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Inertial Navigation and Position Uncertainty During a
Blind Safe Stop of an Autonomous Vehicle

Mats Jonasson ', Asa Rogenfelt, Charlotte Lanfelt, Jonas Fredriksson *, and Martin Hassel

Abstract—This work considers the problem of position and
position-uncertainty estimation for atonomous vehicles during
power black-out, where it cannot be assumed that any position
data is accessible. To tackle this problem, the position estimation
will instead be performed using power separated and independent
measurement devices, including one inertial 6 Degrees of Freedom
(DOF) measurement unit, four angular wheel speed sensors and one
pinion angle sensor. The measurement unit’s sensors are initially
characterized in order to understand conceptual limitations of
the inertial navigation and also to be used in a filtering process.
Measurement models are then fused together with vehicle dynamics
process models using the architecture of an Extended Kalman
Filter (EKF). Two different EKF filter concepts are developed
to estimate the vehicle position during a safe stop; one simpler
filter for smooth manoeuvres and a complex filter for aggressive
manoeuvres. Both filter designs are tested and evaluated with data
gathered from an experimental vehicle for selected manoeuvres of
developed safe-stop scenarios. The experimental results from a set
of use-case manoeuvres show a trend where the size of the position
estimation errors significantly grows above an initial vehicle speed
of 70 km/h. This paper contributes to develop vehicle dynamics
models for the purpose of a blind safe stop.

Index Terms—Inertial navigation, autonomous vehicle, allan
variance, EKF, inertia measurement unit, blind safe stop, vehicle
dynamics models.

I. INTRODUCTION

HE development of autonomous vehicles without interac-
T tion by a human driver is prioritized in the society, see
for example [1]-[3]. To reach acceptance, self-driving vehicles
need to be capable of handling nearly all possible situations and
circumstances. During severe failures, such as electro-magnetic
disturbance, communication errors, black-out due to disturbance
in the power supply etc., the vehicle must quickly be transitioned
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to a safe state, which in many cases is a complete stop. The
control to a complete stop must be able to perform blindly
without access to environment sensors such as lidar, Global
Positioning System (GPS) or other equipment that provides
feedback of the vehicle’s position [4].

In case of a failure, the strategy could be to follow the latest
known buffered path reference. Since there is no guarantee that
the position measurement then is available, the control to a
complete stop is suggested to be based on the estimated position
from sensors protected from electro-magnetic disturbance and
equipped with redundant power supply and communication
abilities. These sensors typically include a inertial measurement
unit (IMU) measuring acceleration and angular speed of the
vehicle body.

This type of navigation without position sensors that estimates
the actual position is referred to as dead reckoning or inertial
navigation in the case where inertial forces due to acceleration
is used.

Inertial navigation has been applied in many fields. For exam-
ple for positioning of humans inside buildings [5], [6], mobile
telephones [7], underwater vehicles [8], aircraft [9], [10] and
land-based vehicles [11]-[16]. Dead reckoning is often used
at seas or by aircraft where GPS signal reception is limited.
Vehicular navigation experiments have been performed at places
where GPS tracking is not possible, or limited as for example in
tunnels or narrow streets surrounded by skyscrapers, see [17]
and [18]. This kind of navigation has, however, only been
practised during very limited time sequences since without exact
measurements the position estimates easily drift due to sensor
biases. As reported in [18] the error grows almost exponentially
with the duration of the dead reckoning. Dead reckoning has also
been applied together with odometry, i.e. integration of angular
wheel speeds for localization purposes for robots or vehicles,
which is used in e.g. [19]. Odometry together with other sensor
sources such as maps and/or GPS has been studied in [20]-[22]
together with Kalman or other integration filters, but kinetic
models for vehicles are typically not used in that field. When no
feedback of position is present, the position estimation/odometry
is expected to be improved by putting more effort into modelling
of the vehicle.

The main objective of this work is to accurately estimate
the position and its uncertainty of the vehicle using inertial
navigation during a safe stop. During a safe stop, the position
estimation must be accurate enough not to create any hazards
such as road departure or collision with other objects. In addition
to the estimated position, it is imperative to get information of
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the position uncertainty. In case of a large position uncertainty,
relative to road edge and surrounding objects, the automated
driving function could reduce the vehicle’s speed or prepare for
acrashinan earlier stage by engaging pre-crash functions such as
belt pre-tension, seat adjustments, etc. The estimator is designed
using model-based techniques, and two different Kalman filters
are developed and evaluated. The vehicle model used in the fil-
ters include both lateral dynamics and roll dynamics to increase
its applicability. In this paper, there are three different types of
sensor systems which are all assumed to have full availability
and are fail-safe:

1) One six degrees of freedom Micro Electro Mechanical
System (MEMS) Inertial Measurement System (IMU),
which outputs acceleration in m/s?> and angular speed in
rad/s.

2) Four wheel tachometers, each of them gives output of the
individual wheel’s angular speed in rad/s.

3) One pinion angle sensor which outputs the steering angle
of the front axle in rad.

The filters in this work are tailor-made for dead reckoning
only. Since the requirements for positioning errors are strict,
especially during automated driving and blind safe stop, the
objective is to quantify the position estimate errors and their
uncertainties for different driving conditions.

The work is this paper has emerged from [23] written by
some of the authors, but this paper includes a comprehensive
description of the state-of-the-art within the inertial navigation
and most references are new. The analyses are deeper e.g. the
difference of the results using the two filter concepts. This paper
also includes new parts, e.g. a section about odometry. New
figures and tables are added e.g. Fig. 16 and Table X.

The main contribution of this paper is the development and
evaluation of two different estimators and the quantification of
the positioning errors. The work attempts to answer the question
of what position accuracy that is possible to achieve. Note that
it is the analysis of the safe stop use-case that is in focus and
not the development of well-known Kalman filters. The result
from this work could be used to understand if it is a realistic
strategy to perform the safe stop based on dead reckoning. As
far as the authors know, there are no publications yet on this
topic. Having said that, the authors have identified two gaps
from previous work. The first gap is the development of vehicle
dynamics models used for a blind safe stop. The models used
in this paper include kinetic and kinematic algorithms for roll
and pitch motion, lateral speed as well as a steering system. The
second gap is the analysis and evaluation of a safe stop.

The paper starts in Section II with characterization of the IMU
sensor’s performance and analysis of the sensor data based on the
Allan variance. Next, the angular wheel speed and pinion angle
sensors are characterized. After characterizing the sensors, an
introduction into odometry is presented in III. Further on, vehicle
kinematics and dynamics are derived in Section IV. With the
known sensor characteristics and the vehicle dynamics models,
two filters are designed in Section V for filtering the sensor data
in order to obtain the position estimates and their uncertain-
ties. Real world experiments in a test vehicle are described in
Section VI together with an analysis of the two filter concepts
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TABLE I
SENSOR DATA SHEET

Specified IMU peak-to-peak signal noise
< 30 mg =~ 0.29 m/s?
< 1.5°/s & 0.026 rad/s

Accelerometers

Gyroscopes

TABLE II
MEASURED IMU PEAK-TO-PEAK SIGNAL NOISE

az[m/s?] ‘ ay[m/s?] ‘ az[m/s?] ‘ wq [rad/s] ‘ wy[rad/s]

015 | o020 | 025 | 0014 | 0012

for a cornering manoeuvre. In Section VII estimation errors are
defined and experiments are extended to capture a larger set of
normal driving manoeuvres. Finally, conclusions are presented
in Section VIII.

II. SENSORS

To increase the applicability of inertial navigation the sensors
need to be characterized and dynamics of the object needs to
be described. In this section, the sensors used during the dead
reckoning process are presented, it also describes how they are
characterized for the development of a filter application.

A. Inertial Measurement Unit

AnIMU is adevice reporting acceleration (a4 . ) and angular
speed (w4, ) along and around orthogonal axes. The technique
for MEMS IMU is based on micro mechanics that are affected
by inertial forces. When three accelerations and three angular
speeds are reported, the IMU is referred to as a 6-DOF IMU.

Since position estimation implies an integration of a noisy
signal, there is a need for understanding the disturbance char-
acteristics of the IMU. The type of disturbances from the ac-
celerometers and gyroscope are similar. The dominating distur-
bances are a constant bias and a thermo-mechanical noise. The
latter fluctuates fast and typically faster than the sampling rate
and causes white noise. In addition, there is a random flicker
noise from components that results in bias drift. The error due
to integration of a noisy signal is referred to as Random Walk
(RW) and drift of the bias is mentioned Bias Instability (BI).

In order to find the IMU characteristics, data had to be
collected in an experiment during a period of approximately
1 hour with a sampling rate of 100 Hz. The IMU was placed
on a flat surface and was not exposed to any force disturbances
except from gravity. It should be mentioned that specific stan-
dardized test for measuring IMU performance, such as IEEE
STD 952 [24], has been developed. The IMU test in this work
has been inspired by the standard but doesn’t follow it.

The gathered data was then analyzed to be able to find char-
acteristics for each axis of each sensor (see Tables II and III).
Comparisons with the given data sheets for the experimental
vehicle, see [25], were also made to find out if the results were
reasonable and within the specifications given by the distribu-
tors, see Table I. Note that the actual test IMU has no pitch rate
sensor, consequently pitch rate could not be measured.
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TABLE IIT
MEASURED MEAN AND VARIANCE OF THE IMU
[ az [m/s%] | aylm/s] | az[m/s?] [ welrad/s] |  w.[rad/s]
Mean | 0079 | 016 97 | 00014 [ —43-10 17
Variance | 29-10% | 51102 | 9.1-10% [ 22-10° | 19-10°°
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Fig. 1. The Allan deviation plot from two sets of independent measurements
of accelerometers.
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Fig. 2. The Allan deviation plot from two sets of independent measurements
of gyroscopes.

TABLE IV
RANDOM WALK AND BIAS INSTABILITY DEDUCED FROM THE
ALLAN DEVIATION PLOTS

Ay az W Wz

‘ %y

RW [ 0020 m/s>//s [ 0030 m/s>//s [ 0024 m/s>//s [ 00019 °/\/5 | 00018 °/\/5
BI [ 9.4:10%m/s> | 1.0-10 % m/s*> [ 23-10°m/s> | 84-10°7 °/s | 48107 °/s

To scrutinize the IMU characteristics, Allan variance and plots
were produced for each axis of the IMU. The resulting plots
with the Allan deviation calculated for two independent sets
of measurements are shown in Figs. 1 and 2. From the Allan
deviation plots it is observed that the random walk starts to
influence the variance when the window sizes exceed 30 s for the
accelerometers and 80 s for the gyroscopes. Since the duration of
asafe stop doesn’texceed approximately 30 seconds, the random
walk will likely not have an effect on the bias in this application.
Another interpretation of the Allan deviation plots is that offset
compensation needs to be done at a 30/80 s interval for the
accelerometers/gyroscopes (with 100 Hz sampling). Table IV
shows the RW and BI data based on the Allan deviation plots.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 5, MAY 2020

1]
| !
0.05 0 0.05 0.1 0.15
Angular wheel speed difference [rad/s]

\
o |
\
|

-0.1 0.2 0.25

Fig. 3. Histogram for angular wheel speed difference (wrr, — wrR).

B. Angular Wheel Speed Sensors

Wheel individual speeds are measured by tachometers located
at each wheel. The tachometer works by measuring the time to
pass a segment of a rotating ring, the segments commonly being
referred to as teeth. From the measured time and the number of
teeth of the ring, the wheel angular velocities are obtained. By
multiplying the rotational velocities with the mean radius of the
wheels, the forward velocity is derived in m/s. The radius of the
wheel is assumed to be continuously estimated in the self-driving
vehicles during normal conditions. During a safe stop the last
estimated wheel radius before the severe failure will be used
during the manoeuvre.

1) Characterization of Angular Wheel Speed Sensors: By us-
ing the difference between the left and right angular wheel speed
at the front axle, the 2-¢0 variance of the angular wheel speeds
are calculated without being influenced by possible changes in
vehicle speed. Since the front left and front right angular wheel
speed sensors are independent, the variance of the difference
of the two random variables is equal to the sum of each of
their variances. The histogram in Fig. 3 shows that the angular
wheel speed difference resembles a Gaussian distribution. The
angular wheel speed signals also have a clear quantization of
0.0078 rad/s.

The estimated variance of the front angular wheel speed
sensors was estimated to approximately 6.3 - 10~* rad/s. It is
assumed that all four angular wheel speed sensors have similar
variance.

C. Pinion Angle Sensor

The steering pinion is a component in the steering system
below the steering column, and the pinion angle is approx-
imately equal to the steering-wheel angle. Since the steer-
ing torsion bar has a low torsional stiffness, the pinion an-
gle sensor is more accurate than the steering-wheel angle
Sensor.

1) Characterization of the Pinion Angle Sensor: The me-
chanical gain between front steering angle and pinion angle
is seen in Fig. 4. As long as the front steering angles are
small, here approximately within the range [—15°, 15°], the
gain is constant and has a value of 16.75. This means that
the pinion angle is 16.75 times larger than the front steering
angle.
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Fig. 4. The actual ratio between the pinion angle and the front wheel angle

(blue solid line) compared to a linear approximation (red dotted line).

To determine the noise of the pinion-angle sensor the vehicle
was traveling straight ahead with a constant speed while logging
data from the pinion-angle sensor. The pinion angle sensor
variance was determined to 9.4 - 107> rad” and is quantized with
a quantization step size of 9.8 - 10™* rad.

III. ODOMETRY

Odometry is the method where angular wheel speed sensors
are used solely to compute position relative to a starting position,
see for example [19], [26], [27]. Measuring the rear left and rear
right side angular wheel speed, wryr, 1 and wrg . respectively
at a time instant k& with a sampling time of 7, the longitudinal
vehicle speed v, ; is expressed as

Ry (WRRk + WRLK)
2

where Ry is the tyre radius. The vehicle yaw rate w, j is

expressed as

(D

Ve k =

Ryni (WRR,E — WRL.K) @)
w

Wz k =

where w is the vehicle track width. The vehicle yaw angle 1)y, is
further obtained

Y = VYp—1 + w1 Ts 3)

where the vehicle longitudinal and lateral position, X, and Y}
respectively, are computed as

Xk = Xp—1 + Vg 1 cos(9y) T 4
Yii = Yio1 + v o sin(y ) Ts. )

To illustrate the odometry principle, angular wheel speed sen-
sor data has been logged to determine the vehicle position by
using (1), (2), (3), (4), (5) and vehicle parameters according
to Table V. The result from a manoeuvre is seen in Fig. 5.
To get an understanding of the accuracy of the odometry, a
reference system RT3000 Inertial and GPS Navigation System
from Oxford Technical Solutions Limited, referred to as ref,
has also been added in Fig. 5. The example illustrates that the
odometry gives an unacceptable large drift in position. As a
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TABLE V
VEHICLE PARAMETERS

Parameter name ‘ Symbol ‘ Value

Tyre cornering stiffness front Ct 159000 N/rad

Tyre cornering stiffness rear Cr 253000 N/rad
Vehicle mass m 2631 kg
Distance from COG to front axle lg 1.47 m
Distance from COG to rear axle Iy 1.51 m
Track width w 1.67 m

Yaw moment of inertia I, 5746 kgm2

Nominal wheel radius Ryl 0.36 m

comparison the vehicle’s inbuilt standard IMU has been used
to compare the yaw rate accuracy between measured yaw rate
from IMU and estimated from the odometry. The results clearly
shows, for this specific example, that yaw rate from IMU is more
accurate than from the odometry.

The odometry suffers from systematic errors, such us tyre ra-
dius uncertainty, giving bias. There are also random errors, from
angular wheel speed sensor noise, which worsen the precision.
In addition, there are physics that are not modelled, where two
dominant mechanisms are tyre longitudinal slip and body side-
slip. The first mechanism, gives error when wheels are disturbed
by torque or force and the second mechanism gives error due to
the vehicle lateral speed/drift not is taken into account. Having
said that, the odometry has potential to be improved when the
physics is modelled, which will be scrutinized in Section IV.

IV. VEHICLE DYNAMICS MODELING

In this section the vehicle motion is modeled in order to
describe the kinematics and kinetics of the real world vehicle
to a sufficiently high level of detail. Kinematics is the branch of
physics that studies the relation between motion variables such
as position, velocities, angular rates, etc., while kinetics is the
study of forces that cause motion e.g. Newtons second law.

The reference body-fixed coordinate system, from now re-
ferred to as the vehicle coordinate system, is defined in the
vehicle with the reference axes and rotation angles as shown
in Fig. 6.

A. Rotational Motion

One way to describe an object’s orientation in space is by
using Euler angles [28]. The Euler angles are in this paper used
to define the orientation of a body relative to a non-moving
inertial coordinate system. Note that among different fields
different conventions may exist. In e.g. robotics the North-
East-Down (NED) reference frame is used, which differs from
the convention commonly used in the vehicle dynamics field.
The coordinates of the inertial system and vehicle system are
denoted X,Y, Z and x,y, z respectively and follows the ISO
8855 standard [29]. Any objects orientation can be described by
a composition of rotations in a specific order around three axes.
Rotations around the z, y and 2 axis are called roll (), pitch
() and yaw (1). The reference direction of the inertial-fixed
coordinate system is selected such that the X-Y" plane is parallel
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Fig. 5. Odometry using angular wheel speed sensors solely for the purpose to compute position (odo), together with yaw rate from the vehicle’s inbuilt IMU

(IMU) and a reference RT3000 instrumentation (ref).

(a)

Fig. 6. The definition of vehicle-fixed coordinate system.

to the sea surface and the Z axis is parallel to the gravity field

and has a positive reference direction upwards. The IMU is in

this work assumed to be perfectly aligned during installation,

and in turn, aligned with the coordinate system of the vehicle.
The model for the accelerometers [30] are expressed as

Qg Vg + Wyl — W0y —sin 6
ay| = [Vy + WV —wyv, | + g |singcosd (6)
a. U, + Waly — Wyly cos ¢ cos 6

Where a , . is the measured accelerations from the accelerom-
eters. The time derivatives of the velocities in the vehicle coor-
dinate system is denoted vy, ..

B. Angular Vehicle Velocity to Euler Angular Velocity

The relation between angular velocities, w4 -, in the vehi-
cle’s coordinate system and the Euler angular velocities ¢, 6, ¢

(b)
is given, as in [31], by
b 1 sinptanf cosptand | |w,
6| = |0 cos ¢ —sing Wy @)
¥ 0 sing/cos@ cosp/cosl| |w,

C. Position in the Inertial System

Using the vehicle’s lateral and longitudinal velocities, v, vy,
combined with the vehicle’s heading, v, the positions X and Y
are found in the inertial coordinate system as

X = v, cos(v)) — vy sin(th)
Y = vy, cos(t)) + vy sin(4)). (8)

In robotics and air craft industry, the inertial frame has com-
monly reference directions such that one of the axis is pointed
to north. In the application of a safe stop such a definition
is not necessary. Instead the origin and reference directions
are determined when the dead-reckoning starts. When it starts,
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Fig. 7. Lateral acceleration resulting in a vehicle body roll angle.

the origin and orientation of the inertial coordinate system is
defined as follows: the vehicle Center of Gravity (COG) defines
the origin and X-axis is aligned along the vehicle center line
and forward directed and the Y -axis directed to the left of the
vehicle.

D. Vehicle Body Roll Angle

Due to the vehicle’s suspension system, the roll and pitch
body angles are generated due to forces acting on the body. As
an example when the vehicle is driving on a road with a lateral
banking (¢,.), the gravitational force will yield the body a roll
angle () as seen in Fig. 7. Note that the Euler angle is given by
© = ¢, + @yp. In the same way an acceleration or deceleration
of the vehicle will yield the body a pitch angle.

The IMU accelerometer values in (6) will have gravitational
components with contributions from both the road angle and the
body angle. When performing an IMU based dead reckoning,
only the road angle is desired and the extra influence of the body
angle needs to be handled.

Vehicle experiments with a high fidelity vehicle model used
in the pre-development phase were performed to evaluate how
large the body pitch and roll angle were exhibited during accel-
erations, (5 m/s? in x-direction and £2 m/s? in y-direction).
In Fig. 8 the steady-state relation between body roll-angle and
lateral acceleration is illustrated. As seen, the body roll-angle
does not exceed £0.8° for normal lateral acceleration levels and
the relation could be considered as linear.

E. Lateral Bicycle Models

The bicycle model is a well established simplified vehicle
model which assumes that the dynamics and kinematics of the
vehicle can be described by a bike model [32], i.e. having only
one front and one rear wheel, as shown in Fig. 9.

An accurate dynamical model also requires a description of
the relation between the lateral tire force and the side slip. This
relation is illustrated in Fig. 10, which shows a simulation of
the lateral tire force as a function of the side slip angle for the
rear wheel with tyre data from the a tyre supplier. As shown, the
relation is linear for small slip angles, and is described by

Fyf = —2C’faf
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Fy = —2C,a, ©

for the front and rear axles, where the cornering stiffness for
each tyre is denoted C'y and C). and the factor 2 in (9) is due to
the presence of two wheels at each axle.

Using the bicycle model and the lateral tire force model
approach it is possible to derive the two different dynamical
models used in this work, as described in this section.

1) Steering Angle Based Bicycle Model: According to the
bicycle model concept [32], the lateral motion is expressed as

m(”y"‘wvm) = Fyf+Fyr+Fbank (10)

Foank = mgSin(_Sar)a (11)

where v, and 1/}% are the transverse and centripetal components
of the lateral acceleration. The front and rear lateral axle forces
are denoted Fyr and I, respectively and the force from road
banking is denoted Fiynk.-

The yaw moment equlibrium around the z-axis in the vehicle
yields the following equation

Ly =1 Fy — 1, Fyy, (12)

where [y and [, are the distances from the vehicle COG to the
front and rear wheel axles, respectively. The vehicle’s yaw inertia
is denoted 1.

As discussed, the tire forces Iy and Fy, are at small slip
angles described by (9). If the vehicle is front wheel steered the
expressions for the front and rear slip angles are given by

of = —(5 — evf)
a’r‘ = 9Vr7 (13)

where the steering angle ¢ is the angle between the wheel hub
and the center line of the vehicle. The front and rear body slip
angles 6y and 6y, are calculated according to

Vy + lf¢
Uy — lﬂ/}

Vg

tan(ﬁvf) =

tan(fy,) = (14)

One concern with the steering angle based bicycle model is
the singularity due to v, in (14), which will cause the terms to go
towards infinity as v, — 0. To overcome this problem a constant
velocity model is applied when |v,| < 1 m/s. Another risk using
the steering angle based bicycle model is the assumption of linear
tire dynamics in (9). When performing sharp turns, it might be
possible to saturate the lateral tire force and enter the nonlinear
slip region. In addition to an absolute error, this will also result
in a phase error of the output estimations (linear acceleration
and yaw acceleration), see [33]. This phase shift can result in a
model response for turning manoeuvres that is too fast compared
to reality.

2) Acceleration Based Bicycle Model: An alternative to the
steering angle based bicycle model is a model based on lateral
accelerometer input instead of front steering angle, which can
be derived from [32]. The tire slip angle at the rear axle is given
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Fig. 8. Vehicle body roll and pitch angle due to longitudinal and lateral accelerations.
The total expression for the lateral velocity, but transferred to
COG by adjusting for yaw rate, is now
Frvg
yrVx
vy = ———— + l,Ww,. 17
Yy 2 Cr rWz ( )
The only unknown in this equation is the rear axle force F,,
which can be expressed with help from Newton’s second law
and the accelerometer data in y-direction, a,,. Force equilibrium
along the y-axis and moment equilibrium around the z-axis are
Y formulated according to
may = Fypcos(0) + Fye + Fypsin(0) + Fhank
Lap = 15 cos(8) Fyr — 1, Fyr + 1 sin(8) Fiy. (18)
Fig.9. A visualization of the conceptual bicycle model. By using the small angle approximation for the steering angle,
the following expression for the rear axle force is solved as
8000 ‘ ‘ ‘ I e e——— ..
—Relation between Fj, and a, _
6000 [|— Approximated lineai" relation (C.) | Fyr = Y+ l‘fmay + lbeank , (19)
4000 - 8 ly +1,
2, 2000 1 . _— )
= where all variables are known except ¢ which can be obtained
Esl-zooo | | by differentiating the yaw rate, ). Combining with (17) results
4000 - | in an explicit solution for the lateral velocity according to
-6000 - 1 (—[z¢+lfmay +lbeank)/(lf +ZT) c Vg
8000 T, A S y = — + lrw;,
-0.1 -0.08 -0.06 -0.04 -0.02° 0 0.02 0.04 0.06 0.08 0.1 2C,
o, [rad (20)
that easily can be calculated, given the longitudinal velocity and
Fig. 10.  The lateral force-slip characteristics at the rear axle. the IMU data. Compared to the steering angle based bicycle
model, this model has the advantage of not exhibiting the afore-
mentioned phase shift compared with the ground truth lateral
as velocity. Equation (20) has been used in e.g. [34] for the purpose
of vehicle side-slip estimation.
Vyr
ar = —, s5)
Vg

where the lateral velocity of the rear tires is denoted v,,. By
using (9) and (15) result in an expression for the lateral velocity
at the rear axle as

Fyrvaz
2C,

(16)

Vyr =

V. FILTERING DESIGN

This section connects the previous sections together by utiliz-
ing the work with sensor characteristics and vehicle dynamics
models to design a filter. Since the process model is nonlinear, it
has been necessary to use a filter that can handle nonlinearities.
The Extended Kalman Filter (EKF) is used, since it is one of
the most commonly used and popular nonlinear filters, see [35].
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The section first gives some background theory on Bayesian
filtering which is used to fuse all the data together. Next, the
development of two different filter concepts are then introduced.
The two concepts use the sensor data in different ways and apply
the different dynamical vehicle models derived in Section IV.

A. Extended Kalman Filter

The Extended Kalman Filter (EKF) is a further development
of the Kalman filter used for non-linear systems. Since the
EKEF is relatively simple to implement it is widely used for
non-linear problems. The same equation as for the KF are used,
but the process and measurement models are linearized. The
linearization can be done, according to e.g. [35], by using a first
order Taylor series expansion around the previous updated state
prediction X;,_ ;. However an optimal filter is then no longer
maintained as described in e.g. [36].

When Gaussian and additive process and measurement noise
are assumed, the EKF model can be expressed as

X = fr—1(Xp—1, W) + Q1

Yi = hp(Xk) + 1, 21

where fj_;(-) constitutes the process model function and hy,(-)
the measurement model function. x; € R™ is the state vector, uy,
¢ R! is the input vector, qi_1 ~ AN (0, Q) is the Gaussian pro-
cess noise, yx € R™ are the measurements and rj, ~ N (0, Ry,)
is the Gaussian measurement noise.

The model prediction step for the EKF is given by

Xpglh—1 = So—1(Xp—1jk—1, U)

Priot = fro Rt ) Pt foo s Ko o) T + Qo
(22)

where fi_(Xp_ijx—1) is the linearized process model at
Xk—1|k—1- The measurement update step is expressed as

Xk = Xgp—1 + K (Y — i (Xgjp-1))
Pijy =Py — KiSpK]
Sk = (R 1) Pryp— 1 (Repe—1)” + Ry

K = P b (Xi—1)" Sy, (23)

where the linerization here is done at Xy, instead.

B. Selection of Filter Design

Two different filter designs C1 and C2 are here developed.
Filter C1 is less complex than C2. The C2 filter includes the
steering angle based bicycle model e.g. steering is modelled.
The state vector in the C2 filter does also include the time
derivatives of both velocities and Euler angles, which is expected
to give more accurate results for aggressive manoeuvres. For
example aggressive steering in a demanding lateral manoeuvre
is expected to result in large yaw acceleration. Since the C2 filter
contains more physics capturing e.g. yaw acceleration, the model
uncertainty could reduce the expected improvement in accuracy.
To understand if it is worth to include the higher complexity of
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the C2 filter, both filters are developed and, later on, tested and
validated.

C. Filtering Concept 1

In the first filter, Concept 1 (C1), the accelerations and an-
gular velocities from the IMU are used as input signals to the
process model. The measurement model uses the angular wheel
speed sensors along with the acceleration based bicycle model
described in Section IV-E2 as measurements. The state vector
is then given as

x=|X Y v, v, ¢ 0 w}T 24
The filter inputs are given by
u= [ag Gy Wy Wy W] (25)
and the measurements as
y = [wwhl paceclerometer based | (26)

The superscript “accelerometer based” used in the measurement
vector has here been added to address that the accelerometer
based model, described in (20), has been applied to calculate
the lateral speed.

The derivative of the state vector is obtained by using the
kinematic equations (8), (6) and (7) described in Section IV-C,
which yields the following equations

X = v, cos(¢)) — vy sin(1h)

Y = v, cos(¢)) + vy sin(th)

Uy = Ag + w, vy + gsin(f)

gsin(ep) cos(6)
© = wy + sin(p) tan(8)w, + cos(

Vy = Qy — WUz —

©) tan(0)w,
0 = cos(p)w, — sin(@)w.

cos()

sin(y) "
cos(0)

cos(0) Yy

)= 27)

A forward Euler method is used to discretize the model with a
sampling time of T, which results in the discrete process model
equations according to

X1 = Xp + Ts (v, cos(¥r) — vy, sin(yy))
= Yk + Ts (Uyk COS(T/)]@) + Vg, Sln(¢k))

Vzppy = Vxy, + T, (a.'c + WUy, + gSin(ek))

Y

= vy, + Ts (ay — w,vg, — gsin(pr) cos(0y))

Uyt

Pr+1 =4+ T (wa + sin(pp) tan(Or )w,
+ cos(pp) tan(0y )w, )

Or+1 = O + T (cos(pr )wy — sin(er)w;)

B sin(ipg) cos(px)
Y1 = Yr + T (cos(@k)wy + cos(0r) wz> :

(28)
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Due to the non-linear equations, a Jacobian has to be calculated
to perform the filtering process. The calculated Jacobian for this
concept is presented in [23].

The measurements has a linear relation to the state vector
in (24) and the following matrix is given:
00 7=
0 0 O

00 0O

(i) = 100 o~

ke (29

The parameters in the process matrix Qy, are tuned by using
trial and error, while the parameters in the measurement noise
matrix Ry are retrieved from the noise measurements described
in Section II.

D. Filtering Concept 2

In the second filter, here referred to as Concept 2 (C2), the
state vector is augmented to be given as

. .7
x:[XvavyiJmi)ygo@l/ng@?/)}, (30)

comprising states for inertial longitudinal- and lateral- positions
respectively, velocity and acceleration as well as the roll-, pitch-
yaw-angle and their time derivatives. The input to the process
model is the pinion angle sensor measurement ¢, which is applied
in the process equations together with the steering angle based
bicycle model, described in Section IV-E1,

u = 9.

3D

This concept uses measurements from the IMU and angular
wheel speed sensors for the measurement vector according
to

T
Yy = [aa: Gy Wwh] Wy Wy wz] (32)

In addition to the lateral bicycle model which describes the
vehicle’s lateral velocity and heading, two other models are
used in the process equations to describe the longitudinal and
lateral movement and the evolution of roll and pitch; the constant
velocity and constant acceleration models. For the constant
velocity model the velocity is assumed to be constant ignoring
noise. When assuming the state vector is formedas x = [p v]7,
where p is the position in one dimension and v is the velocity
for the constant velocity model, results in

. 0 1
X =
0 0
In the constant acceleration model the acceleration a is assumed

to be constant instead. Forming a state vectorasx = [p v a]T,
it can be described as

X+ q. (33)

010
x=10 0 1|x+q (34)
000

For both models q is assumed to be a Gaussian noise that
acts on the velocity in the constant velocity model and on the
acceleration in the constant acceleration model. Given these
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models, the continuous state evolution process equations can
be set up as follows

X = v, cos(1)) — v, sin())
Y = vy, cos(¢)) + v, sin(1))

T
Uy = 20 § —tan ! L—Hﬂb
Y m Vg

426 (tanl (W» — vt

m Vg

Uy =0
vy, =0
p=¢
6=20
o 120 (vt L
Y = I <5 tan (’Uz

I N

I, Vg

$=0
6=0
P =0. (35)

To use this time domain state space representation in the fil-
tering process the equations have to be discretized. The resulting
discrete state process equations are

Xip1 = Xi + T (va, cos(thr) — vy, sin(yy))
Yip1 = Y + T (vy cos(¥r) + vy sin(¢y))
Vappr = Vo + LV,

Vypyr = Uy, + Tgvyk

Vgpyy = Vay,

2 .
Uyeyr = % <5k — tan~! <Uy'~;'lf¢’f>>
Tk
207« B Vo — lrwk )
<tan I (yxv%)) —

Orr1 = pr + Tspr

+

Op1 = On + Tsby,
Vi1 = Y + Tethy
Pk+1 = Pk

Ors1 = O
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Y41 =

1y2Cy (&; ~tan! (vyk +lfwk>>
Iz vl‘k
1,2C,

- r (—tanl (”yk;lrlbk)) . (36)

Also in this case the process equations are nonlinear and the
resulting Jacobian needed for this concept is presented in [23].

The measurement model matrix is formed using the kinematic
relations described in Section IV. The measurement from the
angular wheel speed sensors is used by dividing longitudinal
velocity by the wheel radius Ryp;.

h(xy)=

Uy — (— sin(@)é + cos(0) cos('cp)ll})vy — gsin(0)
Uy + (—sin(p)d + cos(0) CSS(<,0)¢)% + gsin(yp) cos(0)

Ry

— sin(6))
cos(p )9 + cos(6) sin(p)Y

—sin(p)d + cos(0) cos(p)t

(37
Note that the time index k is left out to get a shorter expression.
When using this concept there is a need for a Jacobian due to
the matrix non-linearity.

The parameters in the process matrix Q are tuned by using
trial and error, while the parameters in the measurement noise
matrix Ry are retrieved from the noise measurements described
in Section II.

E. Treatment of Sensor Data

The knowledge that the vehicle will decelerate during a safe
stop was used when treating the angular wheel speed data. When
a vehicle brakes the wheels might lock but will never rotate faster
than the actual velocity. This fact made it favourable to use sensor
data from the wheels that had the highest rotational velocity. To
also take into consideration that during a turn the inner wheels
rotate slower than the outer wheels, the mean of the left and right
hand side of the wheels with highest rotational speed was used as
the speed signal in the filter process. The following expression,
that has been developed in this paper, explains how the angular
wheel speed is selected among the wheels such that

max(wpr,wrr) + max(Wrr, WRR)
2 )
where the subscript of w is either F'L = front left, 'R = front
right, RL = rear left, RR = rear right. Note that the longi-
tudinal slip is neglected, e.g. during braking the angular wheel
speed becomes lower. The reason for neglecting the longitudinal
slip is the tire uncertainty since slip is dependent on the tire’s
longitudinal stiffness. Adding slip in the measurements models
would mean an increased dependence on tire parameters.

(38)

Wwhl =

VI. EXPERIMENTAL TESTS

In order to evaluate the two filter concepts, data is logged at a
proving ground using a real world vehicle. In this work a Volvo
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XC90, henceforth only referred to as the vehicle, will be used for
experiments as well as for developing vehicle dynamics models.

A. Measurement Setup

A reference system RT3000 Inertial and GPS Navigation
System from Oxford Technical Solutions Limited, mentioned
to as RT3000, has been used for ground truth measurements.
The RT3000 includes a 6-degree of freedom IMU and a high-
precision differential GPS. The measurement data from the
reference system is post processed in order to provide data at
the COG position.

Raw data from the IMU, angular wheel speed sensors and
pinion angle sensor are logged from the vehicle with 10 ms
sampling time and not pre-processed in any way before the fil-
tering process. Sensor data is for example not bias compensated.
It should also be mentioned that all sensors are suffering from
a non-deterministic transport dead time due to communication
delay in the order of 20-50 ms in the vehicle’s Controller Area
Network (CAN) buses. Since the test vehicle is factory equipped
with a 5-degrees of freedom instead of a 6-degrees of freedom
IMU, the RT3000 is used to generate the missing 6th-degree
(pitch-rate).

The vehicle’s inbuilt GPS has also been logged as a reference
for position. It is not used as input to the filters, but it is here used
to demonstrate the accuracy of a standard single GPS receiver.
Note that this GPS has a 1 s sampling time.

The Kalman filters are both executed with a 10 ms sampling
time (1) and the vehicle parameters are set according to Table V.
The identification of the vehicle parameters has been done by us-
ing data from the tyre supplier (tyre cornering stiffness and wheel
radius), vehicle Computer-Aided Design (CAD) data (distances,
inertia) and weight measurements (vehicle mass). The intention
has been to set filter parameters as close as possible to the
real nominal vehicle parameters. Vehicle parameters will vary
depending on for example vehicle load, ambient temperature,
etc., and in turn, a deviation of filter accuracy could be expected.
To increase robustness, most parameters could to some extent
be estimated online, see for example [37]. The robustness issue
is however out of scope in this paper.

VII. RESULTS

In this section the evaluation of the two estimator concepts
are presented and discussed.

A. Definition of Estimation Errors

The two filter concepts and tuning parameters are compared
for the different driving scenarios via the longitudinal, lateral,
and heading errors, €joy, €141, and e, defined according to Fig. 11.
The errors ejo, and ey, are thus given by the coordinates of the
actual position (X, Y') in the coordinate system of the estimated
position (X , Y), rotated by the angle v such that

elon = (X — X) cost) 4+ (Y — Y) sine (39)

el = —(X — X)sintp + (Y = Y) cos 1. (40)
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A
lateral position

X %  Longitudinal position

Fig. 11. The defined estimations errors together with the trigonometry to
calculate the errors.

TABLE VI
ESTIMATION ERRORS (ACCORDING TO SECTION VII-A) FROM FILTER
CONCEPT C1 AND C2 WHEN PERFORMING A TURN

[ €lon [M] [ €rar [m] [ € [rad]

Right turn

C1: 120 [km/h] -3.47 -2.10 -0.0056
C2: 120 [km/h] -3.39 -1.85 -0.0075
C1: 90 [km/h] -3.71 -4.36 -0.014
C2: 90 [km/h] -4.05 -3.59 -0.015

B. Example Manoeuvre: Cornering

In this case the vehicle is manually steered to follow a curved
road initially traveling at 90 km/h or 120 km/h and braking to
full stop in the curve. The estimation errors using the RT3000
reference for the two filter concept are shown in Table VI.

In Fig. 12 the position estimates are shown and also the
2-0 standard deviation ellipses (from the process noise) for
each filter concept at the full stop for the case when driving
initially at 120 km/h. The ellipse represents the area associated
with a likelihood of 95% staying within it at full stop. The
most trustworthy position reference is the RT3000 instrument
“Reference (RT3000 GPS)”. As a second reference, the speed
and angular data from RT3000 is integrated by (27) to get the
reference position ‘“Reference (RT3000 Integrated)”. As can be
seen from Table VI, C2 has less lateral position error than C1
(C2 has 15% less lateral position error than C1). From Fig. 12(b)
it is seen that the 2-o standard deviation ellipse of the C2 filter
is larger than the one from C1. Noteworthy, the lateral position
errors and also the uncertainties are large compared with the
lane width of a conventional highway. The large uncertainty
indicates an unacceptable low precision jeopardizing vehicle
safety. The X - and Y -position estimates are separately shown
in Fig. 13 together with their respective 2-¢ standard deviation
as time evolves. As seen the standard deviation keeps growing
throughout the whole estimation process which indicates that
the duration time of the safe stop has a significant effect on the
position uncertainty.

The estimated states for speeds are shown in Fig. 14. It is
noticeable that the lateral speeds differ between the two filters,
where C2 is more correct. For the longitudinal velocity they
seem to perform similar.
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TABLE VII
ESTIMATION ERRORS (ACCORDING TO SECTION VII-A) FROM GATHERED
DATA WHEN TRAVELING STRAIGHT FORWARD

[ €lon [mM] [ €lat [M] [ €y [rad]
Straight forward
C1: 120 [km/h] -4.23 0.13 0.0014
C2: 120 [km/h] -4.23 0.19 0.0013
C1: 90 [km/h] -3.57 0.28 -0.0060
C2: 90 [km/h] -3.57 -0.19 -0.0060
C1: 70 [km/h] -2.22 0.12 6.2 10~ 7%
C2: 70 [km/h] -2.22 0.15 6.7-10~ 7%
C1: 50 [km/h] -1.92 -0.053 44107
C2: 50 [km/h] -1.92 -0.021 4610~ %

TABLE VIII

ESTIMATION ERRORS (ACCORDING TO SECTION VII-A) FROM GATHERED
DATA WHEN TRAVELING UP- AND DOWNHILL

[ €lon [m] [ Clat [m] [ €y [rad]
Straight forward downhill 20 %
C1: 50 [km/h] -0.15 -0.037 -0.0028
C2: 50 [km/h] -0.15 0.0058 -0.0027
C1: 30 [km/h] -0.059 -0.025 0.0097
C2: 30 [km/h] -0.060 -0.047 0.0095
Straight forward uphill 20 %
C1: 30 [km/h] -0.50 0.027 0.0041
C2: 30 [km/h] -0.50 -0.0064 0.0036

TABLE IX

ESTIMATION ERRORS (ACCORDING TO SECTION VII-A) FROM GATHERED DATA
DURING LANE CHANGE

[ €lon [m] [ €lat [m] [ € [rad]

Lane change

C1: 90 [km/h] -2.32 0.43 -0.0025
C2: 90 [km/h] -2.31 0.38 -0.0025
C1: 70 [km/h] -1.17 0.27 0.0036
C2: 70 [km/h] -1.17 0.18 0.0035

Estimated states for the Euler angles and their rates are shown
in Fig. 15. The states follow the reference rather well, it is just
for the roll- and pitch angle that the estimates wander with time.
As seen from the experiment, the standard inbuilt GPS receiver
“Reference (1 Hz GPS)” performs worse than the dead reckoning
filters. This indicates that the fusion with a standard GPS will
not be sufficient for the dead reckoning problem.

C. Estimation Errors From Experiments

In Section VII-B, a cornering manoeuvre was tested in an
experiment. In this section, the experiment is extended to also
include a safe stop manoeuvre when driving straight ahead, with
and without road inclination, and also a single lane change.
Together with the cornering manoeuvre, these maneuvers con-
stitute a condensed set of a many common driving conditions. In
particular the single lane change is important when the safe stop
is intended to move the vehicle to a safe lateral position such as a
road shoulder. In all manoeuvres, the deceleration was controlled
to approximately 5 m/s” until the vehicle was at standstill. The
road surface was asphalt with high friction.

The results for the different manoeuvres are presented in
Tables VII, VIII and IX.

For all driving scenarios, it is observed that the longitudinal
errors are negative, which means that there is a systematic
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and C2 including three different references. (a) The estimated path. (b) 2-o standard
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overestimation of the longitudinal stopping distance. This be-
haviour could readily be explained by an inaccurate value for
the wheel radius or a constant bias in the accelerometer input.
The latter effect could be minimized using an efficient offset
compensation.

A couple of observations can be made from the results for
the straight forward driving cases. The results clearly show that
position errors increase with increased speed. Another observa-
tion is that the overestimation of the stopping distance increases
in the uphill slope. This behaviour can most likely be explained
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by longitudinal tire slip, which has not been taken into account
in this work.

To illustrate all lateral position errors, Fig. 16 shows their
magnitude for all test in this paper. As seen, a general trend
is that the errors are speed dependent. As long as the initial
speed is kept below 70 km/h, the lateral errors are less than 1
meter. Above 70 km/h we observe large errors of a couple of
meters.

The 2-o lateral position uncertainty are summarized in Ta-
ble X. The lateral manoeuvres give larger uncertainties than
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Fig. 16. An overview of the lateral estimation errors for different vehicle
speeds for all manoeuvres in the experiments.

TABLE X
ESTIMATED LATERAL POSITION UNCERTAINTY AT FULL STOP

Safe stop manoeuvre 2-0 Cl [m] | 2-0 C2 [m]
Straight forward 120 [km/h] +3.0 +3.6
Straight forward downhill 20% 50 [km/h] +2.1 +1.9
Right turn 120 [km/h] +3.8 +4.8
Lane change 90 [km/h] +4.7 +4.2

straight ahead driving. The average uncertainty for the manoeu-
vres in Table X is +3.4 m for the C1 filter and £3.6 m for the
C2 filter. The uncertainty from both filters are in the order of a
lane width.

From the experiments it is also obvious that the cornering
and lane change manoeuvre are more demanding and give lager
lateral position errors than straight ahead driving independent
of road inclination. The lateral position errors are however less
when using the C2 filter than the C1, which strengthens the
hypothesis that including the time derivatives of velocities and
Euler angles in the state vector is beneficial for demanding lateral
manoeuvres. The cornering manoeuvres excites lateral speed
and body roll angle, and as seen from Fig. 14(b) and Fig. 15(a),
those states are hard to estimate correctly. In particular the lateral
speed, which is tire dependent. Noteworthy, the C1 filter exhibits
large lateral speed errors.

One concern in this paper is the validity of the experimental
results due to too few tests. In [23] the C1 and C2 filters were
tested in a virtual vehicle environment. Some of the driving
scenarios, e.g. the straight forward scenario, was repeated 1000
times in order to investigate the distribution of estimation errors.
The result from the repeated tests demonstrated that the accuracy
and uncertainty in general were better for the C2 filter than the
Cl1 filter.

VIII. CONCLUSION AND FUTURE WORK

This work has proposed designs for and evaluated two dif-
ferent extended Kalman filter concepts for inertial navigation
with different complexities. Both filters estimate vehicle position
and position uncertainty. The concepts have however a similar
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performance. The most complex filter C2 is developed to tackle
aggressive manoeuvres which contain driving with higher order
derivatives of motion states.

The main conclusion in this paper is that it is possible to use
dead reckoning without any GPS or similar absolute position
reference for position estimation of a vehicle during a limited
time span under a safe stop. Reasonable position estimation
errors for the dead reckoning process, when the vehicle has
come to a full stop, are in the order of 3 m longitudinally and
0.75 m laterally. The results from the experiments show that all
driving with initial speeds at 70 km/h or below fulfill those fictive
requirements. Larger initial speeds would increase the time for
the safe stop and thereby increase position errors. Since the 20
lateral position uncertainty is in the order of a lane width, the
precision could be deemed as low.

Low offset bias of IMU is important to reach high precision
of the position estimates. This work has shown that the sensor
bias of the IMU will, however, not wander significantly during
the time of the safe stop which makes it unnecessary to bias
compensate during that time. However, if the methods are to be
used for longer time spans, bias compensation of the sensors are
necessary, which is a suggested future work.

The work has shown that the C2 filter concept is beneficial
for lateral manoeuvres such as cornering and lane change. As
a whole, the C2 filter is preferable to C1 due to its better
performance. Since the vehicle parameters were known in this
work, it is recommended as a future work to study the robustness
of the concepts for uncertain vehicle parameters.
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