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Abstract—Device-to-device (D2D) communication underlay cel-
lular networks is a promising technique to improve spectrum
efficiency. In this situation, D2D transmission may cause severe
interference to both the cellular and other D2D links, which
imposes a great technical challenge to spectrum allocation.
Existing centralized schemes require global information, which
causes a large signaling overhead. While existing distributed
schemes requires frequent information exchange among D2D
users and cannot achieve global optimization. In this paper,
a distributed spectrum allocation framework based on multi-
agent deep reinforcement learning is proposed, named multi-
agent actor critic (MAAC). MAAC shares global historical states,
actions and policies during centralized training, requires no sig-
nal interaction during execution and utilizes cooperation among
users to further optimize system performance. Moreover, in order
to decrease the computing complexity of the training, we further
propose the neighbor-agent actor critic (NAAC) based on the
neighbor users’ historical information for centralized training.
The simulation results show that the proposed MAAC and NAAC
can effectively reduce the outage probability of cellular links,
greatly improve the sum rate of D2D links and converge quickly.

Index Terms—Device-to-device (D2D) communications, multi-
agent deep reinforcement learning, spectrum allocation.

I. INTRODUCTION

HE popularity of mobile devices and the growth of

multimedia applications have placed a high demand on
the data transmission rate of wireless networks. Device-to-
device (D2D) communication is regarded as a key technology
to improve data transmission rate, reduce latency and energy
consumption. It’s an important part of future 5G and Internet
of Things (IoT). Under the assistance of cellular base station
(BS), D2D communication allows two nearby cellular users
(CUEs) to form a D2D pair and communicate with each
other directly without traversing the BS or core network, thus
improving the transmit quality significantly due to short trans-
mission distance [1]]. D2D underlay communication reuses
the spectrum of the cellular network to potentially increase
spectral efficiency. However, D2D communication generates
interference to the cellular network if the radio resources are
not properly allocated [2]—[4]]. Thus, it is important to properly
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allocate radio resources to ensure reliability of cellular com-
munication and increase the capacity in D2D underlay cellular
networks.

There have been many resource allocation schemes based
on traditional optimization methods in the existing literature.
However, in future wireless networks where users are dense
and the scene changes rapidly, resource allocation mainly faces
two challenges. On the one hand, as the number of users
increases, acquiring channel state information (CSI) requires
huge signaling overhead and assuming that the BS will have
the global network information is unrealistic. On the other
hand, resource allocation problems are often modeled as com-
binatorial optimization problems with nonlinear constraints
that are difficult to optimize efficiently by traditional opti-
mization methods. Fortunately, reinforcement learning (RL)
has been shown effective in addressing decision making under
uncertainty [5]]. RL can learn decision policies from historical
data and the hard-to-optimize objective issues can be nicely
addressed in a RL framework through designing training
rewards such that they correlate with the final objective.
Moreover, RL for resource allocation can be designed as a
distributed algorithm, where each D2D pair is supported by
an autonomous agent, which automatically selects a reasonable
spectrum for transmission based on the policy learned by RL.
Therefore, we use RL to solve the spectrum allocation problem
for D2D underlay communications in this paper.

A. Related Work

Existing resource allocation methods can be divided into
centralized and distributed schemes according to their exe-
cution modes. In the centralized schemes [4], [6]-[8], the
BS is responsible for allocating resources to the CUEs and
D2D pairs, and monitoring information such as signal to
interference-plus-noise ratio (SINR), CSI, and interference
level of each user in the cell range. With global CSI at the
BS, various solutions to the channel and power allocation
problems of the D2D tier have been proposed in [4] and
the references therein. Graph theory is a useful centralized
method to solve this kind of resource allocation problems
[9], [10]. A bipartite graph is designed in [11]], where CUEs
and D2D pairs are modeled as vertexes and the weight of
the bipartite graph is the rate of the associated D2D and
cellular links. However, centralized schemes require BS to
have global network information. Moreover, the complexity of
the centralized schemes increases with the number of users,
causing enormous computational pressure on the BS.



In order to reduce the signaling overhead and reduce the
computing load of the BS, a series of distributed resource
allocation methods are proposed. In a distributed approach,
there is no central controller and the D2D pairs opportunisti-
cally and autonomously reuse the spectrum of CUEs. It still
requires frequent exchange of information between adjacent
D2D users and requires the devices to perceive the cellular
communications to gather information about channel quality
and available resource blocks while the BS is not required
to obtain global information and participate in calculation.
Distributed schemes can work well to large networks, but
require complicated interference avoidance algorithms to en-
sure high quality cellular communications and reliable D2D
communications. Some distributed algorithms are based on
game theory [[12]-[[14f]. Game theory is used to model D2D
pairs sharing spectrum resources with CUEs as an auction
mechanism in [12]]. A distributed resource allocation has been
proposed in [13]] to guarantee a minimum data rate for CUEs
and to maximize the D2D average data rate. Interference
is controlled using reuse prices and power control game.
Since the channel gain information and prices have to be
shared among the D2D pairs, large signaling overhead is
incurred. Moreover, this type of method usually requires a
lot of iterations to converge.

In addition to game theory, machine learning has been
considered as an effective tool in solving different network
problems in 5G [15]], [16]. RL is one of the most powerful
tools for policy control and intelligent decision making [J5],
which has been widely adopted in wireless communications
[17]-[19]. Recently, a number of works have applied RL
to solve the intelligent resource management and decision
making problem in D2D underlay networks [20]-[27]]. A
Q-learning based resource allocation has been proposed in
[20]. Resources are shared among D2D and cellular users
using Q-learning based strategy to maximize the network
throughput. A distributed Q-learning based spectrum alloca-
tion scheme has been proposed in [21f], where D2D users
learn the wireless environment and select spectrum resources
autonomously to maximize their throughput while causing
minimum interference to the cellular users. Since Q-learning
has low convergence speed and may not always suitable
to deal with continuous valued state and action spaces, an
efficient transfer actor-critic (AC) RL approach has been pro-
posed in [22] to address the intelligent resource management
problem in a D2D-based Internet of Vehicle (IoV) networks.
The above works can only be applied to low-dimensional
state-action mapping. Recently, deep learning has also been
introduced into resource allocation problems. [28]] leverages
the deep long short-term memory (LSTM) learning technique
to make localized prediction of the traffic load at the ultra
dense networks (UDN) base station. In [29]], a damped three
dimensional (D3D) message-passing algorithm (MPA) based
on deep learning for resource allocation in cognitive radio
networks has been proposed. A novel deep learning-based
traffic load prediction algorithm to forecast future traffic load
and congestion in network has been proposed in [30]. With
deep learning techniques, reinforcement learning has shown
impressive improvement. [31]] exploits a collaborative learning

framework that consists of deep learning in conjunction with
reinforcement learning for resource scheduling in network
slicing. In [25]], a decentralized resource allocation mechanism
for vehicle-to-vehicle (V2V) communications based on deep
RL has been developed, which can be applied to both unicast
and broadcast scenarios. All above works model the policy
search process in RL as a Markov decision process (MDP),
which is true if different agents (D2D pairs) are independently
updating their policies at different times. However, if two or
more agents (D2D pairs) are updating their policies at the same
time, it becomes a multi-agent environment which appears
non-stationary.

There are some resource allocation studies based on multi-
agent RL [26], [27], [32]], [33]]. In [26]], the resource allocation
problem is modeled as a stochastic non-cooperative game and
a Q-learning based algorithm is proposed. This method com-
bines Q-learning and game theory to alleviate the instability of
the multi-agent environment. However, it cannot be applied to
high-dimensional state-action mapping and its convergence to
the Nash equilibrium requires a lot of iterations. A fingerprint-
based deep Q-network method has been proposed in [27].
This method is a combination of multi-agent RL and deep
learning. By giving all agents a common reward, it mitigates
the instability of multi-agent environment but makes each
agent fail to achieve the higher individual reward.

B. Contribution

This paper proposes two distributed spectrum allocation
frameworks, multi-agent actor critic (MAAC) and neighbor-
agent actor critic (NAAC), which are trained centralizedly
and executed distributedly. The frameworks set the respective
reward for each agent. By sharing all users’ historical states,
actions and policies in the centralized training, MAAC can
mitigate the instability of multi-agent environment and mean-
while ensure that each agent’s policy is updated in the direction
of increasing individual reward. Moreover, in order to reduce
the computing complexity of the training, NAAC is further
proposed to share neighbor users’ historical information for
centralized training. Our motivation is to learn from historical
information how to make decisions (select spectrum) based
on the states observed in real time with the help of deep
reinforcement learning. These states include instant channel
information observed by UEs, etc. We don’t use historical
information to make decisions, but we collect historical in-
formation for learning the reinforcement learning model. Our
frameworks can learn a model with generalization capabili-
ties that can make reasonable decisions based on real-time
observed states The two frameworks require no information
interaction when they are executed, so they significantly save
the signaling overhead. In addition, our methods can transfer
complex training processes to the BS and significantly reduce
the computing complexity of algorithm execution.

Part of the work related to NAAC was written as a con-
ference paper [34] which are published in IEEE Globecom
2019. This paper provides a unified multi-agent deep rein-
forcement learning framework covering MAAC and NAAC
for distributed spectrum allocation. In this paper, we theo-
retically deduces the feasibility of the proposed framework



based on Markov game theory. And this paper provides a
detailed analysis of how the framework is deployed and
the computational complexity and performance overhead of
the framework. In addition, more implementation details,
experimental results and discussions are provided to better
understand the multi-agent deep reinforcement learning based
spectrum management scheme. The main contributions of this
paper are summarized as follows:

o In order to more accurately model state transitions in a
multi-agent environment, the D2D communication envi-
ronment is modeled by Markov game for the first time.

o A multi-agent deep RL framework, MAAC, is proposed.
It shares all users’ historical states, actions and policies
in the centralized training, which mitigates the issues that
the multi-agent environment is unstable and the training
is difficult to converge. In addition, it takes into account
the cooperation between users and the pursuit of higher
individual rewards.

o We find that the historical information sharing of neigh-
bor users is enough to satisfy the stability of training.
Therefore, an enhanced learning framework, NAAC, is
proposed. While ensuring the convergence of the training,
it reduces the computing complexity and is more suitable
for complex and varied communication scenarios.

C. Paper Organization

The rest of this paper is organized as follows. Section II
shows the system model. In Section III, we formulate the D2D
communication environment as a partially observable Markov
game and adopt the MAAC framework to address it. In Section
IV, the NAAC framework with low computational complexity
is proposed. The simulation results and analysis are presented
in Section V. Finally, Section VI concludes the paper. The key
mathematical notations used in our paper are listed in Table[l]

II. SYSTEM MODEL

As illustrated in Fig. [I] a downlink scenario in a single cell
system is considered. A set of M CUEs, denoted as M =
{1,..., M}, and a set of N active D2D pairs, denoted as N =
{1, ..., N}, are located in the coverage area of the base station
(BS). We denote the m'" CUE in the system by C,,, m €
M, the n" D2D pair by D,,, n € N, the transmitter and
the receiver of a D2D pair D,, by D! and D!, respectively.
Orthogonal frequency division multiple access (OFDMA) is
employed to support multiple access for both the cellular and
D2D communications, where a set of K resource blocks (RBs)
are available for spectrum allocation. A RB is the smallest unit
of spectrum resources that can be allocated to a user, which
is 180 kHz wide in frequency and 1 slot long in time. In this
system, the D2D pairs share the same spectrum with the CUEs.
There are three types of interference in the system, including:

« the interference received from the transmitter of a D2D

pair at a CUE;

« the interference received from the BS at a D2D receiver;

« the interference received from the transmitter of a D2D

pair at the receiver of another D2D pair sharing the same
spectrum with that D2D pair.

TABLE I
MATHEMATICAL NOTATION

Notations Physical interpretation
M,N, K Number of CUEs, D2D pairs and RBs
PP pd Power of BS and D2D transmitter
gf,;c Channel gains from the BS to C,
gl” Channel gains from D!, to D!,
ghon Channel gains from D!, o Cy,
g Channel gains from the BS to D7,
gf; Channel gains from D! to D7,
012 The power of AWGN
.k SINR of the received signal at C’,, from BS in RB &
Efi b SINR of the received signal at D, from DY, in RB k
RS & Data rates of CUE C,,,
R‘fl & Data rates of D2D pair D,

w The bandwidth of each RB

S, A State space and action space
st at,rt State, action and reward at time slot ¢
Gf’t The instant channel information of the D2D link
Gf’t The channel information of the cellular link
Iz.t*1 The previous interference to the link
K f_l The RB selected by the D2D link in the previous time slot
£ in The SINR threshold of the CUE
'Rﬁ Positive reward

RY Negative reward

p Transition probability
¥ The reward discount factor
R§ The sum of discounted future reward
Ji The expected cumulative discounted reward
T The policy of reinforcement learning
Q The action-value function of reinforcement learning
o Deterministic target policy
or, 69 The weight of actor network and critic network
D Experience replay buffer
T “soft” update factor
A The number of neighbor D2D pairs taken in NAAC
/\fi"b A set of neighbor D2D pairs of D;
sf”, a?b The states and actions of the neighbors of agent %
U The number of neurons the /th layer of the actor network
Vh The number of neurons the hth layer of the critic network

We assume that the BS and the transmitter of a D2D
pair transmit with powers P’ and P?, respectively. Denote
ghe, ghr, ghs,. gh". and gfz as the channel gains of the
cellular communication link from the BS to CUE C,,,, the D2D
communication link from D2D transmitter D, to D2D receiver
Dr, the interference link from D2D transmitter D! to CUE
C,, the interference link from the BS to D2D receiver D;, and
the interference link from D2D transmitter D! to D2D receiver
D] when they share the same spectrum for data transmission
respectively. The power of the additive white Gaussian noise
(AWGN) at a receiver is denoted by o2,

The instantaneous SINR of the received signal at CUE, C,,,
from the BS in RB k can be written as

ok Z Pdgff,cm, + 02 ,
neDy

and the instantaneous SINR of the received signal at the D2D
receiver, D], from the D2D transmitter, DfL, in RB k can be
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Fig. 1. System model for D2D underlaying cellular networks in downlink.

written as
Pd t,r
g.,k: b by In T P (2)
Pbgy"+ > P GintO
i€Dy,i#n

where Dy, represents the set of D2D pairs to which RB k is
allocated.

With the instantaneous SINR, we can find the data rates of
CUE, C),, and D2D pair, D,,, by

g = Wlog(1+ &7, 1), 3)

and
RE, =Wlog(1+&2,), (4)

where W is the bandwidth of each RB.

We assume that each CUE has been assigned a RB and a
RB can be allocated to multiple D2D pairs, in the mean time,
D2D users who need to communicate have already completed
pairing before spectrum allocation. When the algorithm is
executed, the paired D2D pairs autonomously selects RBs
for communication. Traditionally, resource allocation in D2D
communications is formulated as a NP-hard combinatorial
optimization problem [35] with non-linear constraints, which
is with forbidden complexity. To address this issue, we will
investigate multi-agent RL for resource allocation in D2D
communications.

III. MULTI-AGENT DEEP REINFORCEMENT LEARNING
BASED SPECTRUM ALLOCATION

In this section, we first model the multi-agent environment
and then a distributed framework based on multi-agent RL is
proposed to address the spectrum allocation problem.

A. Modeling of Multi-Agent Environments

In the RL model for D2D underlay communications, an
agent, corresponding to a D2D pair, interacts with the envi-
ronment and takes an action according to a policy. At each

time ¢, the D2D link, as the agent, observes a state, st, from
the state space, S, and accordingly takes an action (select RBs
or power levels), a?, from the action space, A, based on the
policy, m. Following the action, the state of the environment
transits to a new state stt1 and the agent receives a reward,
rt.

In our system, the state space, S, the action space, 4, and
the reward function, rt, are defined as follows:

State space: The state observed by the D2D link D; (agent
1) for characterizing the environment consists of several parts:
the instant channel information of the D2D corresponding link,
Gf’t, the channel information of the cellular link, e.g., from
the BS to the D2D transmitter, Gf’t, the previous interference
to the link, If ~! the RB selected by the D2D link in the pre-
vious time slot, K!~!. Hence, st = [G*!, GOF, 171 K71,
The instant channel information and the interference received
reveal the quality of each channel.

Action space: At each time ¢, the agent ¢ takes an action
at € A, which represents the agent select a RB, according
to the current state, s! € S, based on the decision policy
m;. The dimension of the action space is K if there are K
RBs. Our methods has good scalability. Discretevalued power
and one or more RBs selected by D2D pairs can be modeled
as actions, whose dimension is « x [ if there are « sets
of optional RBs and the transmission power is discretized
into 3 levels. Therefore, our algorithm can also solve the
resource allocation problem of discrete-valued power control
joint spectrum allocation. Note that the action selection of each
agent should satisfy the constraint {7, , > &7,;,,, where &7,
represents the SINR threshold of the CUE.

Reward function: The learning process is driven by the
reward function in the RL. Each agent makes its decision to
maximize its reward with the interactions of the environment.
As a result, we will design a reward function for this dis-
tributed resource allocation problem as following.

The reward function relates to two parts: the D2D link rate
and the SINR constraints of CUE. In our settings, the reward
remains positive if the SINR constraints are satisfied; it will
be a negative reward, 7,., < 0, otherwise. When the D2D
pair D; (agent 7) take an action a! at current time slot ¢, then
the D2D pair received a positive reward R, in proportion to
the D2D link rate, if the constraints are satisfied. We use the
Shannon capacity to evaluate RY,

RE = log(1 + &), )

where gf " is the instantaneous SINR of the received signal
at the D2D receiver Dj at current time slot ¢. Therefore, the
reward function can be expressed as,

o { Ri, ok = Ernins ©6)

otherwise. @)

Most of the existing works model the policy search process
in RL as a Markov decision process (MDP). In MDP, a
sequence of resource management decisions of a learning
agent by interacting with the wireless communication envi-
ronment at some discrete time scale can be defined as a
tuple (S, A,rt p,7), where p is the transition probability
p(s'T1|st, a’) when the agent takes the action a’ € A from the

Tneg
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Fig. 2. The architecture for MAAC based spectrum allocation in D2D underlay communications.

current state s’ € S to a new state s’ € S, and v € [0, 1)
is a discount factor.

However, in the decentralized settings of spectrum allo-
cation problem, all D2D links as agents are independently
updating their policies as learning progresses, which is a multi-
agent environment if two or more agents updating simultane-
ously, the environment appears non-stationary from the view
of any one agent, violating Markov assumptions required for
convergence of RL, and causing instability in the training
process.

To make up for the shortcomings of MDP, we consider a
multi-agent extension of MDP in this work called partially
observable Markov games, modeling the multi-agent RL. In
the multi-agent RL model for D2D underlay communications,
at each time ¢, the D2D link D;, as the agent 7, observes a
state, s§ , from the state space, S, and accordingly takes an
action, aﬁ, from the action space, A, selecting RB based on the
policy ;. Following the action, the state of the environment
observed by agent ¢ transits to a new state sf“ and the agent
receives a reward, r.

An N-agent Markov game is formalized by a tuple
(S, A, rt, ... ,r,p,v), where S denotes the state space, A is
the action space, which is assumed to be same for all agents
(D2D pairs), 7! is the reward function for agent i (D2D pair
D;), p is the transition probability p(s:™!|st, a}, ..., a%;) when
all agents take actions {a! € A,i € N'} simultaneously from
the current state st € S to a new state si™' € S. Compared
to MDP, Markov game is more accurate in modeling state
transitions. The constant v € [0,1) represents the reward
discount factor across time. At time step ¢, all agents take their
actions simultaneously, each receives the immediate rewards rf»

as a consequence of taking the previous actions of all agents.
The return of agent ¢ from a state is defined as the sum of
discounted future reward

T
R = Z Ayl (8)
n=0
where T is the time horizon.
The goal of mulit-agent RL is to learn a policy for each
agent to maximize the expected return from the start distribu-
tion defined as the expected cumulative discounted reward

E[RY] =E[>_~y"r}]. 9)

n=0

Ji =

B. Multi-Agent Actor Critic for Spectrum Allocation

In order to overcome the inherent non-stationary of the
multi-agent environment and to utilize the cooperation be-
tween the agents, a multi-agent actor-critic (MAAC) frame-
work is adopted to optimize the policy by modeling multi-
agent environment as Markov game and considering action
policies of other agents so as to successfully learn policies that
require complex multi-agent coordination. In addition, MAAC
can make full use of the cooperation among users to further
improve the overall performance of the system.

The architecture for MAAC based spectrum allocation in
D2D underlay communications is shown in Fig. 2} Each D2D
pair, D;, is supported by an autonomous agent i. MAAC is
an extension of AC [36] where each agent is divided into
two parts: critic and actor. We allow the policies to use the
states and actions of all users to ease training. The deep
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learning training process will cause a lot of computational
overhead. Therefore, we transfer the training process to the
BS. In order to transfer the complex training process to the
BS, our scheme needs D2D users to upload the historical
information collected during the execution to the BS. The
centralized training process is done at the BS, where critic
is augmented with extra information about the policies of
other neighbor agents to evaluate the quality of the action.
In the distributed execution process, a D2D pair D; (agent
1) downloads the trained weight of the actor from the BS
and loads it into its own actor ¢. The actor i selects action
(RB) a! based on the state s! observed by the agent i from
the environment. When the agent i takes the action al, the
environment returns a reward r!. When the communication is
in good condition, the D2D pair D; can upload the historical
information including (s!,af,r?) collected at the execution
time to the BS for subsequent training.

Overview of MAAC of centralized training with decentral-
ized execution is shown in Fig. 3] States and actions of all
agents are entered into critic to evaluate the quality of the
current actions. We allow the policies to use extra information
to ease training so long as this information is not used at
execution time. It is unnatural to do this with Q-learning based
methods, as the Q function generally cannot contain different
information at training and test time.

The goal in RL is to learn a policy m which maximizes the
expected return from the start distribution J = E; g g~r [R]
, where E denotes the environment. In order to simplify
the representation, the state s’, action at, and return R! at
the current moment are simply denoted as s, a, and R,
respectively, s‘*! and a**! at the next moment are simply
denoted as s’ and a’, respectively. The action-value function
is used in many RL algorithms. In a single agent environment,
it describes the expected return after taking an action a in state
s and thereafter following policy 7:

Qﬂ— (87 a) = ES,TNE,(LNW[R]-

Many approaches in RL make use of the recursive relationship
known as the Bellman equation [37]:

QW(Sya) = Es’,TNE{T+’7Eu’~ﬂ'[Qw(5lva/)]}' (11)

Extends it into multi-agent environment. Consider a Markov
game with N agents and donete 7w = {7y, ..., 5} as the set

(10)

of all agent policies. The action-value function (critic) of agent
1 can be written as:

Q?(sa a) = Es’,T,iNE[Ti + 'Y]Ea’fvﬂ'Q;r (S/; al)];

where s consists of the states of all agents, s = {s1,...,sn5},
a consists of the actions of all agents, a = {ay,...,an},
QT (s,a) is a centralized action-value function that takes the
states and actions of all agents as input, and outputs the Q-
value for agent <.

If the target policy is deterministic we can describe it as
a function p : S < A and avoid the inner expectation. We
now consider [NV deterministic policies (actor) denoted as pu =
{1, ..., un}, The action-value function (critic) of agent 7 can
be written as:

Qf'(s,a) = Ber rnplri + QY (s, u(s))]-

According to AC [36], the critic Q(s,a) can be learned
using the Bellman equation as in Q-learning [38]]. Q-learning is
a commonly used off-policy algorithm using the greedy policy
wu(s) = argmax, Q(s,a). We consider the function approxi-
mator of the centralized action-value function @); of agent @

12)

13)

parameterized by 0?, which we optimize by minimizing the
loss:
LOSS(QZQ) = Es,a”f‘i,s’[(Qi(&aWiQ) - yi)2]7 (14)
where
yi = i +7Qu(s', u(s)|07). (15)

Based on the deterministic policy gradient (DPG) algorithm
[39], a parameterized actor function p(s|6*) can be used to
specify the current policy by deterministically mapping states
to a specific action. The policy gradient method is known to
exhibit high variance gradient estimates and is exacerbated in
multi-agent settings. Since an agent’s reward usually depends
on the actions (RBs) of many agents (D2D pairs). When
the actions of other agents are not considered in the agent’s
optimization process, the reward conditioned only on the
agent’s own actions exhibits much more variability, thereby
increasing the variance of its gradients.

To analyze the variance of policy gradient methods in multi-
agent settings, [40] considers a simple scenario with N agents
and binary actions: P(a; = 1) = 6;. The reward is defined to
be 1 if all actions are the same a3 = a3 = ... = an, and 0
otherwise. Agents must simply learn to either always output
1 or always output O at each time step. It can prove that the
probability of taking a gradient step in the correct direction
decreases exponentially with the number of agents, N, which
can be expressed in the following proposition.

Proposition 1: Consider N agents with binary actions:
pla; = 1) = 0;, where r(ay,...,an) = 1 when a; =
as = ... = ay, and r(aq,...,ay) = 0 otherwise. We assume
an uninformed scenario, in which agents cannot get any
information from each other and are initialized to 6; = 0.5, Vi.
Then, if we are estimating the gradient of the J with policy
gradient, we have:

p((VJ,V.J) > 0) x (0.5)", (16)



where V.J is the policy gradient estimator from a single
sample, and VJ is the true gradient.

P((VJ,VJ) > 0) denotes the probability of taking a
gradient step in the right direction that increases reward.
Equation (T6)) indicates that the probability of taking a gradient
step in the right direction decreases exponentially, as the
number of agents increases.

The high variance gradient estimates of policy gradient
methods can be solved by MAAC. The centralized critic
in MAAC helps reduce the variance of the gradients since
the critic is augmented with extra information about the
policies of other agents to remove a source of uncertainty. In
addition, conditioned only on the agent’s own actions, there
is significant variability associated with the actions of other
agents, which is largely removed when using these actions as
input to the critic.

In MAAC, if the deterministic policy w; of agent ¢ is
parameterized by 6!, the actor of agent ¢ is updated by
applying the chain rule to the expected return from the start
distribution J; = E[R;] with respect to the actor parameters:

VorJi % Bs anp[Vor Qi(S, 807 |, —pu(s. 0]
- Es,aND[vaiQi(sv aW?)

az:m(sra)]vefﬂi(sinH)
a7

Here D is the experience replay buffer contains the tuples
(s,a,r,s’), recording experiences of all agents.

MAAC controls the update of historical state by setting
a fixed size experience replay buffer. The experience replay
buffer is a finite sized cache. Transitions are sampled from the
environment and the tuple (s,a,r,s’) is stored in the replay
buffer. When the replay buffer is full, the oldest samples are
discarded. At each timestep the actor and critic are updated
by sampling a minibatch uniformly from the buffer. Since
MAAC is an off-policy algorithm, the replay buffer can be
large, allowing the algorithm to benefit from learning across
a set of uncorrelated transitions.

A primary motivation behind MAAC is that, if we know
the actions taken by all agents, the environment is stationary
even as the policies change [40]] since

p(SHSZ‘? al,...,AN, T, "'77TN)
:p(sﬂsi,al,...,a]v) (18)
= p(5;|5i, ai,...,anN, 7T'1, ...,7T§V)

for any 7 # ©’. We use a N-agent Markov game to model the
multi-agent RL for D2D underlay communications, where the
transition probability is p(sitt|st, al, ..., aly). So if we know
the actions taken by all agents, |18|is clearly established. The
constant transition probability satisfies the Markov assumption
of RL convergence. Therefore, the experience replay buffer can
be used in MAAC, at the same time the training process of
MAAC can mitigate the inherent non-stationary of the multi-
agent environment and converge very well. Moreover, the critic
considers the actions of all agents to evaluate the quality of the
selected action, and can fully utilize the cooperation between
the agents.

The mapping between the state space and the action space
of the actor part and the action-value function of the critic
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Fig. 4. Structure of the critic network in MAAC.

part need to be approximated by a function approximator.
Q-learning works well and a look-up table can be used to
accomplish the update rule if the state and action spaces of
the problem are small. However, if the state-action space is
too large, many states may be rarely visited and thus the
corresponding Q-values are seldom updated, leading to a much
longer time to converge [25]. To solve this problem, deep
neural networks (DNNs) are used to approximate the mapping
in high-dimensional space. The weight 8 of a DNN is updated
by training. Once 6 is determined, a state will correspond to a
unique action. The DNN can approximate a complex mapping
between high-dimensional spaces based on a large amount of
training data that will be used to update 6.

In MAAC, we denote the set of actor networks and critic
networks of all agents as u = {p1,...,un} and Q =
{Q1,...,QN} with the weights O# = {04, ..., 0} and 6Q =
{0?, s 91%}, respectively. The input of the actor network is
the state observed by the agent, and the output is the selected
action. The hidden layers in the actor network are all fully
connected layers. Fig. [] provides the structure of the critic
network. The critic network first enters the states of all agents
and then a fully connected layer, the actions of all agents then
go through several fully connected layers and finally output
Q-value.

Directly implementing Q-learning in equation (T4) with
neural networks has proved to be unstable in many environ-
ments. Since the network Qi(s,ale) being updated is also
used in calculating the target value in equation (I3), the Q-
value update is prone to divergence. To solve this problem, we
use “soft” target updates. We create a copy of the actor an/d
critic networks for every agent, 1/ (s;|6" ) and Q/(s,al0%)
respectively, that are used for calculating the target values. The
weights of these target networks are then updated by having
them slowly track the learned networks

0 10+ (1—1)0, (19)

with “soft” update factor 7 < 1. In the experiment, 7 = 0.01.
This means that the target values are constrained to change
slowly, greatly improving the stability of learning.

C. Training and Execution

MAAC framework is divided into training and execution in
use. Since the BS has more computing power than the mobile
device, the training part of the algorithm is completed at the
BS and the users only need to download the weights of the



trained target actor network 6#' from the BS, and only uses the
actor part to execute the algorithm distributedly. The training
algorithm is shown in Algorithm 1. The MAAC framework
uses historical information to train the DNNs of the actor part
and the critic part, and returns the weights of target actor
network 6% . New data is generated when the algorithm is
executed, which can be added to the experience replay buffer
D to further fine-tune weights.

The execution algorithm is as shown in Algorithm 2. Users
download 6# from the base station and import the weights
into their actor networks. All agents input the observed states
into the actor networks and the selected actions are output,
where the actions correspond to the selected RB.

IV. NEIGHBOR-AGENT DEEP REINFORCEMENT LEARNING
BASED SPECTRUM ALLOCATION

The MAAC framework proposed in section [III] can make
full use of the cooperation relationship among users to im-
prove system performance and at the same time has a high
convergence speed. However, MAAC requires information of
all agents to assist training. It will result in high computational
complexity and high computational overhead, in the case of
a large number of users. Therefore, we further reduce the
complexity of MAAC without losing too much performance
in this section.

Algorithm 1 Training Algorithm

Input: Actor network structure, critic network structure.
Output: The weights of target actor network or'.
Training:

1: Random initialize actor network p and critic network Q
with the weights 8% and 69.
2: Initialize the target actor network g and target critic
network Q' with weights o+ «— o+, Q" 09,
3: Initialize the experience replay buffer D
4: All agents (D2D pairs) receive initial observation states
0_ 140 0
s’ ={s},....s¥}
5: for each time slot ¢t = 0,1,...7 do
All agents select actions a' = {al = u;(st),i € N}
according to the current policy.
7. All agents execute actions a’, observe rewards r’ =
{rt,...,r%} and observe new states s'*1.
8:  Save the tuples (s’,a’,rt,s!*!) in D
Sample a random mini-batch of tuples (s, a,r,s’) from
the D. ,
10 Sety; =i + QU 1/ (s')0%)]62).
11:  Update critic by minimizing the loss in equation (T4).
12:  Update the actor policy using the sampled policy gra-
dient according to equation (I7).
13:  Update the target networks:
O — 7O 4 (1 — 7)0~,
6% « 702 + (1 -1)6.
14: end for
Return: 6~

Algorithm 2 Execution Algorithm

Input: Actor network structure, the weights of target actor
network 6+,

Execution:

1: Load 8* to the actor network.
2: All agents (D2D pairs) receive initial observation states
sO={s9,...,s%}
3: for each time slot ¢t = 0,1,...7 do
All agents select actions a' = {al = pul(st),i € N}
according to the policy.
5. All agents execute actions a’ and observe new states

t+1
sttl,
6: end for
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Fig. 5. User geographic location and spectrum allocation results visualization
of MAAC (a) and NAAC (b).

A. Neighbor-Agent Actor Critic for Spectrum Allocation

In order to ensure the stability of the multi-agent environ-
ment and make full use of the cooperation between users,
MAAC adds states and actions of all agents to the critic
network for training. The geographic location of all CUEs and
D2D pairs and the spectrum allocation results after MAAC
training convergence are visualized, as shown in Fig. [§ (a),
where different colors represent different RBs and the number
of CUEs, D2D pairs and RBs are 10, 20 and 10, respectively.
We can see that users who are closer together are allocated
different RBs and users who are far apart may share RBs.
This is because in a wireless communication environment,
inter-user interference is mainly related to the neighbor users.
When the user’s transmit power is constant, the main factor
affecting the inter-user interference strength is the large-scale
fading, which is mainly related to the distance between users.
Therefore, it is not necessary to have all users’ information to
ensure the stability of the environment, just the information of
the neighbor users is enough. Therefore, we improve MAAC
by proposing an improved framework that only allows the
states and actions of a fixed number of agents adjacent to
the target agent to be added to the critic network for training,
called neighbor-agent actor critic (NAAC).

We use distance to define the neighbor users. In NAAC,
for a D2D pair D;, we define A D2D pairs closest to D;
as the neighbor users of D,;. We denote a set of D2D pairs
which contains D; itself and its neighbor users as N**. We
can use the information of neighbor agents (D2D pairs) instead



of global information to ensure the stability of the multi-agent
environment since

p(si|si,a) ~ p(s}|si, ap’), (20)

where a® = {a;,j € N/"*} contains the actions of the
neighbors of agent <.

The loss function and gradient update function of NAAC
have the same form as MAAC, the difference is that s and a
in equation and (17) is changed to s?* and a?’’, where s[*
contains the states of the neighbors of agent i, sI'* = {s;,j €
'/V'inb}'

The actor network in the NAAC framework is identical
to that in the MAAC framework. The input of the critic
network in the NAAC framework is changed to the states
and actions of the neighbor agents. Like MAAC, NAAC uses
an experience replay mechanism to overcome the correlation
and non-stationary distribution of empirical data. In addition,
NAAC also uses “soft” target updates to ensure the stability
of training.

B. Training and Execution

The NAAC framework can also be divided into two parts:
the training process and the execution process. The execution
algorithm of NAAC is exactly the same as MAAC. In the
training algorithm, for each time slot ¢, save the tuples
(st,al,rt,s!*1) in experience replay buffer D and sample a
random mini-batch of tuples (s, a,r,s’) from the D, then set

Yi =T Jr’YQ;(S?b 1 (s'|6" )|9§2 );

and update critic by minimizing the loss in equation (14),
where s and a is changed to s?* and al®. Finally, update
the actor policy using the sampled policy gradient according
to equation (17), where s and a is changed to s?* and al®.
The remaining steps in the training algorithm are the same as
MAAC.

The spectrum allocation results after NAAC training con-
vergence are visualized, as shown in Fig. E] (b), where NAAC
works with the number of neighbor users A = 3. We find that
the historical information sharing of neighbor users is enough
to satisfy the stability of training and get a reasonable spectrum
allocation result.

2y

C. Computational Complexity and Overhead Analysis

The computational complexity is critical to the utility
of an algorithm. Therefore, we analyze the computational
complexity of the two proposed methods at execution time.
Define the number of neurons the [th layer of the actor
network as U;. The computational complexity of the /th layer
is O(U;-1U; + UU;41). The computational complexity of
the actor network is O(ZIL;Ql(Ul_lUl + UU;4+1)), where
L is the number of layers of the actor network. The critic
network is also a fully connected network. Define the number
of neurons the hth layer of the critic network as V},. The
computational complexity of the hth layer is O(Vj,_1V} +
Vi Vih+1). The computational complexity of the critic network
is O(ZhH:_;(V;L_th, + ViViy1)), where H is the number of
layers of the critic network.

For MAAC and NAAC, only the actor network is used
during execution, and the actor network they use is the same,
so MAAC and NAAC are executed with the same complexity
which is O( lL:_Ql(Ul_lUlJrUlUZH)). Both the actor network
and the critic network participate in the training process,
so the computational complexity of the training process is
O( lL:_Ql(UlflUl + UUi1) + Z,Ij:_gl(Vhfth + ViuVii)).
Since MAAC needs to input the states and actions of all users
into the critic network during training, the number of neurons
in the first layer of the cirtic network of MAAC is more than
that of NAAC, so the computational complexity of training is
also higher than that of NAAC.

The overhead of system deployment is also important for
the utility of the system. The deep learning training process
will cause a lot of computational overhead. It is unrealistic
to complete the training on the mobile device. Therefore, we
transfer the training process to the BS, because the BS can
easily deploy hardware devices such as GPUs, it has relatively
more computing power. In order to transfer the training process
to the BS, our scheme needs D2D users to upload the historical
information collected during the execution to the BS. This
historical information includes the states observed by the D2D
users, the actions taken and the rewards they obtained, all of
which are numeric data. The history information generated by
a UE in a time slot is only a few kilobytes in size, which results
in small transmission overhead. After the training process is
completed, the device only needs to download the weight of
the trained actor network from the BS and import its own
actor network to perform spectrum selection. The weight of
the neural network is also numerical data. The weight of
each UE’s actor network is about 300 KB in size, which
does not cause too much transmission overhead. In summary,
transferring the complex training processes to the BS requires
only a small amount of transmission overhead. Traditional
strategies require users to report channel status information
or exchange information between users in real time, which
can cause serious signaling overhead. Our method does not
require users real-time reporting and exchanging information.
Our method only requires the user to upload samples of
historical information they have collected to the BS when the
communication is in good condition, which can save a lot of
real-time signaling overhead.

D. Comparison of MAAC and NAAC

Since the input of the critic network in NAAC is a part of
the information of the agents, the data dimension is smaller
and the required neural network is also smaller, which reduces
the computing complexity of the algorithm and improves the
training speed. In addition, since the input of the critic network
in the NAAC is the states and actions of a fixed number
of neighbor users of the target agent, the network structure
of the NAAC does not change when the number of D2D
pairs in the cell changes. The previously trained weights can
continue to be used to speed up the training process. Compared
with MAAC, since NAAC does not share all users’ states,
actions and policies, its modeling of user state transition is
not as accurate as MAAC, which will inevitably cause some



loss to the convergence of training and the reliability of user
communication. However, NAAC has better generalization
ability, can be scale well to a larger network, adapt to more
varied environments and save computing resource.

V. PERFORMANCE EVALUATION

In this section, we compare the MAAC and NAAC with

other four distributed approaches:

o The most classic RL method Q-learning [38]], which is
used in [21];

e A RL method with better convergence performance,
Actor-Critic (denoted as AC) [36], which is used in [22]
and can deal with continuous valued state and action
spacec;

o The most classic deep RL method Deep Q Network
(denoted as DQN) [41]], which uses DNN to approximate
the mapping in high-dimensional space [25];

o A game theory approach, Uncoupled Stochastic Learning
Algorithm (denoted as SLA), which is developed in [|14].

Since we assume that each D2D pair can only obtain its
own CSI and there is no information exchange among D2D
users, centralized approaches with global information do not
participate in performance comparisons.

For the simulation, we consider a single cell scenario with a
radius of 500 m. We assume that each CUE has been assigned
a RB and a RB can be allocated to multiple D2D pairs. So
we set the number of RBs to be the same as the number of
CUEs. The size of experience replay buffer is set to 1000000.
The CUEs and D2D pairs are distributed randomly in a cell,
where the communication distance of each D2D pair cannot
exceed a given maximum distance 30 m. The detail parameters
can be found in Table [[I} The actor network in our proposed
frameworks is a four-layer fully connected neural network
with two hidden layers. The numbers of neurons in the two
hidden layers are 512 and 128, respectively. The critic network
in our proposed frameworks is a five-layer fully connected
neural network with three hidden layers. The numbers of
neurons in the three hidden layers are 1024, 512 and 256,
respectively. Relu function is used as the activation function.
The learning rates of actor and critic parts are 0.0001 and
0.001, respectively. The reward discount factor v = 0.95.
The UE noise figure is taken 8 dB. And the negative reward
Tneg = —1. The channel model is set according to 3GPP
Technical Specification [42]. In the first 2000 time slots of
the system simulation, we use the random allocation method
to allocate RBs to users, let the framework collect a certain
number of samples for training, and then apply our algorithm
for spectrum allocation. All simulations were conducted on
Pytorch deep learning framework with a NVIDIA TESLA
M40 GPU, 24 G memory size.

A. Simulations Results

Fig. [6] compares the convergence of the five approaches
in terms of the total reward performance when the number
of D2D pairs is 10 and NAAC works with the number of
neighbor users A = 3. Total reward is the sum of the rewards
obtained by the agents corresponding to all D2D pairs. Since

TABLE 11
SIMULATION PARAMETERS
Parameter Value
Cell radius 500 m
Maximum D2D pair distance 30 m
Carrier frequency 2 GHz
RB bandwidth 180 KHz
Number of CUEs 10
Number of RBs 10
Number of D2D pairs 10, 20, ..., 50
BS transmission power (PY) 46 dBm
D2D transmission power P 13 dBm
Cellular link pathloss 128.1 + 37.6log; o (d[km])
D2D link path loss exponent 4
UE thermal noise density -174 dBm/Hz
CUE target SINR threshold (§7 . ) 0 dB
UE noise figure 8 dB
Negative reward (rneg) -1
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Fig. 6. Comparison of convergence performance during training process.

SLA is an online learning algorithm that does not have an
offline training process. From Fig. [f| the proposed MAAC
and NAAC converges to the maximum total reward with only
60 time slots. The proposed two methods achieve the larger
total reward performance while the convergence is most stable
(less fluctuations) compared to the other three algorithms.
The total reward performance and convergence of Q-learning
are the worst since Q-learning does not work well when the
state-action space is vary large. DQN solves the mapping
problem of high-dimensional space by introducing a DNN
to approximate the complex mapping between state-action
space. Compared to Q-learning, DQN improves in both total
reward performance and convergence. The performance of
AC algorithm is better than Q-learning and DQN since it
optimizes the policy by combining the process of the policy
learning and value learning with good convergence properties.
However, none of the above three algorithms considers the
impact of multi-agent environment on stability of training
process and the cooperation between multiple agents (D2D
pairs) on system performance. The two proposed approaches
introduce the state and action information of extra D2D pairs
to assist the training process, greatly improving the stability
of the training process, and achieving a higher total reward
performance and converging quickly.

The outage probability can reflect the reliability of the
communication links. In Fig.[/| we show the outage probability
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of cellular links as a function of the number of D2D pairs
N and NAAC works with A = 3. The outage probability of
cellular links increases as the number of D2D links grows
since there are more D2D pairs sharing the spectrum with
the CUEs, which causes the CUEs to suffer more severe
cross-layer interference. The two proposed methods are better
than the other four algorithms because the reward function
in the proposed frameworks penalizes the policy that does
not meet the SINR threshold of CUEsc and the frameworks
introduce the states and actions of extra D2D pairs to assist the
training process. Therefore, the policies between different D2D
pairs can be coordinated with each other to prevent multiple
D2D pairs from simultaneously selecting the same RB to
cause severe cumulative interference to the CUE. From Fig. [7]
the MAAC algorithm achieves the lowest outage probability,
which is 0.005 lower than the NAAC algorithm. Since the
MAAC algorithm uses the information of all D2D pairs for
centralized training, the learned strategy more strictly meets
the SINR constraints of CUEs than the NAAC that uses part
of the D2D pairs’ information for training.

Fig. [§] illustrates the outage probability of D2D links as a
function of N, where A\ = 3 for NAAC. The outage probability
of D2D links increases as the number of D2D links grows
since there are more D2D pairs sharing the spectrum and there
will be more serious co-layer interference among them. From
Fig. |8} the two proposed algorithms are obviously superior
to other algorithms since our proposed algorithms make full
use of the cooperation between D2D pairs so that the policy
learned by each agent can coordinate with each other and avoid
selecting the same RB at the same time, which leads to better
transmission quality. For the Q-learning, DQN and AC, the
outage probabilities increase significantly with the number of
D2D links. This is because the policies learned by these three
algorithms consider no information of other D2D pairs when
they are executed, result in multiple D2D pairs to compete
for the same RB, and seriously affect the transmission quality
of D2D links. The SLA algorithm achieves performance close
to our proposed algorithms since it estimates the interference
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Fig. 9. Sum rate of D2D links versus the number of D2D links.

experienced by the D2D pairs and takes an action based on
this estimate.

Fig. O] shows the the sum rate of D2D links as a function
of N, where A\ = 3 for NAAC. The the sum rate of D2D
links increases as the number of D2D links grows since more
D2D pairs are allocated to RBs. When the number of D2D
links increases, outage probability increases due to higher
interference. Therefore, the slope of all the curves in Fig. [J]is
decreasing. The proposed methods are significantly better than
the other four algorithms and the advantages become more
significant as the number of D2D links increases. Since the
other four distributed algorithms can only achieve individual
optimization, the effect of global optimization cannot be guar-
anteed, but the proposed methods adopt a framework of cen-
tralized training with decentralized execution, which can opti-
mize the sum rate of D2D links. The performance indicators in
Fig.[§]and Fig.[9]are indicators related to D2D communication.
NAAC is slightly better than MAAC in performances related
to D2D communication. That is because our optimization goal
is to maximize the sum rate of D2D communications while
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ensuring the outage probability of cellular links. In order
to achieve this goal, our reinforcement learning framework
penalizes actions that fail to meet the SINR requirements of
cellular users. MAAC uses more information to better achieve
its goals, so it achieves the lowest outage probability for
cellular users. Ensuring the communication quality of cellular
users is bound to lose the performances of D2D users, so the
performances of MAAC is slightly worse to NAAC in Fig. [§]
and Fig. 0]

In Fig. we show the outage probability of cellular and
D2D links as a function of the number of neighbor users A in
NAAC with number of D2D pairs N = 10. For the NAAC,
the outage probability of the cellular links is greater than
the MAAC when the X is small, and the outage probability
decreases continuously with the increase of A until it is equal
to the MAAC. Since the NAAC obtains more comprehensive
information during training with the increase of A, the trained
policy can provides more reliable protection for the transmis-
sion quality of CUEs. In addition, the outage probability of
D2D links with the NAAC is smaller than the MAAC when the
A is small, and the outage probability increases with A until it
is equal to MAAC. The reason is that cellular communications
have a higher priority than D2D communications, the policy
trained by the MAAC algorithm using global information
sacrifices some D2D links transmission quality to meet the
transmission quality requirements of cellular users.

Fig. [[T] illustrates the sum rate of cellular and D2D links
as a function of A in NAAC with N = 10. For the NAAC,
the sum rate of cellular links is 2 bit/s/Hz lower than the
MAAC at A = 2, and the rate increases as \. Since the NAAC
uses part of the information of the neighbor D2D pairs for
training, and the trained policy does not adequately guarantee
the transmission quality of the CUEs compared to the MAAC.
In addition, the sum rate of D2D links with the NAAC is
larger than the MAAC when A is small, and the sum rate
continues to decrease with the increase of A until it is equal to
the MAAC. The reason is that the constraint of satisfying the
SINR of the cellular user has higher priority than increasing
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the D2D rate. As the A increases, the information obtained by
the NAAC algorithm during training is more comprehensive,
and the trained policy satisfies the constraint more strictly,
resulting in a loss of a portion of the D2D sum rate. According
to the simulation results in Fig. [I0] and Fig. [IT] when using
the NAAC, X can be flexibly adjusted according to different
communication scenarios to meet the various communication
requirements.

B. Discussion

The proposed two frameworks exploits the advantages of
the centralized and distributed schemes. Compared with the
centralized methods, our methods are executed without re-
quiring the global information, which significantly reduces the
signaling overhead and alleviates the computational pressure
of the BS. Compared with distributed method, our methods
use the historical information of the extra users to learn the
policies of mutual cooperation, avoiding frequent real-time
information exchange between users, more suitable for user-
intensive communication scenario. In addition, our methods
can transfer complex training processes to the cloud (BS),
significantly reduces the computing complexity of algorithm
execution. The two proposed methods have their own advan-
tages respectively. MAAC uses the historical information of
all users to assist in training. The trained policies can meet
very strict transmission quality requirements and are suitable
for high-reliability wireless communication scenarios. NAAC
uses a fixed number of users’ historical information to assist
training, has better generalization ability, can be scale well to
a larger network and has lower training complexity.

VI. CONCLUSION

This paper has studied the resource management problem in
D2D underlay communications and formulated the intelligent
spectrum allocation problem as a decentralized multi-agent
deep RL model to improve the sum rate of D2D links while
ensuring the transmission quality of CUEs. In order to make



full use of the performance gains brought by cooperation
between users, the MAAC framework of centralized training
with distributed execution is adopted, which not only requires
no signaling interaction but also ensures the convergence
of the algorithm. In addition, the NAAC framework with
lower computing complexity and better generalization ability
is proposed. The simulation results show that the proposed
approaches can effectively guarantee the transmission quality
of the CUESs and greatly improve the sum rate of D2D links as
well as have better convergence, compared with other existing
approaches. The proposed methods can be used to address
the intelligent resource management problem in a D2D-based
Internet of Vehicle networks. In the future work, we plan
to combine the proposed approaches with continuous-valued
power control, and design an integrated deep reinforcement
learning framework that automatically selects RB and transmit
power to further improve the effectiveness and robustness of
the algorithm.
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