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Abstract—Being an effective non-orthogonal multiple access
(NOMA) technique, sparse code multiple access (SCMA) is
promising for future wireless communication. Compared with or-
thogonal techniques, SCMA enjoys higher overloading tolerance
and lower complexity because of its sparsity. In this paper, based
on deterministic message passing algorithm (DMPA), algorithmic
simplifications such as domain changing and probability ap-
proximation are applied for SCMA decoding. Early termination,
adaptive decoding, and initial noise reduction are also employed
for faster convergence and better performance. Numerical results
show that the proposed optimizations benefit both decoding
complexity and speed. Furthermore, efficient hardware archi-
tectures based on folding and retiming are proposed. VLSI
implementation is also given in this paper. Comparison with the
state-of-the-art have shown the proposed decoder’s advantages
in both latency and throughput (multi-Gbps).

Index Terms—Sparse code multiple access (SCMA), determin-
istic message passing algorithm (DMPA), folding, retiming, VLSI.

I. INTRODUCTION

THE fifth generation of cellular network (5G) is put
forward to meet the ever-increasing demand of wire-

less communication. Enabling techniques of 5G include mas-
sive multiple-input multiple-output (MIMO), advanced coding,
new multiple access (MA), full spectrum access, new network
architectures, etc [1]. In the past decades, MAs such as
time division multiple access (TDMA) [2], frequency division
multiple access (FDMA) [3], and code division multiple access
(CDMA) [4], became part of wireless standards. However,
those orthogonal MAs can hardly meet the 5G’s capacity
requirement (103 times of LTE), due to limitations on multi-
plexing approaches towards physical resources [5]. According
to 3GPP white book, in the enhanced Mobile Broadband
(eMBB) scenario, the peak data rate should be 20 Gbps (10 to
102 times of LTE), the peak spectral efficiency should be 30
bps/Hz (3 to 5 times of LTE), and the latency should be less
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than 1 ms (10% of LTE) [6, 7]. Thus, ideas of non-orthogonal
MA (NOMA) [8] are proposed to alleviate these bottlenecks.

A. Challenges for Existing NOMA

Compared to orthogonal MAs, NOMA techniques refer
to those allowing multiple users overlap in time, frequency,
or code domain, in other words, sharing the same physical
resources [9]. NOMA is able to distinguish different users
via successive interference cancellation (SIC) [10] or multiple
user decoding (MUD) [11]. Besides the very first version [12],
the state-of-the-art (SOA) NOMA includes multiuser shared
access (MUSA) [13], pattern division multiple access (PDMA)
[14], sparse code multiple access (SCMA) [15], etc. SIC was
employed in [12–14] and has practical challenges:
• Computational complexity: SIC implies that each user

can be decoded only when all the prior users are properly
decoded. Therefore, its computational complexity scales
with the in-cell user number.

• Error propagation: For SIC, if an error occurs, all users
afterward are likely to be decoded incorrectly.

• Decoding latency: User power sorting is involved in SIC,
and causes good overhead latency compared to other
methods. Since the data with the lowest power is decoded
last, the latency will even higher.

Therefore, SCMA employs MUD instead of SIC. Thanks to
its sparsity, message passing algorithm (MPA) can be applied
for better decoding performance.

B. Sparse Code Multiple Access

SCMA was proposed in 2013 [15], trying to increase user
scale via a new perspective: enabling more efficient multiple
access by non-orthogonal sparse spreading codes of users.

1) Properties of SCMA: As a promising MA, SCMA
has the properties: i) multiplexing in frequency domain; ii)
codebook based on both mapping and spreading; iii) multi-
dimensional constellation for shaping gain and spectral effi-
ciency; iv) non-orthogonality ensuring more accessed users;
v) spreading which reduces noise interference and enhances
system robustness; and vi) sparsity which reduces decoding
complexity. Thanks to these properties, SCMA is more phys-
ically realizable and overloading tolerant, compared to other
MAs [16]. Details of SCMA can be found in Section II.

2) Challenges of SCMA:
• Throughput: Though the throughput of SCMA outper-

forms other MAs, especially orthogonal ones, it is hard to
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achieve the eMBB peak rate with acceptable complexity.
Admittedly, such throughput can be achieved with a
larger overloading factor, leading to prohibitive hardware
complexity and performance degradation.

• Latency: On one hand, utilizing MUD, SCMA avoids the
sorting latency required by SIC. On the other hand, for
imperfect channels the iterative MPA tends to cost more
iterations, which will counteract its latency advantage.

• Implementation: Though VLSI techniques ensure that
complexity is no longer a bottleneck for SCMA imple-
mentation when the overloading factor is not extremely
large, existing iterative algorithms are not hardware
friendly. Second, the noise power density N0 results
in large data range, leading to unbearable quantization
length, or otherwise poor error performance.

C. Relevant Prior Art
Regarding SCMA decoding, existing literature mainly focus

on three aspects: i) stochastic computing, ii) tree structure
approximation, and iii) efficient hardware implementation.

1) Stochastic Computing: In [17], a stochastic MPA
(SMPA) decoder was proposed, where beliefs are given by
weights of bit streams. Multiplication and addition are im-
plemented by AND and MUX, respectively. Though it work
effectively reduces the complexity per iteration, problems are:
• Accuracy: Stochastic computing suffers from low accu-

racy, due to randomness loss. Beliefs in MPA usually
require precision of 10−5, which length-limited could not
give. Performance degradation is observed.

• Latency: For SMPA, the calculation of a single value re-
quires a large number (105 to 106) of bit-level operations.
Considerable iterations make the latency even larger and
not suitable for practice.

• Complexity: Though SMPA helps to reduce hardware of
a single operation, the amount of bit-operations in one
decoding is around 107. Thus, the total complexity may
be even larger than deterministic MPA (DMPA).

A VLSI architecture of SMPA was discussed in [18]. The
throughput for a 6-user decoder is 57 Mbps and far from 3GPP
requirements. Though the hardware cost is low, the latency is
not suitable for eMBB.

2) Tree Structure Approximation: In [19], a pruned tree
approximation was proposed. The decoder accurately repre-
sents values with high probabilities, whereas approximates
ones with low probabilities [20]. Squares are replaced by ad-
ditions, multiplications, and comparisons. Though complexity
is expected to reduce, search breadth must be larger than 2 for
performance, which increases the complexity again.

3) Efficient Hardware Architecture: In [21], a stage-level
folded architecture for DMPA was proposed with considera-
tion of both speed and efficiency, which is our prior work.
However, only theoretical analysis and simple architecture
were given. The real VLSI implementation is missing.

D. Contributions
This paper emphasises on iteration reduction, convergence

speedup, computation simplification, and implementation of
SCMA decoder. Compared to SOA, our contributions are:

• We propose early termination scheme based on the con-
vergence behavior of DMPA, which significantly reduces
the required iteration number.

• We propose adaptive decoder, which adjusts beliefs ac-
cording to the variation trend, accelerates the conver-
gence, and compensates the performance loss. Results
show that it outperforms the ones in [17, 18] in terms
of latency and throughput, satisfying the 3GPP require-
ments.

• We perform numerical analysis for conditional probability
approximation (over 60% computation is for conditional
probabilities in MPA) in Initialization, which is square-
free and division-free, and suffers from little performance
loss. Computational complexity and hardware implemen-
tation have been greatly benefitted.

• We propose distributed matrix scheme for prior noise
reduction of DMPA decoder, which compensates the
approximation loss with negligible extra complexity.

• We improve our stage-level folded decoder with the
proposed algorithms, achieve higher hardware efficiency
with eMBB requirements on throughput and latency.

• We implement the proposed DMPA decoder on Xilinx
Virtex-7 XC7VX690T FPGA to demonstrate its advan-
tages for real applications.

E. Notations

Lowercase and uppercase boldface letters designate column
vectors and matrices, respectively. Matrix A’s transpose and
conjugate are AT and AH . The M×M identity matrix is IM
and the M × N all-zeros matrix is 0M×N . Sets are denoted
by uppercase calligraphic letters A, with cardinality |A|.

F. Paper Outline

The remainder of this paper is organized as follows. Section
II reviews the preliminaries of SCMA. DMPA and its opti-
mized versions are discussed in Section III. Numerical results
and analysis are given in Section IV. Hardware architecture
is described in Section V. VLSI implementation is given in
Section VI. Section VII concludes the entire paper.

II. PRELIMINARIES

Preliminaries of SCMA are given in this section. A 6-user
system in Fig. 1 is used as a running example.

A. SCMA Encoder

Suppose codeword set, constellation set, and information
set are X , C, and B, respectively. Define x ∈ X , c ∈ C,
and b ∈ B. |B| = M , |X | = K, and |C| = N . The SCMA
encoding is given by two rounds of mapping [15]. The first
round of mapping is:

g : B → C, c = g(b), (1)

where B ⊂ Blog2 M , C ⊂ CN , and g is a constellation mapping
function. The second round of mapping is:

V : C → X , x = Vc, (2)
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Fig. 1. A 6-user SCMA system.

where X ⊂ CK , and V ∈ BK×N is the mapping matrix.
Suppose the entire mapping function of SCMA encoding is

f . Then we have

f : B → X , x = f(b), f = Vg. (3)

An M -size SCMA codebook consisting of K complex values
is constructed. Note that V contains (K −N) all-zero rows.
Mapping matrix is generated by inserting (K − N) all-zero
rows into an N×N identity matrix IN randomly. So when the
SCMA system is regular, it supports CN

K = CK−N
K different

layers (users).

B. SCMA Multiplexing

Consider a K-dimensional SCMA encoder with J separated
layers. Each layer is defined by (Vj ,gj ,Mj ,Nj), where
j = 1, ..., J . If i 6= j, Vi 6= Vj and gi 6= gj , in order
to distinguish one layer from another. In general, Mj and Nj

can be either the same or different for different layers. Without
loss of generality, for ∀j we set Mj = M , Nj = N .

We call this SCMA system semi-regular because J is
not necessarily CN

K (The regular system will be discussed
later). The SCMA codewords are multiplexed over K shared
orthogonal resources, e.g. OFDMA tones or MIMO spatial
layers [16]. With this semi-regular system, the received signal
after synchronous layer multiplexing can be expressed as

y = ΣJ
j=1diag(hj)xj + n, (4)

where hj and xj are the K-dimensional channel vector and
SCMA codeword of layer j. Suppose signals of all layers
are from the same transmit point, for a specific receiver, the
channel vectors of all layers are identical that for ∀j, hj = h.
Now Eq. (4) reduces to

y = diag(h)ΣJ
j=1xj + n. (5)

Define overloading factor as λ = J/K, which indicates the
overloading tolerance or access ability of a SCMA system.
Fig. 2 illustrates a 6-user SCMA multiplexing.

Codebook 1 Codebook 2 Codebook 3 Codebook 4 Codebook 5 Codebook 6

Fig. 2. SCMA multiplexing example.

C. Factor Graph Representation

Define the binary indicator vector as fj = diag(VjV
T
j ).

Then the factor graph matrix is F = (f1, ..., fJ). Then the
factor graph representation can be obtained like how we do
with LDPC codes. Each column of F associates a layer node,
and each row a resource node. Degree of each resource node is
defined as df = (df1, ..., dfK)T = ΣJ

j=1fj . For more details,
please refer to [15].

Take K = 4 and N = 2 as an example. The factor graph is
in Fig. 3 and J = C2

4 = 6. Degree df = (df1, ..., dfK)T =
(3, 3, 3, 3, 3, 3)T and the overloading factor λ = J/K = 1.5.
The 4× 6 factor graph matrix of this system is in Eq. (6).

1
L

2
L

3
L

4
L

5
L

6
L

1
R

2
R

3
R

4
R

Fig. 3. Factor graph representation of an SCMA with K = 4 and J = 6.

F =


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 (6)

III. OPTIMIZATIONS ON SCMA DECODING

A. Regular Form of SCMA

Regular SCMA refers to the absolute-regular form [22, 23],
where number of layers J equals to CN

K . In other words, it
employs all the available layers (users). Eq. (6) is an example
of regular form. The definition is as follows.

Definition 1. SCMA with K complex-dimension and weight of
N which satisfies the following requirements is called regular
(absolute-regular) SCMA.
Requirement 1: Owning J = CN

K layers (users) in total.
Requirement 2: The columns of factor graph matrix must be
listed in the sequential permutation order, with weight λ.

B. DMPA Decoding

The DMPA decoding for SCMA mainly includes 4 steps.
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1) Initialization: Calculate conditional probability with ex-
trinsic information to get prepared for the belief propagation.

Pk(yk|xk,1, xk,2, xk,3, N0) = e−‖yk−(xk,1+xk,2+xk,3)‖2/N0 , (7)

where yk denotes the k-th bit of the received signal y. xk,1,
xk,2, and xk,3 denote overlapped bits of the 3 layers which
are connected to the k-th resource node separately, and N0 is
the noise power density.

2) Resource Node Updating: The updating formulation
of resource node is in the sum-product form which is an
approximation of marginal probability:

IRk→L1(m1) =
∑M

m2=1

∑M
m3=1 PkIL2→Rk

(m2)IL3→Rk
(m3), (8)

IRk→L2
(m2) =

∑M
m1=1

∑M
m3=1 PkIL1→Rk

(m1)IL3→Rk
(m3), (9)

IRk→L3
(m3) =

∑M
m1=1

∑M
m2=1 PkIL1→Rk

(m1)IL2→Rk
(m2), (10)

where Rk is the k-th resource node, m1,2,3 = 1, ...,M are
transmitted symbols. IRk→L1,2,3 denotes the belief propagated
to the k-th resource node from the neighboring layer nodes.
IL1,2,3→Rk

is the belief passing in the opposite direction.
3) Layer Node Updating: The normalization makes sure

belief falls in [0, 1].

ILj→R1
(m) = normalize(IR2→Lj

(m)), (11)

ILj→R2(m) = normalize(IR1→Lj (m)), (12)

where m = 1, ...,M corresponds different symbols.
4) Probability Calculating and Symbol Judging: After it-

erations, the final probability of each symbol is

QLj
(m) = IR1→Lj

(m) · IR2→Lj
(m). (13)

where Lj denotes the j-th layer. The symbol with the highest
probability becomes the estimated symbol l̂ for each layer.

C. Max-Log Algorithm

Decoder in probability domain suffers from huge complex-
ity and relatively high latency. Therefore, its Max-Log version
is considered [24] with the Jacobi’s logarithm formula [25]:

log

(
N∑
i=1

exp(fi)

)
≈ max

i=1,...,N
{f1, f2, ..., fN}. (14)

Updating steps now become:
1) Initialization:

P log
k (yk|xk,1, xk,2, xk,3, N0) = − 1

N0
‖ yk − (xk,1 + xk,2 + xk,3) ‖2, (15)

2) Resource Node Updating:

I logRk→L1
(m1) = max

{
P log
k + I logL2→Rk

(m2) + I logL3→Rk
(m3)

}
, (16)

I logRk→L2
(m2) = max

{
P log
k + I logL1→Rk

(m1) + I logL3→Rk
(m3)

}
, (17)

I logRk→L3
(m3) = max

{
P log
k + I logL1→Rk

(m1) + I logL2→Rk
(m2)

}
, (18)

3) Layer Node Updating:

I logLj→R1
(m) = I logR2→Lj

(m), (19)

I logLj→R2
(m) = I logR1→Lj

(m), (20)

4) Probability Calculating and Symbol Judging:

Qlog
Lj

(m) = I logR1→Lj
(m) + I logR2→Lj

(m). (21)

D. Early Termination

Early termination is based on the belief judgement for each
layer node and resource node [26]. Our judgement steps are:

1) Create a zero-matrix to record the stability condition of
beliefs, which denotes all the beliefs are unstable.

2) Judge the stability of all beliefs per iteration. If
|V−Vtemp

Vtemp
| ≤ ε, (ε > 0), the beliefs are stable, and the

corresponding value in the matrix is set as “1”.
3) When the stability matrix become a all-ones matrix,

beliefs of all layer nodes and resource nodes are stable,
and the convergence is achieved. Then, the iterative
decoding terminates.

Here, Vtemp and V are the belief values in the previous and
present iteration, respectively. ε is a judgment constant. The
DMPA with early termination is shown in Alg. 1. The Max-
Log version is similar and omitted.

Algorithm 1 DMPA with Early Termination
Input: y, Imax, and ε

1: Iteration:
2: for t = 1 : Imax

3: Set stability matrix S = 0
4: Update beliefs V
5: for j = 1 : N
6: temp =

∣∣V (t)
j − V (t−1)

j /V
(t−1)
j

∣∣
7: if temp ≤ ε
8: Sj = 1
9: end if

10: end for
11: if S = 1
12: break
13: end if
14: end for
15: Judgementearly:
16: Compute beliefs
17: Decide û
Output: û = {û1, û2, ..., û6}

E. Self-Adaption Algorithm

Self-adaption [27, 28] is also based on stability judgement.
Compared to the one in early termination, the judgement in
self-adaption requires an extra step between 2) and 3):

“Forecast and adjust the belief of next iteration based on
the convergence trend. If V−Vtemp

Vtemp
≥ ε, V ⇐ αV with α > 1,

since the convergence trend makes values larger. Otherwise,
if V−Vtemp

Vtemp
≤ −ε, V ⇐ βV with β < 1.”

Now the DMPA with self-adaption is shown in Alg. 2. The
Max-Log version is omitted.
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Algorithm 2 DMPA with Self-Adaption
Input: y, Imax, and ε

1: Iteration:
2: for t = 1 : Imax

3: Set stability matrix S = 0
4: Update beliefs V
5: for j = 1 : N
6: temp = V

(t)
j − V (t−1)

j /V
(t−1)
j

7: if temp ≥ ε
8: V

(t)
j ← α · V (t)

j

9: elseif temp ≤ −ε
10: V

(t)
j ← β · V (t)

j

11: else
12: Sj = 1
13: end if
14: end for
15: if S = 1
16: break
17: end if
18: end for
19: Judgementadapt:
20: Compute beliefs
21: Decide û
Output: û = {û1, û2, ..., û6}
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Fig. 4. Procedure of initial noise reduction.

F. Initial Noise Reduction

“Distributed matrix” D is to reduce random error, enhance
accuracy of initial value [29], and speed up the convergence.

For the SCMA system in Fig. 4, we have the overlapped
signals: a, b, c, and d after multiplexing. Random error of
these signals can be either positive or negative, which depends
on the environment noise. Therefore, we can regroup signals
and assign them to 4 resource nodes. At the receiver, we can
first recover the original signals according to the inverse of
“distributed matrix” and then start the decoding. Compared to
original transmitting scheme, each signal of specific resource
node has a great chance to be added with both positive and
negative random noises, which increases the accuracy of initial
value. It is noted that D is not constant and can be adjusted
according to the codebook and channel condition.

G. Initial Probability Approximation

Discussed above, the calculation of initial probability results
in high computational complexity, which is obvious in Max-
Log decoding. Thus, suitable approximations in Initialization
are expected to improve calculation efficiency and reduce
latency with little performance loss. For SCMA decoding,
the purpose of iterative updating is to find the symbol with
the largest probability. Hence, the absolute value is not that
critical to make a decision. We can still ensure the detection
correctness even with relative beliefs. The relative magnitude
is determined by the initial probability and the initial value
of different users in Initialization. Now, we carry out the
approximation in steps: i) simplify the initial probability
calculation by reducing operations with large complexity;
ii) adjust the initial value of different users according to
the relative magnitude determined by initial probabilities; iii)
update beliefs iteratively based on the relative values. The
formulae of initial probabilities in DMPA become:

Pk(yk|xk,1, xk,2, xk,3, N0) = e−‖yk−(xk,1+xk,2+xk,3)‖2/N0 , (22)

For square and division, which are of higher complexity,
DMPA approximations 1 to 3 are proposed:

Pk(yk|xk,1, xk,2, xk,3, N0) = e−‖yk−(xk,1+xk,2+xk,3)‖/N0 , (23)

Pk(yk|xk,1, xk,2, xk,3, N0) = e−‖yk−(xk,1+xk,2+xk,3)‖2 , (24)

Pk(yk|xk,1, xk,2, xk,3, N0) = e−‖yk−(xk,1+xk,2+xk,3)‖, (25)

Similarly, we have Max-Log approximations 1 to 3 as follows.

P log
k (yk|xk,1, xk,2, xk,3, N0) = − 1

N0
‖ yk − (xk,1 + xk,2 + xk,3) ‖, (26)

P log
k (yk|xk,1, xk,2, xk,3, N0) = − ‖ yk − (xk,1 + xk,2 + xk,3) ‖2, (27)

P log
k (yk|xk,1, xk,2, xk,3, N0) = − ‖ yk − (xk,1 + xk,2 + xk,3) ‖, (28)

Analysis below will show these approximations have different
effects on error performance and computational complexity.

IV. RESULTS AND ANALYSIS

A. Error-Rate Performance

The 6-user SCMA system is simulated. Additional white
Gaussian noise (AWGN) is assumed. The maximum iteration
number is 5. Results are give in Fig. 5.

Fig. 5(a) shows the BLER performance of DMPA algorithm
with different approximations, different iterations, early ter-
mination, self-adaption, and initial noise reduction. Fig. 5(b)
shows the curves of Max-Log algorithm. According to Fig. 5,
we see

1) DMPA/Max-Log with more iterations enjoys better per-
formance, but the improvement is limited when iteration
number is sufficiently large. Shown by numerical results,
DMPA/Max-Log with 3 iterations is a good choice in
real implementation.

2) The average iteration number of early termination or
adaptive scheme is around 3, but the performance is
similar DMPA with 5 iterations. Results with different
parameters reveal that self-adaption performs better in
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Fig. 13. Data flow graph (DFG) of step-level architecture.
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Fig. 14. Data flow graph (DFG) of stage-level architecture.
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Fig. 15. Error-rate performance of DMPA with different approximation and detecting methods.

(b) Error-rate performance of Max-Log with different approximation.

Fig. 5. Error-rate performance of SCMA with different detecting methods.

high SNR. Thus, the adjusting factor in self-adaption is
supposed to be smaller at higher SNR.

3) DMPA and Max-Log have similar performance without
approximation. However, since DMPA heavily depends
on N0, approximations without precise N0 will cause
unbearable performance loss. On the other hand, Max-
Log algorithm is not sensitive to N0, and its approxi-
mations without exact N0 can still achieve good perfor-
mance. Therefore, Max-Log is preferred.

Now, we figure out that suitable configurations for hardware
implementation are: i) Max-Log approach; ii) 3 iterations; iii)
early termination and self-adaption; iv) Approximation 2 or 3,
and v) initial noise reduction.

B. Computational Complexity
Suppose the symbol set size for each user is M , the number

of physical resources is N , the user number is K, and the
maximum iteration number is I . Then, we summarize the
computational complexity of different decoding methods in
Table I. Compared with other methods, the proposed method
has the lowest computational complexity, while maintaining
the error performance. In fact, the proposed method is similar
to Max-Log, but has lower complexity in Initialization due
to the approximation. For a real system, M and N are
usually large, the number of multiplications and divisions
will makes other methods not suitable for implementation.
However, as discussed above, the proposed algorithm is
multiplication/division-free with Approximation 3. Therefore,
it can intensively improve the computational efficiency and
reduce the latency, making it more applicable for hardware
implementation in Section VI. The VLSI implementation re-
sults in Table IV will further verify that the proposed decoder’s
hardware efficiency over the SOA design.

C. Performance/Complexity Trade-Off Analysis
Fig. 6 illustrates the trade-off between error performance

and computational complexity of proposed methods. The

minimum required SNR to achieve 1% BER is employed as a
metric. The complexity is given by Timing (TM) complexity,
which is in term of iteration number. Fig. 6 shows the trade-off
of DMPA with approximations. It is clear that Max-Log with
Approximation 3 provides the best performance/complexity
trade-off.
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Fig. 6. Performance/complexity trade-off analysis of DMPA algorithm.

V. HARDWARE ARCHITECTURE

The hardware architecture of the Max-Log DMPA is dis-
cussed. Timing optimization and folding technique are intro-
duced for higer efficiency.

A. Overall Architecture

The overall architecture is shown in Fig. 7. It has 4 units
and 2 memory networks, which are RN-to-LN and LN-to-RN
networks for IR→L and IL→R, respectively. The elementary
units are Initialization Unit, Resource Node Update Unit,
Layer Node Update Unit, and Probability Calculating Unit,
which execute steps indicated by Eq. (15) to Eq. (21), re-
spectively. The iterative calculation is done by Resource Node
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TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY FOR DIFFERENT DECODING ALGORITHMS

Procedure Operation This work
DMPA [21] Max-Log [30] Pruned DMPA [31]
[APCCAS ’17] [China Comm. Dec. ’15] [DSP ’16]

Initial probability
calculation

ADD 2M3N/Tadp 3M3N/TMPA 3M3N/TMax-Log 3M3N/Ttree

MUL 0 3M3N/TMPA 3M3N/TMax-Log 3M3N/Ttree

EXP 0 M3N/TMPA 0 M3N/Ttree

Resource node
updating

ADD 2 · 3M3N 3M3N 2 · 3M3N 3M3N

MUL 0 2 · 3M3N 0 2 · 3M3N

MAX 3M3N 0 3M3N 0

Layer node
updating

ADD 0 2MK 0 2MK

MUL 0 2MK 0 2MK

SWOP 2MK 2MK 2MK 2MK

Users’ symbol
judgement

ADD MK 0 MK 0
MUL 0 MK 0 MK

MAX 0 MK 0 MK

Resource 

Node

Update

Unit

RN-to-LN 

Network

LN-to-RN 

Network

Layer 

Node

Update

Unit

Probability

Calculating

Unit

Output 

Initialization

Unit

0, , Ny H l̂

Fig. 7. Overall architecture of DMPA.

Update Unit and Layer Node Update Unit, both of which could
not start current propagation unless all previous data have
been calculated. We call this data updating interval a “step”.
Optimization details of this scheduling will be discussed
below.

B. Stage-Level Scheduling Optimization
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Fig. 8. Stage-level scheduling.

The proposed stage-level scheduling is a finer-grained op-
timization over the step-level scheduling. With this stage-
level scheduling, it is convenient to insert deep pipelines to
achieve a higher throughput [32–34]. Compared with step-
level scheduling, updating of stage-level scheduling does not
have to wait for the completion of data computation from
the previous unit, which therefore avoids low hardware-
efficiency and long processing-latency. In sum, stage-level

scheduling enjoys faster processing speed and higher hardware
efficiency than the step-level one. Fig. 8 shows the stage-level
scheduling. It details each computing step to achieve a deeper
pipelined structure.

C. Folding

The architecture of stage-level DMPA turns out to be very
complicated in form of data factor graph (DFG). To achieve an
efficient architecture, folding technique is employed for further
optimization. Since folding operation based on fine-grained
architecture is difficult to be carried out, a folding scheme
based on unit is considered. Fig.s 13 and 14 in appendix shows
the entire step- and stage-level algorithms, respectively. Due
to the page constraint, we only take a branch of Initialization
Unit, which is fully-paralleled in DFG, as an example to show
proposed folding details. Folding transform of other units can
be conducted in the similar fashion. The DFG of the branch
in Initialization Unit is shown in Fig. 9.
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Fig. 9. Original hardware of Step 1 before folding.

The folding includes 3 steps: i) construct folding sets
and folding equations, ii) analysis life span, and iii) allocate
registers. More details of this method are explained by [35].

1) Folding Sets and Folding Equations: Set the folding
factor to 7, we can obtain the following folding sets:

Sin = {1, 2, φ, φ, φ, φ, φ},
SA = {3, 4, 5, 6, 7, 8, 9},
SM = {10, 11, 12, φ, φ, φ, φ},

(29)

where Sin, SA, and SM denote the folding sets for inputs,
adders, and multipliers, respectively.
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Then, folding equations can be derived based on the given
folding sets

DF (1 → 3) = 0, DF (3 → 4) = 7, DF (4 → 5) = 7,

DF (2 → 7) = 3, DF (7 → 8) = 7, DF (8 → 9) = 7,

DF (5 → 10) = 4, DF (10 → 6) = 8, DF (6 → 11) = 4,

DF (9 → 12) = 2, DF (12 → 6) = 6,

(30)

where DF (x→ y) denotes the number of delays on the path
from x to y.

Cycle
Activated

number

Fig. 10. Life time figure.

2) Life Time Analysis: Life span analysis is demonstrated in
the form of life time figure as shown in Fig. 10. It is achieved
from folding equations. One thick line in the figure represents
survival time of certain data. Activated number shows number
of data in use at the moment [36]. According to Fig. 10, we
see that this folding architecture requires at least 8 registers.

3) Register Allocation: The forward-backward scheme of
register allocation is employed based on life span analysis [37].
The specific allocation process is displayed in Fig. 11.

Cycle Input 1R  2R  3R  4R  5R  6R  7R  8R  Output 

0           

1 2n , 3n  
         

2 4n , 10n  3n  2n  
       

3 5n  
 

3n  2n  4n  10n  
    

4 6n , 12n  5n  
 

3n  2n  4n  10n  
  

2n  

5 7n  12n  5n  6n  3n  
 

4n  10n  
  

6 8n  7n  12n  5n  6n  3n  
 

4n  10n  
 

7 9n  8n  7n  12n  5n  6n  3n  10n  4n  5n  

8  
9n  8n  7n  12n  4n  6n  3n  10n  3n , 6n  

9   
9n  8n  7n  12n  4n  10n  

 
4n , 9n  

10     
8n  7n  12n  

 
10n  10n , 12n  

11      
8n  7n  

   

12       
8n  7n  

 
7n  

13        
8n  

 
8n  

 

Fig. 11. Register allocation table of folding architecture.

After all the steps, we can finally obtain the folded archi-
tecture of the branch in Initialization Unit.

D. Hardware Architecture and Loop Analysis

The final stage-level folded architecture of DMPA, which
is illustrated at module-level in Fig. 12. Lower hardware cost
and reasonable processing speed become its main advantages.

The loop bound analysis [38, 39] of this folded architecture
is also given here. Suppose the processing time of an adder, a

y
MEM CMP SLT l̂D D D

D D

D
CMP SWOP

D2MAG

Loop 1Loop 2
Loop 3

Loop 4

Fig. 12. Hardware architecture of DMPA.

TABLE II
COST OF DIFFERENT ARCHITECTURES FOR “J = 6”

Different architectures Cycles
Hardware cost (main untis)

Adders (Comparators) Multipliers
Original 80 52 12

Stage-level folded 300 4 2

comparator, and a swopper are TA, TC , and TS , respectively.
We can obtain the results listed by Table III.

TABLE III
LOOP BOUND ANALYSIS

Loop ADD CMP SWOP Delay Loop bound
1 1 1 0 3 (TA + TC)/3

2 2 1 0 4 (2TA + TC)/4

3 1 1 1 4 (TA + TC + TS)/4

4 2 1 1 5 (2TA + TC + TS)/5

Thus, the iteration bound is calculated as follows:

T∞=max
{

TA+TC

3 , 2TA+TC

4 , TA+TC+TS

4 , 2TA+TC+TS

5

}
(31)

VI. VLSI IMPLEMENTATION

The proposed decoder’s VLSI implementation is given and
compared to two SOA baselines. The first is the DMPA de-
coder [21], and the second is the SMPA decoder [18]. As both
baselines do not consider folding, the proposed decoder does
not either for fair comparison. But if all designs are folded, the
proposed decoder’s advantages remain. Discussed previously,
the proposed decoder is based on: i) Max-Log approach; ii)
early termination and self-adaption; iii) Approximation 3, and
iv) initial noise reduction. Since the SMPA decoder employed
5 iterations, 1 up to 5 iterations are considered, though 3 turns
out to be efficient per our analysis. Both the proposed decoder
and DMPA decoder are implemented with Xilinx Virtex-7
XC7VX690T FPGA. The results of SMPA decoder is scribed
from [18], since it is implemented with ASIC. The frequency
is 500 MHz. The input quantization is 8-bit for both real and
imaginary parts, and the intermediate quantization is 16.

A. Module Details of Proposed Decoder

The proposed decoder consists of four basic parts as shown
in Fig. 7: initialization module, layer node updating network,
resource node updating network, and symbol judging module.
The design details are presented as follows.

1) Initialization Module: It calculates initial belief of each
user with the received signal and inner codebook. The received
signal is made up of 4 complex resource nodes, thus the input
is 8-parallel. Each of them has the quantization length of 8. It
is noted that the output belief has the quantization length of 16,
due to multiplication. The codebook is restored in memories,
which costs 96 memory blocks of 8-bit length each.
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2) Resource Node Updating Network: It calculates the sum
of belief and outputs the largest, based on the approximated
Jacobi’s formula. It is made up of resource node updating
units, where the input data are initial beliefs and layer node
beliefs, and the output data are the 4 resource node beliefs.
The largest value is selected from 16 intermediate beliefs, in
3 steps of comparison with 14 buffers. Thus, 56 buffers are
required by each unit, and 672 by the entire network.

3) Layer Node Updating Network: It is made up of layer
node updating units, which normalize the input value and
swop it by the inner connection. In each unit, the input data
are resource node beliefs only, and the output data are the
corresponding 4 layer node beliefs. Four 16-bit dividers are
required per unit with 28 clocks’ delay. Hence, the whole
network needs 48 dividers. Besides, layer node beliefs would
also be reset at the start of each frame of the received signals
in layer node updating network.

4) Symbol Judging Module: It finds the largest belief and
maps it to original source code according to the codebook
of each user. Also, this module consists of 6 smaller judging
units, which perform the basic function for each user. In each
unit, 4 beliefs are compared with each other. Thus 2 steps of
comparison and 3 buffers are required. Then, the entire module
needs 18 buffers.

The implementation comparison with the DMPA decoder is
listed in Table IV. It shows the proposed decoder’s advantages
in both complexity and throughput, thanks to the log-domain
processing and approximation approaches.

TABLE IV
FPGA RESULTS FOR DIFFERENT DECODERS WITH J/K = 6/4

SCMA decoders DMPA decoder [21] This work
LUTs 139, 205 (36%) 82, 909 (19%)

Registers 248, 217 (28%) 109, 997 (12%)

LUT-FF pairs 103, 127 (36%) 52, 203 (18%)

DSP48E1s 436 (12%) 436 (12%)

Maximum frequency 167.6 MHz 359.1 MHz

Since speed is the main focus of our design, comparison
results of throughput and latency with baselines are shown
in Table V, where “L” for latency and “T” for throughput.
As we can see from the table, the proposed SCMA decoder
outperforms the SOA in both throughput and latency, and
also meets the multi-Gbps and millisecond requirements of
3GPP. Though, SMPA decoder has complexity advantage, the
proposed decoder’s complexity can be further reduced with
folding techniques.

VII. CONCLUSION

In this paper, simplifications such as log-domain calculation
and probability approximation have been introduced to lower
the complexity of SCMA’s DMPA decoder. Early termination,
adaptive decoding, and initial noise reduction are also pro-
posed for faster convergence and better performance. Hard-
ware optimizations with folding and retiming are introduced.
VLSI implementation results have confirmed the advantages of
the proposed SCMA decoder for high-speed applications over

the SOA designs. Future research will be directed towards
further improvements on both algorithm and implementation.
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TABLE V
LATENCY (L) IN [µS] AND THROUGHPUT (T) IN [MB/S] FOR DIFFERENT DECODERS (FREQUENCY: 500 MHZ)

User # (J) 6 12 24 48 96 192

Resource # (K) 4 8 16 32 64 128

Iteration # (Imax) L / T L / T L / T L / T L / T L / T
This work

1 3.50 / 857.14 3.70 / 1628.57 3.96 / 3012.85 4.26 / 5423.13 4.58 / 9490.48 4.95 / 16133.81
2 5.50 / 547.69 5.84 / 1040.62 6.22 / 1925.14 6.66 / 3465.25 7.16 / 6064.20 7.74 / 10309.14
3 8.62 / 349.96 9.14 / 664.93 9.74 / 1230.12 10.42 / 2208.46 11.22 / 3874.88 12.12 / 6587.30
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Fig. 13. Data flow graph (DFG) of step-level architecture.
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