obtain the lower bound for Γ̄1(λ), we first prove the subsequent inequality:
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Induction method is used to prove (61). To be specific, when p = 1, we can see that (61) is apparently

valid. For p = n− 1 where n ≥ 2, we assume that (61) is true. For p = n, we have
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which proves (61). By using this inequality, we can rewrite Γsn as
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, and the ASTP can be therefore lower bounded by
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In order to derive the upper bound of Γ̄1(λ), we need to prove the subsequent relationship
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By exploiting the binomial theorem, we have
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Integrating the two sides of (66) from 0 to 1, we can obtain
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It is worth noting that the right-hand side (RHS) of (67) is the left-hand side (LHS) of (65). For the LHS

of (67), we obtain the subsequent equality
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By comparing (67) and (68), it is seen that (65) has been proven. Next we consider Γsn , which is
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where (a) follows from the fact that 1− exp
(

− u
λsmσ2

0

)

is a decreasing function of λsm , and therefore we

use λsm = 1 to obtain an upper bound for Γsn , and (b) follows from the fact that r0 ≫ 1. By exploiting

(69), the ASTP can be upper bounded by
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Moreover, we can further approximate Γsn as
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which completes the proof of Lemma 1.

APPENDIX C

To prove that Γ̄apx
1 (λ) is a concave function with respect to λ̃s1, · · · , λ̃sN , we compute the first, second

and third derivatives of f(λ̃sn) , (MB − λ̃sn)/(λ̃
2
snr0 + λ̃sn) with respect to λ̃sn , ∀n = 1, · · · , N , given

by
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Recall that λ̃sn ≤MB, and we can observe that df 3/dλ̃3
sn < 0, which means that df 2/dλ̃2

sn is a decreasing

function with respect to λ̃sn . Due to
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> 0, (76)

we can conclude that f(λ̃sn) is a convex function with respect to λ̃sn , and therefore −f(λ̃sn) is a concave

function. By noting that πsn > 0, Γ̄apx
1 is a concave function with respect to λ̃s1 , · · · , λ̃sN , since a

nonnegative weighted sum of concave functions is concave [40]. This completes the proof of Lemma 2.
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APPENDIX D

Recall that each row of the sensing matrix A can be expressed as

aT
zm = γα

([
ν̃cm,1, · · · , ν̃cm,XT

]
⊗
[
νam,1, · · · , νam,XR

])

, ∀m = 1, · · · , N. (77)

In accordance with our previous definition n = (k • i)XR
, the n-th column of A is written as

A[:, n] = γα
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and ξ[n] is therefore given by

ξ[n] = AH[n, :]y = γα∗



ν∗
a1,k

ν̃∗
c1,i

λz1∑

m=1

ya1,c1[m] + · · ·+ ν∗
aN ,kν̃

∗
cN ,i

λzN∑

m=1

yaN ,cN [m]





= γ2|α|2
N∑

m=1

(

λzmν
∗
am,kν̃

∗
cm,iνam,k1 ν̃cm,i1

)

+ γα∗

N∑

m=1

ν∗
am,kν̃

∗
cm,i

λzm∑

m1=1

np+m1

︸ ︷︷ ︸
noise

, (79)

where p = λz1+· · ·+λzm−1 . It is worth mentioning that while the “noise” terms in {ξ[n]}Xn=1 are correlated

with each other, we ignore their correlations for tractability. The distribution of ξ[n] conditioned on |α|2

is therefore expressed as

ξ[n] ∼ CN
(

γ2|α|2
N∑

m=1

[

λzmν
∗
am,kν̃

∗
cm,iνam,k1 ν̃cm,i1

]

, γ2|α|2σ2
0

N∑

m=1

λzm |νam,kν̃cm,i|2
)

. (80)

Typically, when n = n1 or k = k1 and i = i1, we can write ξ[n1] as

ξ[n1] ∼ CN
(

γ2|α|2
N∑

m=1

λzm |νam,n1 ν̃cm,i1 |2, γ2|α|2σ2
0

N∑

m=1

λzm|νam,n1 ν̃cm,i1|2
)

. (81)

By using the union bound, we can rewrite (47) as

Γn1,|α|2 = 1− Pr

(
X⋃

n=1,n 6=n1

∣
∣ξ[n1]

∣
∣
2
<
∣
∣ξ[n]

∣
∣
2
∣
∣
∣ α

)

≥ 1−
X∑

n=1,n 6=n1

Pr

(

∣
∣ξ[n1]

∣
∣2 <

∣
∣ξ[n]

∣
∣2
∣
∣
∣ α

)

= 1−
X∑

n=1,n 6=n1

[

Q1

(√

An,n1 |α|2,
√

Bn,n1|α|2
)

−
∑N

m=1 λzm |νam,k1 ν̃cm,i1 |2
∑N

m=1 λzm

(

|νam,k1 ν̃cm,i1|2 + |νam,kν̃cm,i|2
)

× exp

(

−An,n1 |α|2 +Bn,n1|α|2
2

)

I0

(√

An,n1Bn,n1|α|2
)
]

, (82)

where An,n1 and Bn,n1 are respectively given by

An,n1 =
2γ2

∣
∣
∣
∑N

m=1 λzmν
∗
am,kν̃

∗
cm,iνam,k1 ν̃cm,i1

∣
∣
∣

2

σ2
0

∑N
m=1 λzm

(

|νam,k1 ν̃cm,i1|2 + |νam,kν̃cm,i|2
) , (83)
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Bn,n1 =
2γ2

(
∑N

m=1 λzm|νam,k1 ν̃cm,i1|2
)2

σ2
0

∑N
m=1 λzm

(

|νam,k1 ν̃cm,i1 |2 + |νam,kν̃cm,i|2
) . (84)

By using the result of [36] and after some mathematical manipulations, we can obtain the integral

expression of the Marcum Q1 function over the exponential distribution of |α|2 as

∞∫

0

Q1

(√

An,n1|α|2,
√

Bn,n1|α|2
)

1

σ2
α

exp

(

−|α|
2

σ2
α

)

d|α|2

=
1

2
− (Bn,n1 − An,n1)σ

2
α − 2

4
√

1 + (An,n1 +Bn,n1)σ
2
α + σ4

α(An,n1 − Bn,n1)
2
/
4
. (85)

Moreover, by exploiting the integral identity [37], we obtain

∞∫

0

exp

(

−An,n1 |α|2 +Bn,n1|α|2
2

)

I0

(√

An,n1Bn,n1|α|2
) 1

σ2
α

exp

(

−|α|
2

σ2
α

)

d|α|2

=
1

4
√

1 + (An,n1 +Bn,n1)σ
2
α + σ4

α(An,n1 −Bn,n1)
2
/
4
. (86)

Finally, by integrating (82) over the exponential distribution of |α|2, we obtain

Γn1 ≥ 1−
X∑

n=1,n 6=n1




1

2
− (Bn,n1 − An,n1)σ

2
α − 2

4
√

1 + (An,n1 +Bn,n1)σ
2
α + σ4

α(An,n1 −Bn,n1)
2
/
4





+

X∑

n=1,n 6=n1

( ∑N
m=1 λzm |νam,k1 ν̃cm,i1 |2

∑N
m=1 λzm

[

|νam,k1 ν̃cm,i1|2 + |νam,kν̃cm,i|2
]

× 1
√

1 + (An,n1 +Bn,n1)σ
2
α + σ4

α(An,n1 − Bn,n1)
2
/
4

)

, (87)

which completes the proof of Lemma 3.
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