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Abstract—The application of high directional beam in mil-
limeter wave leads to a new downlink inter-cell interference
(ICI) characteristic that the ICI is high only if the beam of
a neighboring cell points towards a user in local cell. This
characteristic indicates that the ICI can be avoided if the
beams in the network are scheduled coordinately. In this paper,
we investigate the time-domain beam scheduling problem for
downlink ICI avoidance by modeling the entire network as a
graph, where the number of time slots occupied by each beam
is considered as a constraint to guarantee service quality. The
beams in each cell are classified according to the neighboring cells
they may interfere with. If two adjacent cells simultaneously use
the beam which may interfere with each other, beam collision
occurs, leading to strong ICI. Based on graph theory, we propose
a least beam collision (LBC) algorithm to minimize the number
of beam collisions, and we prove that this LBC algorithm is
capable of acquiring the global minimum beam collision solution.
Our simulation results verify that the strong ICI between two
neighboring cells can be efficiently eliminated, which benefits the
transmission reliability and the network’s sum rate.

Index Terms—Millimeter wave, beamforming, inter-cell inter-
ference, beam scheduling, beam collision, graph theory

I. INTRODUCTION

Millimeter wave (mmWave) band is currently considered as

a promising frequency band for future communication systems

due to its abundant bandwidth. For mmWave systems, high

directional power gain provided by large antenna array is

necessary to mitigate the severe path loss in the mmWave band

[1]–[4]. However, because of the hardware constraint, the full-

digital multi-input multi-output (MIMO) transceiver architec-

ture is no longer achievable [2]. Instead, analog beamforming

technique based on phase shifter is typically utilized to meet

the hardware constraint in mmWave communication [5]–[8].

In analog beamforming, a radio frequency (RF) chain is

connected to an antenna array through phase shifters, and the
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weights on phase shifters form a steering vector which steers

the direction of beam. To reduce the complexity of acquiring

steering vector, codebook based analog beamforming is usu-

ally adopted [5], [6]. The steering vector is selected from a

predefined codebook which includes multiple steering vectors

corresponding to different directions of beam. The transmitter

and receiver can jointly perform a beam training procedure

to determine which beam is selected from the codebook, and

such a joint transmit and receive beam training plays a key

role in 5G cellular network [6].

Due to the application of high directional beam, the down-

link inter-cell interference (ICI) in mmWave network mainly

depends on the direction of beam used by neighboring cell,

and this is different from lower frequency systems where

the radiation pattern of antenna tends to be omni-directional.

Unless the beam from a neighboring cell points towards a

local user, low ICI can be achieved. According to [9]–[12],

the performance of mmWave network is shown to be noise-

limited rather than interference-limited when the cell density

is low. However, for dense network, the ICI will limit the

network performance because of the increased ICI power.

Typically, signal processing techniques in physical (PHY)

layer are adopted as efficient means for combating ICI [14]–

[16], where the ICI is usually eliminated via the null space

projection of ICI signal. However, in this paper, we focus on

the scheduling methods for mitigating ICI in medium access

control (MAC) layer. Compared with PHY based methods,

MAC based methods attempt to avoid ICI instead of cancelling

ICI. Hence, unlike PHY based methods whose performance

critically depends on the accuracy of the channel state infor-

mation (CSI), the precision of CSI required by MAC based

methods can be coarser.

A. Related Works

Many state-of-the-art researches on mitigating the ICI of

mmWave network are based on network sum rate optimiza-

tion [17]–[22]. For example, the link arrangement problems

between base stations (BSs) and users are investigated in

[17], [19], [21], under different scenarios. The coordinated

frequency resource allocation problem is investigated in [18].

Obviously, the sum rate is an important network perfor-

mance metric, but optimizing sum rate causes two problems.

Firstly, the global CSI between multiple BSs and multiple

users over the whole network is required, and this induces

frequent CSI exchanging within the network, which further

imposes large transmission overhead as well as large latency.

Secondly, optimizing the network’s sum rate usually imposes
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high computational complexity and it is generally very chal-

lenging to find the global optimal solution.

Apart from sum rate optimization, the studies [23], [24]

investigate muting protocol, where an interfering cell is muted

if its beam may cause ICI to an user in neighboring cell.

The muting protocol is similar as the ICI coordination (ICIC)

mechanism in LTE [13], [25], which mutes a BS causing ICI

or lower its transmitting power on specific time or frequency

resources. Both the muting protocol and ICIC mechanism are

efficient to avoid ICI with low complexity, but the network’s

throughput is sacrificed because of the muted resources.

Another issue is that the time-domain behavior of mmWave

network is seldom considered in the state-of-the-art researches,

while it is common for one cell to serve different users at

different time slots, and different time-domain schedules of

beams can significantly influence the ICI level in the net-

work. [20] studies the time-domain beam scheduling problem

ensuring fairness among different users, i.e. every user in a

cell is assumed to occupy the same amount of time slots.

However, this assumption is not universal enough because

different users usually have different demands of service in

practical systems. When we allow the service demands to

be different, the scheduling problem has to be solved under

diverse service demands which are arbitrary rather than fixed.

Hence, we have to deal with diverse possibilities resulting

from different service demands, which makes the scheduling

problem more complex to solve. To the best of our knowledge,

there has been no prior research on mmWave ICI considering

the different service demands of users in time domain.

B. Our Contributions

In this paper, we develop a new time-domain beam schedul-

ing scheme for avoiding the downlink ICI in mmWave net-

works. We define beam collision as the event that a pair

of neighboring cells simultaneously use the beams which

may interfere with each other. By avoiding beam collision,

the occurrence of strong ICI between two neighboring cells

can also be avoided. Therefore, our goal is to minimize the

number of beam collisions in the network. In contrast to the

muting protocol or the ICIC mechanism of LTE, our time-

domain beam scheduling merely adjusts the time sequence of

the beams, which would not sacrifice the throughput of the

network.

Furthermore, in contrast to sum rate optimization, minimiz-

ing the number of beam collisions only has to consider the

beams at the network side, hence the beam scheduling could be

a purely network-side operation, which is easy to implement.

Moreover, in our beam scheduling, the users do not have

to measure the downlink CSI of multiple neighboring cells,

which significantly reduces the pilot overhead in the network.

To obtain the beam scheduling with the minimum number

of beam collision, we utilize graph theory to model the entire

network and the beam collision events between neighboring

cells. Specifically, each cell is represented by a node in a

graph which represents the network. For two neighboring

cells, the beams which may cause ICI between these two

cells form an edge connecting the two nodes. If two adjacent

cells simultaneously use the beams contained in the edge

connecting them, one beam collision occurs and strong ICI

might be encountered between the two cells. Furthermore,

we allow the beams in a specific cell to occupy different

numbers of time slots to serve the users, and the number

of time slots occupied by each beam is considered as the

service demand constraint in our scheduling problem. Then,

we propose least beam collision (LBC) algorithm to solve

our scheduling problem and prove that the LBC algorithm

is capable of acquiring the global minimum number of beam

collisions. Moreover, the minimum number of beam collisions

has a simple mathematical expression, which reveals that beam

collisions can be completely avoided in most cases, i.e., the

minimum number of beam collisions is zero.

Our main contributions are summarized as follows.

• Based on graph theory, we propose a new framework to

mitigate mmWave ICI via time-domain beam scheduling.

The downlink CSI is not required in the beam schedul-

ing after our graph model has been established.

• We allow the time-domain service demands of different

beams to be different, and propose the LBC algorithm

for solving the beam scheduling problem. The LBC

algorithm is proved to be capable of acquiring the global

minimum number of beam collisions.

• The expression of global minimum number of beam

collisions indicates that this number would be zero in

most cases, hence having the strong ICI between two

neighboring cells completely eliminated.

• Our simulations verified that the strong ICI between two

adjacent cells can be efficiently eliminated, and only the

weak ICI impinged from remote cells may affect the

users’ signal-to-interference-plus-noise ratio (SINR). The

transmission reliability is remarkably enhanced, and the

network sum rate is improved as well.

The rest of this paper is organized as follow. Section II

introduces our system model. The problem formulation and

preliminaries are provided in Section III. Section IV proves

the existence of the global minimum beam collision solution

of our scheduling problem and proposes the LBC algorithm

to acquire this solution. Simulation results are shown in

Section V, and Section VI offers our conclusions.

II. SYSTEM MODEL

We assumed that the network consists of K cells indexed

from 1 to K, and the kth cell has mk beams in its codebook

indexed from 1 to mk. We consider a time period consisting of

N time slots for beam scheduling, and each cell uses one beam

at each time slot. Furthermore, the beam training procedure is

assumed to be accomplished, hence the beam used for serving

each user is considered determined.

A. Beam Classification and Graph Construction

The network is modeled as a graph G, where each cell is

represented by a node. We denote the kth cell as node vk,

and all the K nodes form the node set V = {v1, · · · , vK}.

As illustrated in Fig. 1 (a), because of the geographic location

difference, only a few beams with certain directions in a cell
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Fig. 1. Illustration of system model. The beams in different classes are marked
with different colors: (a) network with K = 3 and mk = 12, 1 ≤ k ≤ 3,
and (b) graph model of (a).

may cause ICI to a neighboring cell. Therefore, we can classify

the beams in each cell according to the neighboring cell they

may interfere with. Specifically, for cell k, the beams which

may cause ICI to cell k′ are classified into an interfering class

denoted by the set Mk→k′ , and the beams in cell k which do

not interfere with any neighboring cell are classified into an

interference-free class denoted by the set Mk→0. For example,

for cell 1 in Fig. 1 (a), since beams 2 and 3 may interfere

with cell 2, we have M1→2 = {2, 3}. Similarly, we also have

M1→3 = {4, 5}, and M1→0 = {1, 6, 7, 8, 9, 10, 11, 12}.

In our beam classification, we add a constraint that every

beam belongs to only one class. Actually, few beams with

particular directions might cause ICI to two neighboring cells.

For example, in Fig. 1 (a), beam 8 of cell 2 may interfere

with both cell 1 and 3. For a beam that may interfere with

two neighboring cells, we only consider that it causes ICI to

the neighboring cell closer to the direction of the beam, and

its ICI to the other cell is treated as remote ICI and ignored.

Thus, beam 8 in cell 2 only belongs to the class M2→3, since

its ICI to cell 1 is smaller than its ICI to cell 3. It can be seen

that this constraint is actually a reasonable approximation.

As illustrated in Fig. 1 (b), for two neighboring cells k and

k′, the beams in Mk→k′ and Mk′→k form an undirected edge

ek,k′ connecting the two nodes vk and vk′ . The set of all

edges in G is denoted as E, and we obtain G = {V,E} as an

undirected graph that represents the network.

In practical systems, the beam classification can be per-

formed via user-aided interference measurement. For example,

a cell-edge user served by beam 3 of cell 1 may measure a

strong ICI from cell 2 and report it to cell 1. Then, according

to the time of the measured ICI, the network side can confirm

the beam of cell 2 which caused the ICI, e.g. beam 9, and

beam 9 would be added into class M2→1. Since the locations

of BSs and the directions of the beams in codebook are both

fixed, the structure of graph model can be long-term valid, so

the overhead induced by the maintenance of the graph model

would be low.

B. Beam Service Demand and Class Demand

Generally, the users in the network have different quality of

service (QoS) requirements. To satisfy the QoS demands of

different users, the upper layer of the network would determine

a set of configurations of the communication resources, which

includes the number of time slots allocated to each user.

This then determines the numbers of time slots occupied by

different beams. We denote the number of time slots demanded

by the mth beam in cell k as dk,m. Our objective is to perform

time-domain beam scheduling to avoid ICI under arbitrary

dk,m given by the upper layer.

Since the beams are classified into different classes, the class

demand d̄k→k′ of class Mk→k′ is defined as the sum of the

service demands of beams in Mk→k′ , which can be expressed

as

d̄k→k′ =
∑

m∈Mk→k′

dk,m, k′ ∈ Ṽk ∪ {0}. (1)

Here we denote the nodes’ indices of all the adjacent nodes

of node k by the node index set Ṽk, and all the beams in cell

k are divided into the sets Mk→k′ , k′ ∈ Ṽk ∪ {0}. Because

the total number of time slots is N and every beam belongs to

a unique class, the sum of class demands in each cell should

also be N , which can be written as
∑

k′∈Ṽk∪{0}

d̄k→k′ = N, k = 1, · · · ,K. (2)

Furthermore, since the different beam classes in each cell

are non-overlapped, the beams in the same class are treated

identically in the following discussion. Therefore, we carry

out the beam scheduling at class level rather than individual

beam level.

C. Beam Scheduling and Beam Collision

The beam schedule scheme of K cells over N time slots

is represented by the schedule matrix B ∈N
K×N . Since we

perform the class level scheduling, the entry bk,n in the kth-

row and nth-column of B indicates that a beam in class

Mk→bk,n
is used by cell k at the nth time slot.

We define beam collision as the event that two adjacent cells

simultaneously use the beams which may interfere with each

other, i.e., if δ(bk,n, k
′)δ(bk′,n, k) = 1, then cell k and cell

k′ cause a beam collision at time slot n, where the indicator

function δ(x, y) is defined by

δ(x, y) =

{
1, if x = y,
0, otherwise.

(3)

Therefore, the total number of the beam collisions nc of a

schedule scheme B can be written as

nc =

N∑

n=1

∑

ek,k′∈E

(
δ(bk,n, k

′)δ(bk′,n, k)
)
. (4)

Remark 1: The beam collision can be considered as a

necessary condition of the strong ICI between two neighboring

cells. Because of the uncertainties of user location and the

non-ideality of transmission environment, e.g. blockage or

reflection, a beam collision may or may not result in the

occurrence of ICI. However, we can almost ensure that the

strong ICI would not occur if the beam collision is avoided,

which allows us to merely consider the beam at BS side and

do not require the specific downlink channel state. Therefore,
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beam collision actually represents a possibility of strong ICI.

If we manage to schedule the beams with out beam collision,

we can eliminate the possibility of strong ICI between two

neighboring cells.

D. Beam Pattern

The flat-top beam pattern [9], [11] is adopted at BS side.

The directional power gain of beam is expressed as

G(φ) =

{
Gmax, |φ| ≤ φb

2
,

Gmin, |φ| > φb

2
,

(5)

where φ is the angle offset to the direction of a beam and

φb is beamwidth, while Gmax and Gmin are the directional

power gains when φ is inside and outside the beamwidth,

respectively. At the user side, we consider the worst case that

the omni-directional beam pattern is adopted, i.e. G(φ) = 1
for all φ.

Remark 2: In practical systems, directional beam pattern

might also be generated at user side. However, due to size and

power limitation of hardware, the user beamwidth is typically

very wide. Moreover, the user may intentionally use wide or

omni-directional beam to simplify beam training and tracking

procedure. Therefore, we consider the worst case that the user

side uses omni-directional beam pattern [18], [20], [23], where

the user is more susceptible to ICI. Besides, since our proposed

beam scheduling is a purely network-side operation, which is

independent of the beam pattern at user side, so our method

is actually feasible for various user beam patterns.

III. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

To satisfy the service demand constraints, there must be

d̄k→k′ entries equal to k′ in the kth row of B, which can be

expressed as

N∑

n=1

δ(bk,n, k
′) =d̄k→k′ , k = 1, · · · ,K, k′ ∈ Ṽk ∪ {0}. (6)

Therefore, given the graph G = {V,E} with beam classi-

fication, by combining (2), (4) and (6), we can formulate our

LBC scheduling problem as

min
B

nc =
N∑

n=1

∑
ek,k′∈E

(
δ(bk,n, k

′)δ(bk′,n, k)
)
,

s.t.
N∑

n=1

δ(bk,n, k
′) = d̄k→k′ ,

k = 1, · · · ,K, k′ ∈ Ṽk ∪ {0}.

(7)

The class demands d̄k→k′ can be arbitrarily given as long as

they satisfy (2) to ensure that the sum of class demands in

each cell is N . We will refer to the scheduling problem (7) as

a (K,N) problem, where K and N are the number of cells

and number of time slots, respectively.
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Fig. 2. An example of edge pruning. Since d̄1→2 6= 0 and d̄2→1 = 0, we
can prune edge e1,2 and add class M1→2 into the original interference-free
class M1→0.

B. Edge Pruning for Interference-free Class Extension

For two adjacent nodes vk, vk′ ∈G, if d̄k→k′ =0, the beams

in Mk′→k of cell k′ never cause beam collision to cell k
because cell k does not use the beams in Mk→k′ . Therefore,

we can include the beams in Mk′→k in the interference-free

class Mk′→0 by pruning (removing) edge ek,k′ . In this way,

the original interference-free class Mk′→0 is extended. An

example of edge pruning for interference-free class extension

is illustrated in Fig. 2. In this case, since d̄2→1 = 0, we can

prune edge e1,2 and extend M1→0 by adding the beams in

M1→2 into M1→0.

The procedure of edge pruning over the entire graph G is

summarized in Algorithm 1.

Algorithm 1 Edge Pruning for Graph G = {V,E}

1: Traverse every edge ek,k′ ∈ E;

2: If d̄k→k′ = 0 and d̄k′→k 6= 0,

3: remove edge ek,k′ , set Mk′→0 = Mk′→0 ∪ Mk′→k,

d̄k′→0 = d̄k′→0 + d̄k′→k, d̄k′→k = 0;

4: Else if d̄k→k′ 6= 0 and d̄k′→k = 0,

5: remove edge ek,k′ , set Mk→0 = Mk→0 ∪ Mk→k′ ,

d̄k→0 = d̄k→0 + d̄k→k′ , d̄k→k′ = 0;

6: Else d̄k→k′ = 0 and d̄k′→k = 0,

7: remove edge ek,k′ ;

8: End if.

The following proposition for the graph after edge pruning

is obviously holds.

Proposition 1. After edge pruning, for an arbitrary edge

ek,k′ ∈ E, we always have d̄k→k′ 6= 0 and d̄k′→k 6= 0.

C. Graph Theory Preliminaries

We provide several fundamental results in graph theory,

where the graph is assumed to be an undirected graph. For

readers interested in graph theory, we refer them to [26].

Definition 1. The degree of a node is defined as the number of

edges connected with the node, and a node who has k edges

is called a degree-k node.

Definition 2. An acyclic graph is a forest consisting of one

or multiple trees, where each tree represents a connected

component in the graph.

Proposition 2. A tree with n nodes has n− 1 edges.
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Proposition 3. A tree with n ≥ 2 nodes has at least two

degree-1 nodes.

Proposition 4. For an undirected tree, we can arbitrarily

select a node as the root of the tree and each edge in the

tree can be assigned a direction towards (or away from) the

root node, which turns the tree into a directed rooted tree.

IV. SOLUTION TO LEAST BEAM COLLISION SCHEDULING

PROBLEM

Assume that the edge pruning has been performed over

graph G and thus Proposition 1 holds. In searching the global

minimum solution to the problem (7), we first give a lower

bound to the number of beam collisions nc. Then we prove that

this lower bound is exactly the global minimum solution by

certifying that this lower bound can be reached. Accordingly,

the LBC algorithm is proposed to recursively acquire the

schedule which reaches the minimum value of nc.

A. Overweight Edges and Lower Bound of nc

We define an edge ek,k′ as an overweight edge in a (K,N)
problem, if d̄k→k′ + d̄k′→k ≥ N . The set of all overweight

edges in G is denoted as Eo, which can be expressed as

Eo ={ek,k′ ∈ E|d̄k→k′ + d̄k′→k ≥ N}. (8)

An overweight edge ek,k′ indicates that cell k and k′ use

the beams contained in ek,k′ at d̄k→k′ + d̄k′→k ≥ N time slots

in total. Intuitively, there are inevitably d̄k→k′ + d̄k′→k − N
time slots with beam collision between two cells (if d̄k→k′ +
d̄k′→k = N , there could be no beam collision). By counting

all the inevitable beam collisions for each overweight edge, we

can derive the following lemma which gives a lower bound of

nc.

Lemma 1. For a (K,N) problem,

nc ≥
∑

ek,k′∈Eo

(
d̄k→k′ + d̄k′→k −N

)
. (9)

Proof: See Appendix A.

Clearly, we need to prove that this lower bound is reachable.

B. Subgraph of Overweight Edges

We start from the subgraph Go = {Vo, Eo} formed by all

the overweight edges in Eo, where Vo is the set of the nodes

connected by overweight edges. First consider that Go has

circles, and we have the following lemma.

Lemma 2. For a (K,N) problem, if its subgraph Go formed

by the overweight edges has circles, the (K,N) problem can

be reduced to a smaller (K0, N) problem with K0 < K which

imposes the same number of beam collisions as the original

problem. Furthermore, the subgraph of overweight edges for

this smaller (K0, N) problem is acyclic.

Proof. See Appendix B.

From (24) in the proof, it can be seen that the appearance

of a cycle in Go is an extremely peculiar event. According to

Lemma 2, in proving the reachability of the lower bound (9),

we only need to consider the case where Go is acyclic.

Algorithm 2 Single Time Slot Scheduling Algorithm

1: Initialize C = ∅, kcur = k0, kpre = 0;

2: Repeat following steps until break;

3: if vkcur
/∈ Vo then

4: if kpre 6= 0 and Ṽkcur
= {kpre} then

5: Set bkcur
= 0, C = C ∪ {vkcur

};

6: if C = V then

7: break;

8: end if

9: Select a node vknew
∈ V \ C, set kcur = knew,

kpre = 0;

10: else

11: Select a node with index knew ∈ Ṽkcur
such that

knew 6= kpre, set bkcur
= knew, C = C ∪ {vkcur

};

12: if C = V then

13: break;

14: end if

15: if vknew
/∈ C then

16: Set kpre = kcur, kcur = knew;

17: else

18: Select a node vknew
∈ V \C, set kpre = 0, kcur =

knew;

19: end if

20: end if

21: else {vkcur
∈ Vo: denote tree in Go containing vkcur

as

Gt = {Vt, Et}}
22: Select a degree-1 node vkroot

in Gt such that kroot 6=
kcur, assign all edges in Et a direction towards root

vkroot
, denote node has edge with vkroot

in Gt as vk′

root
;

23: for each vk ∈ Vt \ {vkroot
} do

24: bk = ktowards, where directed edge from vk points

towards vktowards
;

25: end for

26: Set C = C∪(Vt\{vkroot
}), kcur = kroot, kpre = k′root;

27: Do steps in lines 4-20;

28: end if

C. Single Time Slot Scheduling

From Lemma 2, we can consider the generic (K,N)
problem whose Go is acyclic. Since Go is acyclic, it is a forest.

First, we introduce the definition of recursion condition.

Definition 3. A (K,N) problem is said to meet the recursion

condition if for every cell k, all its class demands are less

than N , i.e.,

d̄k→k′ < N, 1 ≤ k ≤ K, ∀k′ ∈ Ṽk ∪ {0}. (10)

Any class demand must be met the constraint d̄k→k′ ≤N .

The recursion condition rules out the case of d̄k→k′ = N .

For a (K,N) problem whose Go is acyclic, if the recursion

condition (10) is met, we can apply Algorithm 2 to schedule a

single time slot for the graph G. In Algorithm 2, C is the set of

the cells which has already been scheduled and it is initialized

as C = ∅. A node vk0
is selected from V arbitrarily as the

first node considered and we use kcur to represent the current

node, which is initialized to be kcur = k0. The algorithm also

initializes an index kpre to kpre = 0. The index kpre is used
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C = Φ 

Fig. 3. An example of Algorithm 2 with K = 6 cells. After initialization,
the algorithms executes 3 loops and is terminated when C = V . The arrow
from one node pointing towards another node indicates that the beam used
by the source node may interfere with the destination node of the arrow.

to record the node in the previous step which uses a beam that

may interfere with the current node, and if the previous node

does not interfere with the current node, we set kpre = 0.

Generally, the procedure of Algorithm 2 is to traverse all the

K nodes in G, which starts from C = ∅ and extends C in

each loop until C = V . Since Algorithm 2 terminates with

C = V , every cell in the graph is scheduled. Furthermore,

no beam collision occurs for this single time slot scheduling,

which will be proved in Lemma 3.

An example is given in Fig. 3 to explain the actions of

Algorithm 2. First note that all the overweight edges form the

forest Go which consists of two trees.

Initialization. In the initialization of the algorithm, we select

node v1 as the first traversed node.

First loop. Since node v1 ∈ Go and is contained in tree

{{v1, v6}, {e1,6}}, we select v6 as the root of the tree, assign

edge e1,6 a direction towards the root, and set b1 = 6 (lines

22-25). Next we consider the node v6 with kpre = 1 and

C = {v1}, and try to find the next considered node (lines

26-27). Since Ṽ6 = {1, 4, 5}, we can select v5 as the next

considered node, and thus we set b6 = 5, kcur = 5, kpre = 6
and C = {v1, v6} (lines 11-19).

Second loop. For the second loop, v5 is the currently con-

sidered node and lines 5-9 are executed. We set b5 = 0,

C = {v1, v5, v6}, and arbitrarily select a node from V \ C =
{v2, v3, v4}, e.g., node v2. Then, kcur is set to 2 and kpre = 0.

Third loop. Since v2 ∈ Go, the third loop is similar to

the first loop, where v4 is chosen to be the root of tree

{{v2, v3, v4}, {e2,3, e3,4}} and thus we set b2 = 3, b3 = 4,

C = {v1, v2, v3, v5, v6}. Then, we arbitrarily select a node

among {v1, v2, v6}, e.g., node v1, and we set b4 = 1 and

C = {v1, v2, v3, v4, v5, v6}.

Termination. Since we have C = V now, the algorithm is

terminated. It can be seen that every cell is scheduled and no

beam collision occurs.

For convenience, the schedule of the first time slot, i.e.,

the first column of B, is denoted as b ∈ N
K×1. After the

scheduling of the first time slot, we can denote the rest class

demands of Mk→k′ as d̄′k→k′ , which can be expressed as

d̄′k→k′ =

{
d̄k→k′ − 1, if bk = k′,
d̄k→k′ , if bk 6= k′,

(11)

where bk represents the kth entry in b.

Lemma 3. For a generic (K,N) problem whose Go is acyclic,

if the recursion condition (10) is met, we can acquire the

schedule of the first time slot b using Algorithm 2, which

induces no beam collision. Furthermore, the schedule of the

rest N−1 time slots is a (K,N−1) problem and this (K,N−1)
problem has the same lower bound of beam collisions as the

original (K,N−1), that is,
∑

ek,k′∈E′

o

(
d̄′k→k′ + d̄′k′→k − (N − 1)

)
(12)

=
∑

ek,k′∈Eo

(
d̄k→k′ + d̄k′→k −N

)
,

where E′
o=

{
ek,k′ |d̄′k→k′ + d̄′k′→k ≥ (N−1)

}
represents the

overweight edge set of the ‘reduced’ (K,N−1) problem.

Proof. See Appendix C.

D. Global Minimum Solution

We are now ready to prove that the lower bound given by

Lemma 1 is reachable. In fact, based on Lemmas 2 and 3, we

can prove that this lower bound is exactly the global minimum

solution to the (K,N) problem (7), which is stated in the

following theorem.

Theorem 1. For the (K,N) problem (7), the global minimum

solution is given by

n⋆
c =

∑

ek,k′∈Eo

(
d̄k→k′ + d̄k′→k −N

)
. (13)

Proof. See Appendix D.

Moreover, from Theorem 1, the following corollary is

obvious.

Corollary 1. If Eo = ∅, n⋆
c = 0.

Based on the proof of Theorem 1, the LBC algorithm is pro-

posed in Algorithm 3 for beam scheduling which guarantees

to reach the minimum number of beam collisions n⋆
c .

The LBC algorithm is inherently recursive. For cases 3, 4
and 5, either K or N is reduced, and then the LBC algorithm

for a smaller problem is called. When either K or N is reduced

to 1, we have case 1 or case 2, which can be scheduled easily.

We now analyze the computational complexity of the pro-

posed LBC algorithm. In graph G, since each cell only has

edges with its geographically neighboring cells, the degree

of each node is limited. Thus we assume that the degree of

each node is not larger than a constant c. Then, we consider

the worst case where case 5 appears in every recursion

with no reduction of K, and N recursions are required. In

each recursion, edge pruning and finding overweight edges

both induce a computational complexity on the order of

O(cK). Because there are at most K overweight edges, the
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Algorithm 3 (K,N) Least Beam Collision Algorithm

1: Perform edge pruning using Algorithm 1;

2: case 1: K = 1
3: Arbitrarily schedule the beams in cell 1;

4: case 2: N = 1
5: Set bk,1 = k′ if d̄k→k′ = 1;

6: case 3: K,N > 1 and there exists a cycle in Go

7: Schedule cells in cycle according to (25), then remove

cycle from G;

8: Call (K − Kc, N) LBC algorithm for scheduling rest

cells;

9: case 4: K,N > 1, Go is acyclic and there exists a

d̄k0→k′

0
= N

10: if k′0 6= 0 then

11: Set bk0,n = k′0 for n = 1, · · · , N , Mk′

0
→0 = Mk′

0
→0 ∪

Mk′

0
→k0

, d̄k′

0
→0 = d̄k′

0
→0 + d̄k′

0
→k0

, d̄k′

0
→k0

= 0, and

remove vk0
, ek0,k

′

0
from G;

12: else

13: Set bk0,n = 0 for n = 1, · · · , N , and remove vk0
from

G;

14: end if

15: Call (K−1, N) LBC algorithm for scheduling rest cells;

16: case 5: K,N > 1, Go is acyclic and all d̄k→k′ < N
17: Use Algorithm 2 to acquire schedule of first time slot;

18: Call (K,N−1) LBC algorithm for scheduling rest time

slots;

computational complexity of finding the trees in Go and

judging whether there exists a cycle in Go is O(K2). Next,

in the single time slot scheduling, it can be seen that the

complexity of adding each node into C and finding the next

considered node does not exceed O(K), and the complexity

of single time slot scheduling is also O(K2). Therefore, the

computational complexity of one recursion for one time slot is

O(cK+K2)=O(K2) and the total computational complexity

of Algorithm 3 is O(NK2).

E. Extension to Weighted Edges

Due to the uncertainties of the practical environment be-

tween two neighboring cells imposed by potential scatters or

obstacles, the performance loss caused by the beam collisions

corresponding to different edges might be different. Therefore,

a promising extension of our scheduling problem is to assign

different weights to the edges according to the level of

interference. It is fortunate that the scheduling problem after

assigning weights would still have the same optimal beam

scheduling solution as the original problem. Hence, the LBC

algorithm can still be adopted to find the optimal solution.

We denote the weight assigned to edge ek,k′ as wk,k′ , and

the number of weighted beam collisions nc,new is expressed

as

nc,new =

N∑

n=1

∑

ek,k′∈E

wk,k′

(
δ(bk,n, k

′)δ(bk′,n, k)
)
.

m=2, M=12 m=4, M=24

1

2

3

...

...
12 1 2

3 ...
...24

l l

Fig. 4. Beam pattern in a cell. The number of beams in each 60
◦ sector is

m=2, 4 and the total number of beams is M=12, 24.

On the one hand, similar to the proof of Lemma 1, by counting

the inevitable weighted beam collisions caused by the edges

in Eo, the lower bound of nc,new can be readily shown to be

nc,new ≥
∑

ek,k′∈Eo

wk,k′

(
d̄k→k′ + d̄k′→k −N

)
.

On the other hand, since the optimal scheduling for the original

problem (7) only causes the inevitable beam collisions in

Eo, it also achieves the above lower bound of the number

of weighted beam collisions. Therefore, this lower bound is

reachable by applying our LBC scheduling to the original

problem, and the global optimal number of weighted beam

collisions can be expressed as

n∗
c,new =

∑

ek,k′∈Eo

wk,k′

(
d̄k→k′ + d̄k′→k −N

)
.

V. SIMULATION RESULTS

Monte Carlo simulations are conducted to evaluate the

performance of our proposed beam scheduling, in terms of

the number of beam collisions incurred, cumulative distribu-

tion function (CDF) of SINR, and network sum rate. Since

there has been no state-of-the-art research on mmWave ICI

considering the different time-domain service demands of

beams, the performance of the random scheduling with no

cell coordination, the muting protocol [23], [24], and the

ideal interference-free scheduling is simulated as benchmark

counterparts.

A. Simulation Setup

We represent each cell by a regular hexagon region as shown

in Fig. 4. Each cell is divided into six 60◦ sectors and the

number of beams in a sector is m. In our simulation, we set

m=2 and 4, and hence the total numbers of beams in two cells

are M=12 and 24, respectively. Besides, we set Gmax=10 dB

if m= 2, and Gmax = 13 dB if m = 4, while Gmin = 0 for

both m=2 and 4. The length of each side of regular hexagon

cell is denoted as l.
As shown in Fig. 5, two scenarios are set up with 7 and

12 cells in the network, respectively. The beam classification

is based on 60◦ sector. For two neighboring cells, the beams

in two adjacent 60◦ sectors are filled with same patterns (the

same color in the figure), and they form an edge connecting

two neighboring cells. Accordingly, the graph models of the

two scenarios are derived as shown in the figure.
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The 3GPP urban macro path loss model [27] is employed.

The path losses of line-of-sight (LOS) and non-LOS (NLOS)

paths are expressed respectively by

LLOS (dB) =32.4 + 20 log10(d) + 20 log10(fc), (14)

LNLOS (dB) =13.54 + 39.08 log10(d) + 20 log10(fc), (15)

where d represents the distance and fc is carrier frequency,

which is set to 28 GHz. The probability of LOS path is given

by

PrLOS =
18

d
+ exp

(
−

d

36

(
1−

18

d

))
. (16)

This model could take the effects of possible blockage and

reflection into account.

The demands of beams are randomly generated but satisfy-

ing the constraint (2), and each beam is assumed to serve a

user with the corresponding demand, where we set N = 30.

Since our objective is to evaluate the effect of ICI, we focus

on the performance of cell-edge users, and hence the worst

case is assumed where all users are considered at cell edge.

B. Average Beam Collisions Comparison

The average numbers of beam collision over 1000 simu-

lations for scenarios A and B are shown in Fig. 6. In this

simulation, we do not distinguish the two beam patterns. This

is because the beam collision event is defined at class level,

and the graph models of the two beam patterns are essentially

the same after beam classification.

It can be seen that the average numbers of beam collisions

under our LBC scheduling in both scenarios are substantially

lower than those of the random scheduling in orders of

magnitude. Since the LBC algorithm is capable of acquiring

the minimum number of beam collisions, the average number

of beam collisions under LBC scheduling can be extremely

low, close to 0. This implies that the number of beam collisions

in LBC scheduling is 0 in most cases, where the strong ICI

between every pair of neighboring cells can be completely

eliminated.

Fig. 5. Networks with 7 cells (scenario A) and 12 cells (scenario B). The
beams are classified by 60

◦ sectors, where two adjacent 60
◦ sectors of

neighboring cells are filled with same pattern, which represents the beams
that may cause ICI to each other, and they form an edge in the graph.

This results for the LBC scheduling actually agree with

Corollary 1. Because the class demands are randomly gen-

erated in each cell, the probability of the appearance of an

overweight edge is very low. Therefore, we have Eo = ∅ in

most cases. According to Corollary 1, the number of beam

collisions is 0 when Eo=∅. As a result, the number of aver-

age beam collisions achieved by the LBC scheduling would

be nearly 0. Additionally, the numbers of beam collisions

achieved by the LBC scheduling are verified to match the

minimum beam collision solution n⋆
c given by Theorem 1 in

all the 1000 simulations.

C. SINR Comparison

In the both scenarios, we set the transmission power of each

cell to 20 dBm and the noise power at user side to −80 dBm,

while the side length of each hexagon cell is chosen to be

l=50m. Then, we simulate the CDFs of SINR for all users

in the network.

The CDF comparison between the SINR for the LBC and

random scheduling is shown in Fig. 7. Observe that there are 3

regions in the CDF curve representing different levels of SINR.

For example, for the senario of m=2 depicted in Fig. 7 (a),

there is a low SINR region around 0 dB, where the users suffer

from the strong ICI from the closest neighboring cell and the

power of ICI is almost equal to the received power from local

cell. Also, a mid SINR region from 6 dB to 15 dB exists in

Fig. 7 (a), where the ICI is from remote cells rather than the

closest neighboring cell and, therefore, the SINR is relatively

high. Finally, as shown in Fig. 7 (a), the majority of users lies

in the highest SINR region from 15 dB to 16 dB, where the

users almost suffer from no ICI, which also indicates that no

beam from other cells interferes with the users in this region.

Comparing the CDF of the SINR under LBC scheduling

to that of the random scheduling, we observe that the low

SINR region is eliminated by our LBC scheduling, which

can improve the transmission reliability significantly. Under

the random scheduling, burst of low SINR could frequently

appear in the time domain, leading to bursty data detection

errors. As a result, a relatively high symbol error rate (SER)

is induced, and causes frequent frame or packet loss events.

An additional set of simulation quantifying the SER of QPSK

based on the SINR CDF given by Fig. 7 is shown in Table

I, where we assume that the interference signal is scrambled

and can be treated as noise. It can be seen that the elimination

of the low SINR region around 0 dB remarkably enhances
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Fig. 6. Comparison of average beam collisions for LBC scheduling and
random scheduling.
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Fig. 7. CDFs of SINR of users in the network with l = 50m. (a) Scenario
A m = 2, and (b) Scenario B m = 4.

TABLE I
SER Comparison between Random Scheduling and LBC Scheduling

Scenario A Scenario B
m = 2 m = 4 m = 2 m = 4

Random 6.53 e−2 3.90 e−2 6.48 e−2 3.74 e−2

LBC 7.00 e−5 2.60 e−6 2.30 e−5 1.90 e−6

the transmission reliability of LBC scheduling compared with

random scheduling.

Furthermore, the proportions of users in the mid SINR

region of LBC scheduling and random scheduling are close.

Consequently, the proportion of users in the high SINR region

suffering no ICI for the LBC scheduling is clearly larger than

that for the random scheduling.

Generally, less users are in the low SINR region for the

m = 4 scenario than for the m = 2 scenario, and similarly

less users are in the mid SINR region for the m=4 scenario

than for the m=2 scenario. This is because the beamwidth is

narrower when m= 4, and the probability of the occurrence

of ICI is also smaller.

D. Network Sum Rate Comparison

Next we compare the network’s sum rate achieved by

our LBC scheduling to those of the random scheduling, the

muting protocol and the ideal interference-free scheduling. The

system bandwidth is set to 500 MHz. For the interference-free

scheduling, we assume that the beams are scheduled in the

same manner as the random scheduling but the ICI powers
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Fig. 8. Network sum rates with l = 50m, m = 2 and 4. (a) Scenario A,
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Fig. 9. Network sum rates with m = 2, l = 50m and l = 100m. (a) Scenario
A, and (b) Scenario B.

are all 0. Therefore, the interference-free scheduling serves as

an ideal upper bound of network sum rate.

The sum rate comparison of the four schedules with l =
50m, m = 2 and 4 is demonstrated in Fig. 8 for the both

network scenarios. As expected, the sum rate performance of

the LBC scheduling lies between the interference-free upper

bound and the sum rate of the random scheduling. According

to our results in Section V-C, the performance gain of the

LBC scheduling over the random scheduling mainly results

from the elimination of strong ICI. The performance gap

between the LBC and the ideal interference-free scheduling

can be attributed to remote ICI. Meanwhile, the sum rates

achieved by the muting protocol under different parameters are

less than that of LBC scheduling because of the muted time

slots. However, since the strong ICI is avoided, the muting

protocol outperforms the random scheduling. In addition,

the information whether a certain beam causes strong ICI

to a certain user is assumed to be known by the muting

protocol, which indicates that the muting protocol requires

more accurate CSI than our LBC scheduling.

The effect of different cell densities is further simulated

by comparing the sum rates for the cases of l = 50m and

l = 100m, as shown in Fig. 9. It can be seen that when

l=100m, the sum rates of the four schedules are very close,

which indicates that the effect of ICI is negligible. This result

agrees with the conclusions given in [10]–[12], namely that

the network becomes noise-limited when the cell density is

low. When l is reduced to 50m, while the transmission power

and bandwidth both remain unchanged, the increase of cell

density leads to a significant increase of sum rate for all

four scheduling schemes. Meanwhile, the power of ICI also

increases with the cell density and becomes an important factor

which limits the network’s performance, resulting in obvious

performance gaps between the four scheduling schemes. In this

case, our proposed LBC scheduling can be utilized to avoid

the strong ICI between neighboring cells and hence to boost

the sum rate as well.

VI. CONCLUSIONS

In this paper, a new ICI avoidance method based on

time-domain beam scheduling for mmWave cellular network

has been proposed. Specifically, by classifying the beams
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according to the cells that they may interfere with, we have

modeled the entire network as a graph and we have proposed

to schedule the beams in each cell in time domain to minimize

the number of beam collisions, which eliminates the strong ICI

caused by neighboring cells as much as possible. Our proposed

scheduling is fully transparent to users and, therefore, no CSI

exchange is required between the users and the network in our

scheduling. We have proved via graph theory that the proposed

LBC scheduling algorithm guarantees to acquire the global

minimum number of beam collisions. The theoretical results

have also shown that the minimum number of beam collisions

is 0 in most cases, which indicates that the strong ICI usually

can be avoided completely. Simulation results have verified

our theoretical analysis.

APPENDIX

A. Proof of Lemma 1

Proof: If Eo = ∅, Lemma 1 is equivalent to nc ≥ 0,

which is apparently true.

If Eo 6= ∅, we arbitrarily consider an edge ek,k′ ∈ Eo.

Obviously, d̄k→k′ + d̄k′→k ≥ N . We denote Tk→k′ and Tk′→k

as the sets of time slots during which cell k uses the beams

in Mk→k′ and cell k′ uses the beams in Mk′→k, respectively.

Or equivalently, we can express

Tk→k′ = {n|bk,n = k′} and Tk′→k = {n|bk′,n = k}, (17)

where we have |Tk→k′ | = d̄k→k′ and |Tk′→k| =
d̄k′→k owing to the service demand constraint. Note that

δ(bk,n, k
′)δ(bk′,n, k) = 1 if and only if n ∈ Tk→k′ ∩ Tk′→k.

Besides, we have |Tk→k′ ∪ Tk′→k| ⊂ {1, · · · , N}. Hence,

N∑

n=1

(
δ(bk,n, k

′)δ(bk′,n, k)

)
= |Tk→k′ ∩ Tk′→k| (18)

= |Tk→k′ |+ |Tk′→k| − |Tk→k′ ∪ Tk′→k|

≥ |Tk→k′ |+ |Tk′→k| −N = d̄k→k′ + d̄k′→k −N.

By substituting (18) into (4), we arrive at

nc =

N∑

n=1

∑

ek,k′∈E

(
δ(bk,n, k

′)δ(bk′,n, k)
)

(19)

=
∑

ek,k′∈E

N∑

n=1

(
δ(bk,n, k

′)δ(bk′,n, k)
)

≥
∑

ek,k′∈Eo

N∑

n=1

(
δ(bk,n, k

′)δ(bk′,n, k)
)

≥
∑

ek,k′∈Eo

(
d̄k→k′ + d̄k′→k −N

)
.

This completes the proof.

B. Proof of Lemma 2

Proof. Consider any circle of Go and denote this cycle

as a subgraph G1
c = {V 1

c , E
1
c} of Go, where V 1

c and

E1
c are the node set and the edge set of this cycle, re-

spectively. The number of the nodes in G1
c is denoted as

K1
c . Further denote V 1

c = {v1, v2, · · · , vK1
c
} and E1

c =
{e1,2, e2,3, · · · , eK1

c−1,K1
c
, eK1

c ,1
}. Since G1

c is a subgraph of

Go, the edges in E1
c are overweight edges, i.e., E1

c ⊂ Eo.

Therefore,

K1

c∑

k=1

(
d̄k→k+1 + d̄k+1→k

)
≥

K1

c∑

k=1

N = K1
cN, (20)

where for convenience we introduce the node vK1
c+1 which is

actually v1 in the cycle G1
c , and hence d̄K1

c→K1
c+1 = d̄K1

c→1

and d̄K1
c+1→K1

c
= d̄1→K1

c
in (20). On the other hand, since the

class demands in each cell must satisfy (2), we have

K1

c∑

k=1

(
d̄k→k+1 + d̄k+1→k

)
=

K1

c∑

k=1

(
d̄k→k−1 + d̄k→k+1

)
(21)

≤

K1

c∑

k=1

N = K1
cN,

where for convenience we introduce the node v0 which is

actually vK1
c

in the cycle Gc, and thus d̄1→0 = d̄1→K1
c

in

(21). Comparing (20) with (21), it can be seen that

K1

c∑

k=1

(
d̄k→k+1 + d̄k+1→k

)
= K1

cN, (22)

which indicates that the inequalities in (20) and (21) both

become equality. Therefore, we have

d̄k→k−1 + d̄k→k+1 = d̄k→k+1 + d̄k+1→k = N, (23)

for k = 1, · · · ,K1
c . From (23), we can derive

d̄1→2 = d̄2→3 = · · · = d̄K1
c→1, (24)

d̄2→1 = d̄3→2 = · · · = d̄1→K1
c
= N − d̄1→2.

Owing to (2) and (23), the class demands other than d̄k→k−1

and d̄k→k+1 of vk∈V 1
c are all 0. Furthermore, if there exists

an edge ek,k′ connecting vk ∈ V 1
c with a node vk′ ∈ V \ V 1

c ,

Proposition 1 implies that the edge can be pruned because

d̄k→k′ =0. Thus, G1
c is an isolated subgraph in G. Based on

(24), we can schedule the cells 1 to K1
c in G1

c as follow
{

bk,n = k + 1, n = 1, · · · , d̄1→2, k = 1, · · · ,K1
c ,

bk,n = k − 1, n = d̄1→2 + 1, · · · , N, k = 1, · · · ,K1
c ,
(25)

where again similar to our previous notations, b1,n = 0 and

bK1
c ,n

= K1
c + 1 in the cycle actually represent b1,n = K1

c

and bK1
c ,n

= 1, respectively. It can be easily verified that

the schedule (25) imposes 0 beam collision in G1
c over N

time slots. Consequently, due to the isolation between V 1
c and

V \V 1
c , the schedule of the rest cells in V \V 1

c , which is a

(K − K1
c , N) problem, must imposes the same number of

beam collisions as the original (K,N) problem.

If G1
c is the only circle of Go, the subgraph of over-

weight edges corresponding to the (K −K1
c , N) problem

is obviously acyclic. Otherwise, let the original Go contain

Nc > 1 circles, each having Knc
c nodes for 1 ≤ nc ≤ Nc.

We can repeat the above procedure to the remaining Nc−1
circles. Consequently, we can reduce the (K,N) problem
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to a smaller
(
K−

∑Nc

nc=1
Knc

c , N
)

problem, which imposes

the same number of beam collisions as the original (K,N)
problem. Moreover, the subgraph of overweight edges for this

small problem is acyclic.

C. Proof of Lemma 3

Proof. Since the recursion condition (10) holds, we have

d̄k→k′ ≤ N−1, k′ ∈ Ṽk ∪ {0} for every k. From (11), it is

obvious that
∑

k′∈Ṽk∪{0}

d̄′k→k′ = N − 1, k = 1, · · · ,K. (26)

Hence, the rest problem is a (K,N − 1) problem for an

arbitrary b.

According to the recursion condition (10) and the con-

straint (2), there are at least two non-zero entries in{
d̄k→k′

}
k′∈Ṽk∪{0}

for every k. If there is only one non-

zero entry in {d̄k→k′}k′∈Ṽk
, then we must have d̄k→0 > 0.

Otherwise,
{
d̄k→k′

}
k′∈Ṽk

must have two or more non-zero

entries, i.e.,
∣∣Ṽk

∣∣ ≥ 2. Therefore, we have the following

proposition.

Proposition 5. If the recursion condition (10) holds, then for

each cell k, either
∣∣Ṽk

∣∣ ≥ 2, or
∣∣Ṽk

∣∣ = 1 and d̄k→0 > 0, for

each cell k.

In Algorithm 2, the following property can be clearly

observed.

Proposition 6. At the beginning of each loop, kcur /∈C and no

cell in C schedules a beam to interfere with cell kcur except

cell kpre, i.e., bk 6=kcur for k∈C \ {kpre}.

We now prove that every loop of Algorithm 2 is feasible and

no beam collision occurs after each loop. Since we initialize

C = ∅, there is no beam collision at the beginning. Hence,

we consider an arbitrary loop and assume that the algorithm

is feasible and no beam collision occurs before this loop. All

the possibilities of node vkcur
are discussed as follow.

(i) vkcur
/∈ Vo.

(i.1) kpre 6=0 and Ṽkcur
={kpre}:

Since
∣∣Ṽkcur

∣∣ = 1, according to Proposition 5, we have

d̄kcur→0>0. Therefore, cell kcur can use a beam in Mkcur→0,

i.e., bkcur
=0 and no beam collision occurs.

(i.2) kpre=0 or Ṽkcur
6={kpre}:

According to Proposition 5, we have Ṽkcur
6=∅ in either case.

If kpre=0, then we can arbitrarily select a knew∈ Ṽkcur
such

that knew 6= kpre. If kpre 6= 0, then we have Ṽkcur
6= {kpre}.

On the other hand, cell kpre interferes with cell kcur because

of kpre 6=0, which indicates that cell kpre is a neighboring cell

of cell kcur, i.e., kpre ∈ Ṽkcur
. Combining kpre ∈ Ṽkcur

with

Ṽkcur
6={kpre}, it can be seen that there must exist an entry in

Ṽkcur
other than kpre. Therefore, we can select a knew∈ Ṽkcur

such that knew 6=kpre.

If vknew
/∈ C, it is apparent that no beam collision occurs

because cell knew has not been scheduled yet. If vknew
∈C, the

beam collision between cell knew and cell kcur occurs only

if bknew
= kcur. However, since knew 6= kpre, bknew

= kcur

contradicts Proposition 6. Therefore, we must have bknew
6=

kcur and no beam collision occurs.

(ii) vkcur
∈ Vo

Since Go is acyclic, it is a forest. We denote the tree in Go

containing vkcur
as Gt={Vt, Et}. According to Proposition 3,

there must exist a degree-1 node vkroot
in Gt such that kroot 6=

kcur. Then, according to Proposition 4, the procedure in lines

22-25 of Algorithm 2 is feasible to schedule the nodes in

Vt\{vkroot
}.

Note that, for every vk ∈ Vt, we have vk /∈ C, otherwise

vk would have already been scheduled in the previous loops,

which results in kcur ∈ C and contradicts Proposition 6.

Therefore, the schedule of the nodes in Vt \ {vkroot
} does

not cause beam collision since they have not been scheduled.

Since vkroot
is a degree-1 node in Gt, the schedule of cell kroot

is equivalent to case (i) with kcur = kroot and kpre = k′root,
where k′root denotes the node having edge with vkroot

in Gt.

So far, we have certified the feasibility of Algorithm 2 and

proved that no beam collision occurs in the schedule of b.

Next, we prove that (12) is also satisfied.

In lines 22-25, according to Proposition 2 and 4, for every

tree Gt={Vt, Et} in Go, all |Vt|−1 edges in Gt are assigned

a direction. Therefore, for every overweight edge ek,k′ ∈Eo,

one of cell k and cell k′ uses the beam contained in ek,k′ .

Thus we have

d̄′k→k′ + d̄′k′→k = d̄k→k′ + d̄k′→k − 1, (27)

for every ek,k′ ∈ Eo. This leads to

d̄′k→k′ + d̄′k′→k − (N − 1) = d̄k→k′ + d̄k′→k −N ≥ 0,
(28)

for every ek,k′ ∈ Eo, which indicates that every overweight

edge ek,k′ ∈Eo is an overweight edge in the rest (K,N−1)
problem, i.e., Eo⊂E′

o. On the other hand, if E′
o\Eo 6=∅, for

every edge ek,k′ ∈E′
o \ Eo, we have

d̄′k→k′ + d̄′k′→k − (N − 1) ≥ 0, d̄k→k′ + d̄k′→k −N < 0.
(29)

Noting that d̄′k→k′+d̄′k′→k≤ d̄k→k′+d̄k′→k due to (11), we

can derive

d̄′k→k′ + d̄′k′→k = d̄k→k′ + d̄k′→k = N − 1, (30)

for every ek,k′ ∈ E′
o \ Eo. From (28) and (30), we arrive at

∑

ek,k′∈E′

o

(
d̄′k→k′ + d̄′k′→k − (N − 1)

)

=
∑

ek,k′∈Eo

(
d̄′k→k′ + d̄′k′→k − (N − 1)

)
+

∑

ek,k′∈E′

o\Eo

(
d̄′k→k′ + d̄′k′→k − (N − 1)

)

=
∑

ek,k′∈Eo

(
d̄k→k′ + d̄k′→k −N

)
. (31)

This completes the proof.



12

N

K

N

K

N

K

Step 1: prove K=1 case Step 2: prove N=1 case Step 3: prove general (K,N) case

Fig. 10. Three steps of the two-dimensional induction on K and N to prove
Theorem. 1.

D. Proof of Theorem 1

Proof. Based on Lemma 1, we only have to prove that the

lower bound is reachable. A two-dimensional induction on K
and N is employed in the proof. The whole proof contains

three steps as depicted in Fig. 10.

Firstly, we consider the K = 1 case, where N can be

arbitrary. Since there is only a single cell, no beam collision

occurs for any scheduling. On the other hand, no edge exists

in G, so Eo=∅ and we have

n⋆
c =0 =

∑

ek,k′∈Eo

(
d̄k→k′ + d̄k′→k −N

)
.

Therefore, Theorem 1 holds for K=1.

Then, we consider the N = 1 case, where K can be

arbitrary. Due to (2), for each cell k, there is only one entry in{
d̄k→k′

}
k′∈Ṽk∪{0}

which is 1, and the other entries are all 0.

Therefore, there is only one feasible scheduling, where each

cell uses the beam in the only class whose class demand is

1. In this case, according to Proposition 1, an edge ek,k′ ∈E
if and only if d̄k→k′ = d̄k′→k = 1, which also indicates that

d̄k→k′ + d̄k′→k−N = 1 for each ek,k′ ∈E and thus E =Eo.

Therefore, we have

n⋆
c =

∑

ek,k′∈E

(
δ
(
bk,1, k

′
)
δ
(
bk′,1, k

))
=

∑

ek,k′∈Eo

1

=
∑

ek,k′∈Eo

(
d̄k→k′ + d̄k′→k −N

)
,

that is, Theorem 1 holds for N = 1.

Since we have proved the theorem for K=1 case and the

N = 1 case, to prove the general case of K =K0, N =N0,

we can assume that Theorem 1 holds for all K≤K0, N≤N0

cases, except for the K = K0, N = N0 case. Then, we will

prove that Theorem 1 holds for the K = K0, N = N0 case.

There are three possibilities as discussed below.

(i) There exists a cycle in Go.

According to the proof of Lemma 2, by denoting the cycle

as a subgraph Gc= {Vc, Ec}, where Vc= {v1, · · · , vKc
}, the

nodes in Vc can be scheduled according to (25) with no beam

collision. Moreover, since Gc is isolated from G, the schedule

of the rest nodes is a (K−Kc, N) problem.

Denote the rest graph as G′ = {V \ Vc, E \ Ec}, where

the class demands in each cell remain unchanged. Denoting

the overweight edge set of the original graph G by Eo, then

the overweight edge set of G′ is Eo \ Ec. According to our

inductive assumption on K, the residual (K−Kc, N) problem

can be solved with the minimum number of beam collisions

n⋆
res =

∑

ek,k′∈Eo\Ec

(
d̄k→k′ + d̄k′→k −N

)
. (32)

Therefore, the total number of beam collisions is n⋆
res because

the schedule for Gc has no beam collision. On the other hand,

according to (23), we have

d̄k→k′ + d̄k′→k −N = 0, ∀ek,k′ ∈ Ec. (33)

Hence, the minimum number of beam collisions given by

Theorem 1

n⋆
c =

∑

ek,k′∈Eo

(
d̄k→k′ + d̄k′→k −N

)

=
∑

ek,k′∈Eo\Ec

(
d̄k→k′ + d̄k′→k −N

)

+
∑

ek,k′∈Ec

(
d̄k→k′ + d̄k′→k −N

)
= n⋆

res (34)

is reached by the schedule.

(ii) Go is acyclic, and there exists a d̄k0→k′

0
=N .

According to (2), all the class demands other than d̄k0→k′

0

of cell k0 are 0.

If k′0 6= 0, according to Proposition 1, node vk0
only has

an edge connected with vk′

0
. Therefore, the schedule of cell

k0 must be bk0,n = k′0 ,1≤ n≤N , and causes d̄k′

0
→k0

beam

collisions. Note that edge ek0,k
′

0
is an overweight edge, since

d̄k0→k′

0
+d̄k′

0
→k0

≥N .

Then, we remove node vk0
and edge ek0,k

′

0
. Since the beams

in class Mk′

0
→k0

do not cause beam collision after the removal

of vk0
, we can add these beams into the interference-free class,

i.e., Mk′

0
→0=Mk′

0
→0∪Mk′

0
→k0

, d̄k′

0
→0= d̄k′

0
→0+d̄k′

0
→k0

. The

rest scheduling problem is a (K−1, N) problem with graph

G′ =
{
V \ {vk0

}, E \ {ek0,k
′

0
}
}

. According to our inductive

assumption on K, this (K−1, N) problem can be solved with

the minimum number of beam collisions

n⋆
res =

∑

ek,k′∈Eo\{ek0,k′

0

}

(
d̄k→k′ + d̄k′→k −N

)
. (35)

Therefore, the total number of beam collisions is n⋆
res+d̄k′

0
→k0

by this schedule. On the other hand, the minimum number of

beam collisions given by Theorem 1 is

n⋆
c =

∑

ek,k′∈Eo

(
d̄k→k′ + d̄k′→k −N

)

=
∑

ek,k′∈Eo\{ek0,k′

0

}

(
d̄k→k′ + d̄k′→k −N

)

+
(
d̄k0→k′

0
+ d̄k′

0
→k0

−N
)
= n⋆

res + d̄k′

0
→k0

, (36)

which is obviously reached by the schedule.

The similar proof can be adopted if k′0=0.

(iii) Go is acyclic, all d̄k→k′ <N .

Since the recursion condition (10) is satisfied, we can

acquire the schedule of the first time slot with no beam

collision, according to Lemma 3. Then, according to our
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inductive assumption on N , the rest (K,N−1) problem can

be solved with the minimum number of beam collisions

n⋆
res =

∑

ek,k′∈E′

o

(
d̄′k→k′ + d̄′k′→k − (N − 1)

)
. (37)

Next according to Lemma 3 again, we have

n⋆
c =

∑

ek,k′∈Eo

(
d̄k→k′ + d̄k′→k −N

)

=
∑

ek,k′∈E′

o

(
d̄′k→k′ + d̄′k′→k − (N − 1)

)
= n⋆

res. (38)

Therefore, n⋆
c is reached.
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