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Abstract—Vehicular Edge Computing (VEC) is a promising
paradigm to enable huge amount of data and multimedia content
to be cached in proximity to vehicles. However, high mobility
of vehicles and dynamic wireless channel condition make it
challenge to design an optimal content caching policy. Further,
with much sensitive personal information, vehicles may be not
willing to caching their contents to an untrusted caching provider.
Deep Reinforcement Learning (DRL) is an emerging technique
to solve the problem with high-dimensional and time-varying
features. Permission blockchain is able to establish a secure and
decentralized peer-to-peer transaction environment. In this paper,
we integrate DRL and permissioned blockchain into vehicular
networks for intelligent and secure content caching. We first
propose a blockchain empowered distributed content caching
framework where vehicles perform content caching and base
stations maintain the permissioned blockchain. Then, we exploit
the advanced DRL approach to design an optimal content caching
scheme with taking mobility into account. Finally, we propose
a new block verifier selection method, Proof-of-Utility (PoU), to
accelerate block verification process. Security analysis shows that
our proposed blockchain empowered content caching can achieve
security and privacy protection. Numerical results based on a real
dataset from Uber indicate that the DRL-inspired content caching
scheme significantly outperforms two benchmark policies.

Index Terms—Deep Reinforcement Learning, Permissioned
Blockchain, Content Caching, Vehicular Edge Computing

I. INTRODUCTION

With the rapid development of in-car touchscreen and
autonomous driving systems (e.g., Tesla Autopilot), huge
amount of data and content generated by in-vehicle sensors
and vehicular infotainment applications [1], [2]. However,
long distance between vehicles and cloud servers, and the
limited backhaul link capacity pose significant challenges for
supporting massive content delivery while also satisfying the
low-latency requirement in vehicular networks [3]. Vehicular
Edge Computing (VEC) is a promising paradigm where Base
Stations (BS) and vehicles with a certain amount of compu-
tation resource and caching resource can be utilized as edge
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servers to cooperatively cache content at the network edge [4],
[5], [6], [7].

Caching content at edge servers can effectively alleviate
mobile traffic on backhaul links and reduce content delivery
latency [8]. The authors in [9] proposed to cache content on
femto-cell base stations to minimize the total expected content
delivery delay based on a given popularity distribution. Since
state-of-the-art vehicles are equipped with a certain amount of
caching resource, the vehicle with sufficient caching resource
can be regarded as a caching provider to expand the caching
capacity of the network edge. Vehicle-to-vehicle communica-
tion can further reduce average content transmission latency
[10], [11], [12]. However, high mobility of vehicles leads to
dynamic network topology and time-varying wireless channel
condition which makes it difficult to design an optimal content
caching policy [13], [14]. Moreover, a content usually involves
much sensitive personal information of its generator such that
vehicles may be not willing to store their contents to an
untrusted caching provider.

Deep Reinforcement Learning (DRL) is an emerging tech-
nique which has the ability to learn and build knowledge
about dynamic wireless communication environment [15]. By
interacting with edge servers, the authors in [15] utilized DRL
to observe the available computing and caching resource at the
network edge and design the corresponding resource allocation
scheme. Exploiting actor-critic reinforcement learning, the
authors in [16] proposed a scheme to solve the joint con-
tent caching, computation offloading, and resource allocation
problems in fog-enabled Internet of Things (IoT) networks.
The authors in [17] proposed a deep Q-learning based task
offloading scheme to select an optimal edge server for vehicles
to maximize task offloading utility. However, security and
privacy are not considered in the above works.

Blockchain is an open database which maintains an im-
mutably distributed ledger to enable securely transactions
among distributed entities without relying on a central interme-
diary [18], [19], [20]. Blockchain can be categorized into two
main types: public blockchain and permissioned blockchain.
In public blockchain, anyone can participate in the process of
verifying transactions and creating blocks due to no access
limitation, such as Bitcoin and Ethereum. In permissioned
blockchain, only permissioned nodes can verify transactions
and create blocks. The typical consensus in public blockchain
is computation-intensive because nodes compete against each
other for creating newly blocks by solving a difficult PoW
puzzle. Because of no competitive PoW puzzle, permissioned
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blockchain can build a distributed ledger with less energy and
computation resource. On the other hand, in public blockchain,
all distributed nodes have to participate in the process of
consensus which results in a long time consumption. In
contrast, in permissioned blockchain, the number of nodes
participating in the consensus is quite few, such that this
type of blockchain can achieve a very fast consensus. Thus,
permissioned blockchain is suitable for energy-constrained and
delay-sensitive networks. Because of the limited energy and
computation resources of vehicles and the stringent delay
requirement of applications, the existing work often select
permissioned blockchain with low energy consumption and
short consensus delay for vehicular networks [19], [21], [22],
[23].

In this paper, we integrate DRL and permissioned
blockchain into vehicular networks to propose an intelli-
gent and secure content caching scheme. We first propose a
blockchain empowered distributed and secure content caching
framework where vehicles act as caching requesters and
caching providers to perform content caching and BSs act as
verifiers to maintain permissioned blockchain. Due to high
mobility of vehicles, we exploit the advanced DRL approach
to learn dynamic network topology and time-varying wireless
channel condition and then design an optimal content caching
scheme between caching requesters and caching providers.
We utilized permissioned blockchain to ensure a secure con-
tent caching among vehicles. To enable a fast and efficient
blockchain consensus mechanism, we propose to select block
verifiers based on Proof of Utility (PoU). The main contribu-
tions of this paper are summarized as follows:
• We propose a blockchain empowered distributed and

secure content caching framework where vehicles per-
form content caching and BSs maintain permissioned
blockchain to ensure an intelligent and secure content
caching.

• We formulate the content caching problem as the form of
DRL to maximize content caching with taking vehicular
mobility into account and design a new DRL-inspired
content caching scheme.

• We design a new block verifier selection method to enable
a fast and efficient blockchain consensus mechanism.
Security analysis shows that our proposed blockchain
empowered content caching can achieve security and
privacy protection. Numerical results based on a real
dataset demonstrate the effectiveness of the proposed
DRL-inspired content caching scheme.

The remainder of this paper is organized as follows. We
introduce the architecture of blockchain empowered content
caching in Section III. Then, we propose a DRL-inspired
content caching scheme and introduce PoU consensus in
Section IV and Section V, respectively. We present the security
analysis and numerical results in Section VI. Finally, we
conclude this paper in Section VII.

II. RELATED WORK

Recently, blockchain technology has attracted enormous
attention of researchers and developers because of its feature

such as decentralization, immutability, anonymity, and secu-
rity. The authors in [21] proposed a neural-blockchain based
drone-caching approach in unmanned aerial vehicles where
blockchain ensures the high reliable communication among
drones. The authors in [24] proposed a blockchain-based
proactive caching in hierarchical wireless networks to enable
autonomous caching-delivery among untrustworthy parties.
The authors in [25] proposed a decentralized data management
scheme for vehicular networks based on blockchain. However,
these works establish blockchain by solving the meaningless
PoW puzzle or Proof-of-Stake (PoS). The characteristics of
nodes in vehicular edge computing networks, such as comput-
ing ability or QoS requirement, are not involved in the process
of blockchain establishment.

To make a better integration of blockchain and vehicular
networks, a few studies have utilized PoX consensus to replace
the original PoW schemes. Because of no competitive PoW
puzzle, the authors in [26] indicated that Delegated Proof-of
Stake (DPoS) is particularly suitable for lightweight vehicles
to establish blockchain-based transportation systems. As a
further exploration of [26], the authors in [27] proposed an
enhanced DPoS consensus for a blockchain-based vehicular
data sharing system, where reputation is used in the DPoS to
measure the quality of RSUs. The authors in [23] and [28]
also utilized reputation-based consensus to build blockchain
for vehicular networks or cellular networks. The authors in
[29] utilized proof-of-driving based blockchain to enable an
intelligent vehicular data sharing among vehicles. The authors
in [30] utilized proof-of-integrity in vehicular blockchain to
manage the collected vehicle-related data from hundreds of
sensors for a privacy-aware traffic accident diagnosis. How-
ever, the above researches are not suitable for vehicular
edge computing networks, which are still not considering the
limited computation resource of edge nodes and the stringent
latency requirement s of users. In this paper, we proposed a
proof-of-utility based consensus for vehicular edge caching,
where the utility is comprehensive function to measure the
computing and processing abilities of edge nodes and the
latency requirements of vehicles.

III. BLOCKCHAIN AND ARTIFICIAL INTELLIGENCE
CONTENT CACHING

In this section, we first present the proposed blockchain
empowered vehicular content caching architecture, and then
describe the detailed phases of the proposed blockchain em-
powered vehicular content caching.

A. Architecture of Vehicular Content Caching with Blockchain

We propose a new blockchain empowered content caching
architecture which consists of a user plane and an edge plane,
as illustrated in Fig. 1.

In the user plane, vehicles, equipped with multiple sensors
and applications, can collect a variety of valuable content
about vehicles, roads and their surrounds, such as entertain-
ment videos, road maintenance information, parking lot occu-
pancy and so on. Since state-of-the-art vehicles have a certain
amount of caching resource, they can cache their content
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Fig. 1: Blockchain empowered vehicular content caching

locally. However, due to the capacity limitation of caching
resource, when a resource-constrained vehicle cannot store its
collected content on its own cache, anyone of its neighbor
can act as a caching provider to offer its unoccupied caching
resource for content caching via Vehicle-to-Vehicle (V2V)
communication. To encourage vehicles to contribute their
unused caching resource, we utilize incentive mechanisms to
motivate vehicles to participate in V2V content caching.

In the edge plane, several BSs are distributed in a specific
area to work as edge servers with communication, comput-
ing capability, and AI functions. BSs can detect available
caching resource of vehicles and deliver caching requests to
the caching provider. In addition, BS can utilize computing
capabilities and AI functions to predict the V2V transmission
range and connection duration between caching requesters
and caching providers, and perform caching pair matching to
enhance system utility. There exists a central authority in the
edge plane to manage the security parameters and keys of BSs
and vehicles with a tamper-resistant hardware.

Caching content at vehicles can enhance spectrum utiliza-
tion and reduce average content delivery latency between
vehicles. However, since a content involves much sensitive
and critical personal information of its generator, caching
requesters are not willing to store their content to untrusted
caching providers. To cope with this, each BS is equipped with
a blockchain to enable untrustworthy vehicles to interact with
each other for content caching in a secure manner.

B. Blockchain-based Vehicular Content Caching

In Fig. 1, there are two types of vehicles driving on the road.
We define the vehicle requiring caching resource to store its
content as caching requester and define the vehicle to provide
caching resource as caching provider. Based on blockchain, a
secure vehicular content caching can be achieved through the
following phases.

1) Identity Establishment and System Initialization:
To implement V2V content caching, vehicles should register

unique accounts and create their keys firstly. We utilize elliptic
curve digital signature algorithm and asymmetric cryptography
to establish identity. Specifically, vehicles and BSs register
a legitimate identity after passing the authentication of the

central authority. The legitimate identity consists of a public
key, a private key, and a certificate, which can be described
as {PKvi , SKvi , Certvi}. The public key is regarded as
the source address of the caching transaction which is used
to verify the genuineness of transactions. The cryptographic
private key is used to sign a transaction and the certificate is
to uniquely identify the vehicle through binding registration
information of the vehicle.

Each vehicle has a wallet. The wallet address is generated
from its public key. At the system initialization stage, each
vehicle requests the wallet addresses of other vehicles from the
central authority. Specifically, each vehicle uploads its wallet
address to a global account pool and then downloads other
vehicles’ wallet address for content caching from there. Note
that vehicles can use changeable wallet address to preserve
anonymity and privacy.

2) Triggering Content Caching Smart Contract:
For content caching, each BS gathers all vehicles’ caching

requests and monitors their available caching resource under
its coverage. Vehicle vi sends its caching request to the nearest
BS bj . The caching request message of vehicle vi includes the
required caching resource cvi , current location locvi , public
key PKvi , signature Sigvi , certificate Certvi , and timestamp
ts, which can be described as

Reqvi→bj = EPKbj (cvi ||locvi ||PKvi ||Sigvi ||Certvi ||ts),
(1)

where EPKbj denotes that message Reqvi→bj is encrypted
with public key PKbj , Sigvi = SignSKvi (cvi ||locvi) denotes
that the digital signature of cvi and locvi is with private key
SKvi , and ts is the timestamp of the current message.

Vehicle vp periodically sends its available caching resource
to the nearest BS bj for caching resource sharing. The message
about available caching resource includes the available caching
resource Cvp , location locvp , public key PKvp , signature
Sigvp , certificate Certvp , and timestamp ts, which can be
described as

Mesvp→bj = EPKbj (Cvp ||locvp ||PKvp ||Sigvp ||Certvp ||ts),
(2)

where EPKbj denotes that message Mesvp→bj is encrypted
with public key PKbj , Sigvp = SignSKvp (Cvp ||locvp) de-
notes that the digital signature of Cvp and locvp is with private
key SKvp , and ts is the timestamp of the current message.

After receiving caching requests and available caching
resource of vehicles, BSs first verify their identity. To
speed up the verification process, BSs adopt batch verifi-
cation process which can verify the validity of a number
of identities simultaneously [31]. Specifically, each BS ab-
stracts the verification parameters from the received Reqvi→bj
and Mesvp→bj and constructs the verification parameters
as < PK,Mes, Sig >, where Mes is the detailed mes-
sage. Then, BS calls the batch verification algorithm for
identity verification. If all V er(PKvi ,Mesvi , Sigvi) = 1
for all i ∈ I ∪ P , we have Batch((PKv1 ,Mesv1 , Sigv1)
, ..., (PKvi ,Mesvi , Sigvi), ...) = 1 and batch verification is
passed. If one or more than one of signatures are invalid,
batch verification fails. After the batch verification, BSs per-
form V2V content caching mechanism to make caching pair
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matching. More details on vehicular content caching will be
given in Section IV.

When vehicular content caching mechanism is completed,
each BS responses a message to caching requester and caching
provider, respectively. Respbj→vireq is the message that BS bj
responsing to caching requester vi and Resp

bj→vr
pro is the

message that BS bj responsing to caching provider vp, which
can respectively be described as

Respbj→vireq = EPKvi (locvp ||chanip||PKvp ||Sigbj ||ts),
Respbj→vppro = EPKvp (cvi ||locvp ||chanip||Sigbj ||ts),

(3)

where chanip is the wireless channel between the caching
requester and the caching provider. EPKvi and EPKvp denote
that Respbj→vireq and Resp

bj→vp
pro are encrypted with public

key PKvi and PKvp , respectively. The digital signature in
Resp

bj→vi
req is denoted as Sigbj = SignSKbj (locvp ||chanip),

and the digital signature in Respbj→vppro is denoted as Sigbj =
SignSKbj (cvi ||locvp ||chanip).

Based on the above two messages, vehicles autonomous
execute the pre-programmed smart contract. The smart con-
tract consists of two modules. The first module is to carry out
content delivery. The second module is to transfer a certain
amount of coins from the wallet of content caching requester
vi to the wallet of content caching provider vehicle vp.

3) Recording Transactions:
After finished content caching, caching requesters pays for

its caching provider and generates a transaction to record the
caching event. Specifically, caching requester vi sends the
generated transaction to the nearest BS bj . The BS first verifies
the received transaction, and then encrypts and broadcasts it
to the entire blockchain network. The transaction includes the
shared caching resource cvi , the coins that caching provider
vp obtains coinvi→vj , the wallet addresses of the content
requester and the content provider, the signature of the content
requester, and timestamp, namely,

Transvi→bj =EPKbj (cvi ||coin
vi→vp ||walletviaddr||

wallet
vp
addr||Sigvi ||ts),

(4)

where EPKbj denotes that Transvi→bj is encrypted with
public key PKbj , Sigvi = SignSKvi (cvi ||coin

vi→vp) denotes
that the digital signature of cvi and transferred coins coinvi→vj
with private key SKvi . The new generated transaction is
broadcasted over the entire network for audit and verification.

The verified transactions are ordered and batched into a
cryptographically tamper-evident data structure, named block.
The blocks are linked in a linear chronological order by hash
pointers to form a blockchain.

4) Building Block and Performing Consensus Process:
Each block is created by a specific BS in the consensus

process. We define the BS to create the newly block as the
leader. After the newly block created, the leader broadcasts
the block with timestamp for block audit and verification.
The other BSs verify the correctness of the newly created
block. According to Bitcoin, the fastest node which solves
Proof-of-Work (PoW) puzzle becomes the leader to create the
newly block. However, PoW puzzle is a computation-intensive

and energy-consuming task such that it is not suitable for
vehicular networks [18]. Therefore, we need a fast and efficient
blockchain consensus mechanism with low energy-consuming
and time-consuming.

In this paper, we aim to design an intelligent and secure
vehicular content caching scheme for the proposed archi-
tecture. However, there are two challenges to achieve this.
One is in the user plane that high mobility of vehicles
leads to dynamic network topology and time-varying wireless
channel condition making it difficult to design an optimal
content caching policy. The other is in the edge plane that
how to achieve fast permission blockchain with low energy-
consuming and time-consuming. To address such issues, we
propose a DRL-inspired content caching scheme in Section IV
and PoU consensus mechanism for permissioned blockchain
in Section V.

IV. DEEP REINFORCEMENT LEARNING-BASED
VEHICULAR CONTENT CACHING

In this section, we propose a DRL-inspired content caching
algorithm with taking vehicular mobility into account to solve
the challenge in the user plane.

A. Content Caching with Manhattan grid mobility model

We formulate V2V content caching problem to maximize
system utility by focusing on a single cell with a BS and
N vehicles. The BS can communicate with any vehicle
under its coverage. We denote the set of caching requester
as I = {v1, ..., vI} and the set of caching provider as
P = {v1, ..., vP }, where I ∩ P = ∅ and I + P = N . The
content generated by caching requester vi can be described as
{cvi , τvi}, where cvi and τvi denote the required caching re-
source and the maximal content delivery latency, respectively.

We model the city as a Manhattan style grid, with a
uniform block size across a fixed square area. The Man-
hattan grid model is introduced as a standard mobility by
the European Telecommunications Standards Institute (ETSI)
[32]. In Manhattan grid model, the map is composed of a
number of horizontal and vertical streets. Each street has
two lane for each direction (i.e., north and south direction
for vertical streets, and east and west for horizontal streets).
Vehicles move along streets and may turn at cross streets (i.e.,
intersection) with a given probability. Let η denote the driving
direction of vehicles, where η ∈ {north, south, west, east}.
The probability that each vehicle moves at an intersection can
be denoted as

Pη =
1

δintν

1
δintν

+ TwaitPwait

2

=
2

2 + TwaitPwaitδintν
, (5)

where δint is the density of intersections, ν denotes constant
velocity, Twait denotes the maximum tolerant waiting time of
vehicles at the intersection, Pwait is the probability that vehi-
cles have to wait. Further, vehicles may stop at an intersection,
which can be denoted as ζ. The probability that a vehicle stops
at an intersection is represented as

Pζ = 1− Pη =
TwaitPwaitδintν

2 + TwaitPwaitδintν
. (6)
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Vehicle vp as caching provider has a local cache with
capacity of Cp. We define xip ∈ {0, 1} as the content caching
variable. If the content of caching requester vi is cached at
caching provider vp, xip = 1. Otherwise, xip = 0. When vi
caches its content on vp, it has to make a certain payment
for caching resource usage. The payment that vi pays to vp is
defined as coinvi→vp = xipςcvi , where ς > 0 is the price for
unit caching resource. Since the amount of caching resource
on each vehicle is limited, the total occupied cache resource
of all contents on vp cannot exceed its caching capacity, i.e.,∑
i∈I xipcvi ≤ Cp.
Vehicles can communicate with each other if the distance

between them does not exceed the communication distance,
i.e., dip < γ [33]. The communication data rate between
vehicle vi and vehicle vp can be expressed as

Rip = b log2(1 +
pihipd

−α
ip

σ2
), (7)

where b is the channel bandwidth, pi is the transmission power
of vi, hip is the channel gain, α denotes the path loss exponent,
and σ2 is the noise power.

According to (7), the V2V content transmission latency is

Tip =
cvi
Rip

. (8)

Since the content of caching requester vi should be transmitted
within τvi , we have

∑
p∈P xipTip ≤ τvi .

The total consumed energy consists of two parts: trans-
mission energy consumption and content caching energy con-
sumption. Let β denote the price per energy consumption. The
energy cost for V2V content caching is

Eip = β{pi
cvi
Rip

+ e0 ∗ cvi}, (9)

where e0 is the unit energy consumption per caching resource.
Under the constraints of caching capacity and maximum

content delivery latency, the problem to maximize system
utility is formulated as follows:

max
∑
i∈I

∑
p∈P

(xipςcvi − xipEip)∑
i∈I

xipcvi ≤ Cp, ∀p ∈ P (10a)∑
p∈P

xipTip ≤ τvi , ∀i ∈ I (10b)

xip ∈ {0, 1}, ∀i ∈ I, p ∈ P (10c)

Since xip is a binary variable, the feasible set and objective
function of problem (10) are not convex. Though we can
use an approximate algorithm to solve it, the scalability of
the solution is very weak as the solution may fail with the
increasing number of vehicles. Moreover, the movement of
vehicles leads to time-varying wireless channel such that
the conventional optimization method is impractical. Since
deep reinforcement learning is suitable for decision-making
problems with high-dimensional and time-varying features,
here we attempt to utilize it to solve problem (10).

B. DRL-based V2V Content Caching Solution

We first reformulate problem (10) as deep reinforcement
learning form with system state, action, and reward, as shown
in Fig. 2. Then, we propose the DRL-based V2V content
caching algorithm.

System state is a space to reflect the observed vehicular
environment. Let S denote the system state space. The state
st ∈ S at time slot t can be defined as

st = {R(t), T (t), E(t), η(t), Fi, C}, (11)

where
• R(t) = [R11(t), ..., RIP (t)]: is a vector which represents

V2V communication data rate between vehicles at time
slot t;

• T (t) = [T11(t), ..., TIP (t)]: is a vector which represents
content latency via V2V transmission at time slot t;

• E(t) = [E11(t), ..., EIP (t)]: is a vector which represents
energy consumption of V2V content delivery at time slot
t;

• η(t) = [η1(t), ..., ηI(t), ηI+1(t)..., ηI+P (t)]: is a vector
which represents each vehicle’s driving direction at time
slot t;

• Fi = {[cv1 , tv1 ], .., [cvI , tvI ]}: is a matrix which rep-
resents the required caching resource and the maximal
content delivery latency of caching requesters;

• C = [C1, .., Cp]: is a vector which represents the caching
capacities of caching providers.

Because of mobility, the location of each vehicle is time-
varying such that V2V communication data rates, content
transmission latency, and the energy consumption of V2V
content delivery are time-varying.

The action of V2V content caching is to match caching
pairs. Let A denote the action space. The action at ∈ A at
time slot t is defined as

at = [x11(t), ..., xIP (t)], (12)

After taking action at, the system will receive an immediate
reward Υ (st, at). Since the objective of problem (10) is to
maximize system utility, we define the immediate reward as

Υ (st, at) =


E
[∑

i∈I
∑
p∈P (xip(t)ςcvi − xip(t)Eip(t))

]
,

if (10a) and (10b);
plt, otherwise;

(13)
If the action of caching pairs satisfies constraints (10a) and

(10b), the immediate reward is the current system utility. Oth-
erwise, the system will receive a penalty and Υ (st, at) = plt,
where plt is a negative constant. The optimal V2V content
caching strategy is to maximize the long-term reward which
can be defined as

Reward = maxE

[
T−1∑
t=0

εtΥ (st, at)

]
, (14)

where ε ∈ [0, 1] is the discounted factor.
Based on system state, action, and reward, we attempt to uti-

lize DRL to solve the proposed V2V content caching problem.
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Fig. 2: DRL-empowered V2V content caching

There are three common DRL algorithms: Q-learning, Deep
Q Network (DQN), and Deep Deterministic Policy Gradient
(DDPG). Q-learning is a classical deep reinforcement learning
algorithm which computes the Q-function of each state-action
pair for action exploration. However, Q-learning is not an ideal
algorithm for the problem with a high-dimensional observation
space. DQN is a kind of deep reinforcement learning algorithm
which uses deep neural networks instead of Q-function to
explore actions. DQN is a powerful tool that can learn optimal
policies with high-dimensional observation spaces but it can
only hand low-dimensional action spaces [34]. DDPG is an
actor-critic and model-free algorithm that can learn policies
in high-dimensional observation spaces and high-dimensional
action spaces. In this paper, we exploit the deep deterministic
policy gradient [34], to solve V2V content caching problem.

According to DDPG, caching agent is composed of three
modules: primary network, target network, and replay memory.
Primary network aims to match content caching pairs by policy
gradient method. Primary network consists of two deep neural
networks, namely primary actor neural network and primary
critic neural network. Target network is used to generate target
value for training primary network. The structure of target
network is similar to the structure of primary network but
with different parameters. Replay memory is used to store
experience tuples. Experience tuples include current state, the
selected action, reward, and next state, which can be randomly
sampled for training primary network and target network. The
detailed interaction processes among these models are shown
in Fig. 2.

The explored policy can be defined as a function
parametrized by θπ , mapping current state to an action â =
π(st|θπ) where â is a proto-actor action generated by the map-
ping and π(st|θπ) is the explored edge caching and content
delivery policy produced by primary actor neural network.
By adding an Ornstein-Uhlenbeck noise Nt, the constructed
action can be described as [34]

at = π(st|θπ) +Nt. (15)

The primary actor neural network updates network param-
eter θπ using the sampled policy gradient, computed as

5θπJ ≈ E
[
5aQ(s, a|θQ)|s=st,a=π(st) 5θπ π(s|θπ)|s=st

]
,

(16)

where Q(s, a|θQ) is an action-value function and will be intro-
duced in the following. Specifically, at each training step, θπ is
updated by a mini-batch experience < st, at,Rimm, st+1 >,
t ∈ {1, ..., V }, randomly sampled from replay memory,

θπ = θπ−
απ
V

V∑
t=1

[
5aQ(s, a|θQ)|s=st,a=π(st) 5θπ π(s|θπ)|s=st

]
,

(17)
where απ is the learning rate of the primary actor neural
network.

The primary critic neural network evaluates the performance
of the selected action based on the action-value function. The
action-value function is calculated by the Bellman optimality
equation and can be expressed as

Q(st, at|θQ) = E
[
Rimm(st, at) + εQ(st+1, π(st+1)|θQ)

]
,

(18)
Here, the primary critic neural network takes both current state
st and next state st+1 as input to calculate Q(st, at|θQ) for
each action.

The primary critic neural network updates the network
parameter θQ by minimizing the loss function Ls(θQ). The
loss function is defined as

Ls(θQ) = E
[
(yt −Q(st, at|θQ))2

]
, (19)

where yt is the target value and can be obtained by

yt = Rimm(st, at) + εQ′(st+1, (π)
′(st+1|θTπ )|θTQ). (20)

where Q′(st+1, π
′(st+1|θTπ )|θTQ) is obtained through the target

network, i.e., the network with parameters θTπ and θTQ.
The gradient of loss function Ls(θQ) is calculated by its

first derivative, which can be denoted as [34]

5θQLs = E
[
2(yt −Q(st, at|θQ))5θQ Q(st, at)

]
. (21)

According to (21), the parameter θQ of primary critic
neural network can be updated. Specifically, at each train-
ing step, θQ is updated with a mini-batch experiences <
st, at,Rimm, st+1 >, t ∈ {1, ..., V }, that randomly sampled
from replay memory,

θQ = θQ −
αQ
V

V∑
t=1

[
2(yt −Q(st, at|θQ))5θQ Q(st, at)

]
,

(22)
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Algorithm 1 DRL-based V2V content caching algorithm

Input: The parameters about mobility model δint, ν, Twait,
and Pwait ;

The parameters about V2V communication, γ, trans-
mission power, bandwidth, channel gain, and path loss
exponent;

The state of the observed vehicular environment st;
Output: The explored caching pairs;

1: Initialize µ(s|θµ) and Q(s, a|θQ) of the primary network
with parameters θµ and θQ;

2: Initialize the target network with parameters θµ
′ ← θµ

and θQ
′ ← θQ; Initialize replay memory;

3: for each episode do
4: Setup vehicular environment;
5: for each time step t do
6: Execute action at based on µ(s|θµ) and state st .
7: Observe reward Υ (st, at) and state st+1 based on

(13);
8: Store the tuple < st, at, Υ (st, at), st+1 > into

replay memory;
9: Sample a mini-batch of tuples from replay mem-

ory;
10: Compute the target value yt and update θQ by

minimizing the loss function (19);
11: Update µ(s|θµ) using the sampled policy gradient

(16);
12: Update target networks with:

θµ
′ ← ωθµ + (1− ω)θµ′

θQ
′ ← ωθQ + (1− ω)θQ′

13: end for
14: end for

where αQ is the learning rate of the primary critic neural
network.

The target network can be regarded as an old version of
the primary network with different parameters θTπ and θTQ. At
each iteration, the parameters θTπ and θTQ are updated based
on the following definition:

θTπ = ωθπ + (1− ω)θTπ ,
θTQ = ωθQ + (1− ω)θTQ,

(23)

where ω ∈ [0, 1].
DRL-based V2V content caching algorithm is shown in Al-

gorithm 1. First, caching agent initializes policy µ(s|θµ) with
parameter θµ and initializes action-value faction Q(s, a|θQ)
with parameter θQ. The parameters of the target network are
also initialized. Then, for each time step, primary network
generates action at based on current policy µ(s|θµ) and cur-
rent state st. Observing reward Υ (st, at) and next state st+1,
caching agent constructs a tuple < st, at, Υ (st, at), st+1 >
and stores it into replay memory. Based on mini-batch tech-
nique, caching agent updates parameter θQ by minimizing loss
function Ls(θQ) and updates θµ using the sampled policy
gradient. The parameters of the target networks are updated
based on θµ, θQ, and ω, where ω ∈ [0, 1].

Algorithm 2 Construct the edges of bipartite graph G
Input: The outputs of the explored caching pairs;
Output: The constructed bipartite graph G(I,P, E) ;

1: Set E ← ∅.
2: if Pp 6 1 then
3: There is only one node vp1 corresponding to caching

provider p.
4: for each x′ip > 0 do
5: Add edge (i, vp1) into edge set E and let the edge

weight as eip1 = x′ip.
6: end for
7: else
8: Find the minimum index is where

∑is
i′=1 x

′
ip > s.

9: if i = is−1 + 1, .., is − 1, and x′ip > 0 then
10: Add edge (i, vps) into edge set E with weight

eips = x′ip.
11: else if i = is then
12: Add edge (i, vps) into edge set E with eips =

1−
∑is−1
i=1 x′ip.

13: else
14: Add edge (i, vp(s+1)) into edge set E with weight

eip(s+1) =
∑is
i=1 x

′
ip − s.

15: end if
16: end if

C. Action Refinement

The outputs from DRL-based content caching are contin-
uous values. However, content caching variables are integer
values, i.e., xip ∈ {0, 1}. Therefore, we need to refine the
outputs of DRL. Here, we adopt rounding technique to make
action refinement. The rounding technique has three steps: 1)
find the continuous solution from at, 2) construct a weighted
bipartite graph to establish the relationship between vehicles
and BSs, 3) find an integer matching to obtain the integer
solution.

1) Find the continuous solution from at: We define the input
sets as z = [x′11, .., x

′
IP ], where x′ip ∈ [0, 1].

2) Construct bipartite graph: We construct the weighted
bipartite graph G(I,P, E) to establish the relationship between
caching requesters and providers. I represents the caching
requesters in the network. V = {vps : j =, 1, .., P ; s =

1, ..., Pp}, where Pp = d
∑I
i=1 xipe implies caching provider

p can serve the number of Pp caching requesters. The nodes
{vps : s = 1, .., Pp} correspond to caching provider p. The
most important procedure for constructing graph G is to set
the edges and the edge weight between I and P . The edges
in G are constructed using Algorithm 2.

3) Action refinement: We utilize the Hungarian algorithm
[35] to find a complete max-weighted bipartite matching
Mmatch. According to the Mmatch, we obtain the detailed
caching pairs matching. Specifically, if (i, vps, eips) is in the
Mmatch, we set xip = 1; otherwise, xip = 0.

The outputs of DRL-based content caching are fractional
solutions, the rounding results are integer solutions.
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V. PROOF-OF-UTILITY CONSENSUS IN VEHICULAR
NETWORKS

In this section, we present the details of PoU consensus
mechanism for permissioned blockchain in the edge plane and
propose how to evaluate BS utility for block verifier selection.

A. PoU Consensus

DPoS is a fast and efficient blockchain consensus mech-
anism which leverages voting and selection to protect
blockchain from centralization and malicious usage [36]. Com-
pared to PoW and PoS, the number of entities participating in
DPoS consensus is very small, making it possible to effectively
reduce the time consumption and energy consumption to reach
consensus. Inspired by DPoS, the proposed PoU consensus
consists of two parts: 1) delegate selection, 2) block production
and verification, as shown in Fig.3. Different from DPoS, we
are not use the stake of users but use the utility of base
station to select delegates. The details about PoU consensus
are introduced in the following.

1) Delegate Selection: Since coin transfer in content caching
transactions occurs among vehicles and these vehicles are
non-trusted, we define vehicles as token holders to dominate
delegate selection process. Because delegates involve the key
process of consensus algorithms (i.e., block production and
validation), they are preferably neutral nodes [36]. In content
caching process, BSs are not directly participating in content
delivery and coin payment, which means they do not get any
profit from the caching process, such that they are ideal neutral
nodes and can be regarded as delegate candidates.

At each selection, vehicles vote for their preferred BSs
with the highest utility. The utility is utilized to measure the
quality of BSs. Higher utility means BS is equppied with more
powerful computing and processing abilities to generate and
verify block. The details of utility evaluation is given in the
following subsection V-B. Each vehicle has one vote per round
and the voting weight is proportional to the number of coins it
holds. The top n̂ candidates with the most votes are selected
to form a delegate commission, where n̂ is an odd integer and
no greater than the number of BSs.

2) Block Production and Verification: In the block pro-
duction and verification process, delegates are divided into
two roles: leader and verifier, where leader is responsible for
transaction collection and block production, and verifier is
responsible for block verification. At each block production
process, one of n̂ delegates acts as the leader and the other
delegates act as verifiers. Leader is generated in a round-robin
manner among delegates which indicates each delegate can
become a leader to produce block. For example, in Fig. 3,
delegate B is the leader responsible for creating Block B.

In a specific block production and verification process,
the leader first collects a certain amount of V2V content
caching transactions and then calculate a correct hash
to create an unverified block. The block verification is
a three-phase protocol consisting of block broadcast,
block verification, and confirm. In block broadcast phase,
the leader broadcasts n̂ − 1 broadcasting messages to
other delegates. The broadcasting message has the form:

Fig. 3: The PoU consensus of vehicular permissioned
blockchain

Bro = 〈bromsg||PKled||PKver||tsbro||block〉, where PKled

is the source address of the message, PKdel is the destination
address of the message, tsbro is the time stamp, block is
the created block. In the block verification phase, each
verifier first verifies the signature of the received broadcasting
message. Then verifiers audit the correctness of V2V
content caching requests packaged in the newly block and
broadcast their audit results with their signatures to each
other in a distributed manner. In the confirm phase, each
verifier compares its audit result with the received audit
results from other verifiers and sends a confirm message
to the leader. The confirm message has the form: Con =
〈conmsg||PKver||PKled||Audself ||Audrec||Rsucomp〉,
where Audself is the audit result of the verifier own,
Audrec is the records of received audit results of other
verifiers, Rsucomp is the comparison result. After receiving
all delegates’ confirm messages, the leader analyses them
and decides the correctness of the block. If more than two
third of verifiers agree on the block, the leader will send
it to all delegates to store. The BSs which are not in the
delegate commission will synchronize the latest blockchain
from nearby delegates periodically.

Once the newly produced block has been successfully
appended to the blockchain, the BSs participated in block
production and verification process will be rewarded to com-
pensate for their resource consumption. If all delegates become
the leader once, the order of the delegates are shuffled and then
they produce the future blocks in a round-robin manner again.
If a delegate fails to create a block during its turn, the block
is skipped and the transactions in the skipped block will be
transferred to the next one.

B. Utility Evaluation

There are M BSs distributed in vehicular networks, denoted
as M = {1, ...,M}. All M BSs can communicate with
each other at the speed of r via wired line. In the delegate
selection process, n̂ of M BSs are elected by vehicles to
group as a delegate commission, denoted as N̂ = {1, ..., n̂}.
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From the perspective of vehicles, they prefer to vote for the
BSs providing fastest block production and verification as
delegates. In this paper, we adopt utility function with respect
to time consumption to evaluate the performance of BSs.

A short time consumption leads to a good user experience
thus the utility function should monotonically decrease with
time consumption. To satisfy content delivery constraint, the
utility is set as 0 if any content caching time consumption
of vehicles is exceeded its maximal content delivery latency
τvi . We consider that K transactions are collected in the k-th
block and τk = min{τ1, τ2, ..., τK}, where K ≤ I . The utility
function of BS m is defined as:

Ukm =
[
e1−T

k
m/τ

k

− 1
]+

, (24)

where T km is the time consumption of block production and
verification on BS m and [x]+ = max{x, 0}. T km is consisted
of three parts: 1) the delay of transaction collection and hash
computing, 2) the delay of block verification, 3) the delay of
content transmission, which can be described as

T km = THk + TVk + Tip. (25)

According to DPoS, the delay of transaction collection and
hash computing THk is pre-defined, such as 0.5s in EOS. The
content transmission Tip is shown in Eq. (8).

The delay of block verification consists of three parts: 1)
block broadcasting, 2) cross-verification among verifiers, 3)
block confirm, which can be described as:

TVk = T bbk + T cvk + T bck . (26)

BS j ∈ N̂ is the leader to dominate block verification process.
The other BSs are verifiers to audit the produced block,
denoted as j′ ∈ N̂/{j}. Since the leader j broadcasts its
produced block to verifiers simultaneously, the block broad-
casting time is determined by the longest block transmission
time, thus

T bbk = max
j′∈N̂/{j}

{Ikdjj
′

r
}, (27)

where djj′ is the distance between the leader j and verifier
j′, Ik is the size of the k-th block before verification. Cross-
verification consists of three steps. Each verifier first performs
local verification to verify the raw block from the leader and
then broadcasts its local-verified result to other verifiers. After
receiving the local-verified result, verifiers performs second
audit. We denote Ok as the size of local-verified result and
Wk as the size of second-audit result. The k-th block cross-
verification time consumption can be written as

T cvk = max
j′,j′′∈N̂/{j},j′ 6=j′′

{Ikf0
Fj′

+
Okdj′j′′

r
+
Okf0
Fj′′
}, (28)

where f0 denotes the computation resource for verifying one
bit of Ik, Fj′ and Fj′i denote the computation resource
that verifier j′ and verifier j′′ provide to block verification
respectively, and dj′j′′ denote the distance between verifier
j′ and verifier j′′. Block confirm time is determined by the
longest second-audit result transmission time, which is

T bck = max
j′∈N̂/{j}

{Wkdjj′

r
}. (29)

Base on Eq. (26), the T km and Ukm can be obtained, respec-
tively. Then, each vehicle casts it vote to the BS m∗, which
satisfies

m∗ = argmax{Ukm}, m ∈M. (30)

The vote weight is equal to content caching transaction fee,
i.e., coinvi−>vj .

VI. SECURITY ANALYSIS AND NUMERICAL RESULTS

In this section, we first provide security about our pro-
posed blockchain-based content caching. Then, we evaluate
the performance of the proposed V2V content caching scheme
based on Uber dataset [37] and analyse the performance of the
proposed PoU.

A. Security Analysis

The use of permissioned blockchain establishes a secure
content caching for multiple vehicles without mutual trust.

1) Without reliance on a single trusted third party: The
permissioned blockchain reduces the reliance on a trusted
curator. If V2V content caching requires the involvement of a
trusted third party, the system security largely depends on the
security of the trusted third party. If the centralized security
cannot be guaranteed, content in the system faces high risk
of leakage. In our schemes, caching requesters and caching
providers deliver content a P2P manner without a third party,
which makes system robust and scalable.

2) Privacy protection: All vehicles and BSs transmit mes-
sages about caching request and blockchain in a pseudony-
mous manner. Specifically, vehicle vi uses its public key PKvi

as the pseudonym to guarantee the anonymity of its real iden-
tity. The messages (i.e., Reqvi→bj , Mesvp→bj , Respbj→vireq ,
and Resp

bj→vp
pro ), and transactions (i.e., Transvi→bj ) are

signed and can only be accessed by a specified vehicle with
the right private key. If a malicious vehicle wants to forge
the signature of vehicle vi to pass the authentication process,
the adversary has to forge a signature Sigvi = SignSKvi (·).
However, adversaries have no access to the private key SKvi .
The only information that the adversary can obtain is the
public key of vehicle vi. Since there is no feasible solution
to obtain the private key from the public key, the adversary
cannot forge the signature information of a legal vehicle. The
anonymity and digital signature can protect the privacy of
vehicles in V2V content caching.

3) Majority attack: Majority attack is a noteworthy security
issue where an entity or user can take control of the system
and use it for self benefit if the attack is performed prop-
erly. In the proposed scheme, all blocks and transactions are
publicly audited and mutual verified by all elected delegates.
The delegate selection process is democratic where delegates
are individually selected by vehicles based on the proposed
PoU consensus. The selected delegates form a commission
to produce block in a round-robin way. Therefore, it is nearly
impossible for an adversary to dominate the delegate selection
process and make the majority attack.

4) Transaction traceable: All broadcasted transactions in
blockchain are forever recorded with a timestamp and these
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Fig. 4: Spatial distribution of vehicle trace points.

transactions cannot be modified by a single entity. Since
blockchain is a distributed ledger, transactions are synchro-
nized updated and can be easily obtained from any BS. When
malicious behavior occurs, any vehicle can easily verifies and
traces previous records through accessing a BS. Timestamps
in blockchain can be used to keep transactions intact, thus
leaving no chance to counterfeits.

B. Permance Analysis of Vehicular Content Caching Scheme

We use Python and TensorFlow to evaluate the performance
of the proposed DRL empowered content caching scheme
based on a real-world dataset from Uber [37].

The trajectory of Uber dataset is used to simulate the
changing locations of vehicles. This dataset has 4.5 million
Uber pickups in New York City from April to September
2014, and 14.3 million Uber pickups from January to June
2015, as shown in Fig. 4. We take 100 vehicles as examples
from an observation area, whose latitude is from 40.668671
to 40.678719, and the longitude is from -73.930269 to -
73.950915. The observed area is approximately 1.52 km2.

The data size of each content, required caching resource
and the maximal content delivery latency of each content are
within the range of [10, 50] MB, [0.5, 2.5] GB, and [5, 10]s,
respectively. The caching capacity of vehicles is 5 GB. The
maximal distance of V2V communication is γ = 500 m.
The transmission power of vehicles for content delivery is 24
dBm. The channel bandwidth is 10 MHz. The noise power is
σ2 = 10−11 mW. The proposed DRL empowered algorithm
is deployed on a MacBook Pro laptop, powered by two Intel
Core i5 processor (clocked at 2.6Ghz). The activation function
is tanh(x)+1

2 . The maximum episode is 4000 and the maximum
number of steps in each episode is set to 20. The size of mini-
batch is set up as 32 . The penalty is -100.

To verify the performance of our proposed DRL empowered
edge caching and content delivery algorithm, we introduce the
following two benchmark schemes,
• Greedy content caching (GCC): In this scheme, each

caching requester delivers its content to the caching

Fig. 5: Comparison of cumulative average reward with respect
to number of caching requesters under different scheme.

provider with the highest wireless communication data
rate.

• Random content caching (RCC) : This scheme randomly
selects a caching provider for a caching requester to
perform content caching. Note that the distance between
the caching provider and the caching requester should not
exceed γ.

We set the number of caching provider as 50. Fig. 5 plots
the comparison of cumulative average reward with respect
to number of caching requesters under different scheme.
From Fig. 5 we can draw several observations. First, the
performance of the proposed DRL-empowered algorithm sig-
nificantly outperforms the two benchmark policies. The reason
is that the proposed DRL-empowered algorithm designs the
content caching policy based on current network topology and
wireless channel condition while GCC and RCC are not able to
acquire real-time parameters of the vehicular network, such as
available caching resource of caching providers. Second, the
performance of GCC is better than that of RCC because of
taking wireless communication data rate into account. Third,
the cumulative average reward of RCC is the lowest, even
lower than 0 (i.e., receiving a penalty). This implies that
randomly choosing a caching provider for a caching requester
results in unsuccessful content caching.

Fig. 6 plots the comparison of percentage of successful
content caching with respect to number of caching requesters
under different scheme. We can see that the proposed DRL-
empowered algorithm has a good efficiency that over 86%
caching requesters can successfully execute content caching
within their stringent deadline constraints. The performance
of GCC is also well that about 78% caching requesters
can successfully execute content caching. The performance
of RCC is quite poor that only 5% caching requesters can
successfully execute content caching. Thus, we can conclude
the proposed algorithm is the most efficient.

Fig. 7 and Fig. 8 show the impact of learning rate and
the impact of number of vehicles on the performance of the
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Fig. 6: Comparison of percentage of successful content
caching with respect to number of caching requesters under
different scheme.

Fig. 7: Impact of learning rate on the performance of the
proposed DRL-empowered algorithm.

proposed algorithm. From Fig. 7, we can observe that at all
learning rates, the cumulative average rewards converge. When
the learning rate is 10−2, the proposed algorithm converge
slightly faster than the case when the learning rate is 10−3

and 10−4 . In the proposed algorithm, we set the learning rate
as 10−2. From Fig. 8, we can see that the increasement of
caching requesters results in a high reward, which means the
caching utility is improved. Moreover, the reward is greatly
increased as the number of caching requesters changes from
10 to 30 but it is slightly increased as the number of caching
requesters changes from 30 to 50. This is reasonable because
in all cases the total caching resource of the caching providers
is the same, such that when the number is 30, the system
utility is already approached to upper bound and the further
increasement of caching requesters cannot make a greatly

Fig. 8: Impact of number of vehicles on the performance of
the proposed DRL-empowered algorithm.

(a)

(b)

Fig. 9: (a) Utility of base station v.s. Block size Ik. (b) Utility
of base station v.s. Distance to the leader.

utility improvement.

C. Performance Analysis of PoU Consensus

The size of block before verification Ik, the size of local-
verified result Ok, and the size of second-audit result Wk are
uniform distributed in [10, 50] MB, [1, 5] MB, and [100, 500]
KB, respectively. The computation resources of each BS are
within the range of [5, 10] GHz. We evaluate the utility of
vehicle vi towards the BS with various block size in Fig. 9a.
From Fig. 9a, we can see that the utility decreases with the
increasement of Ik. The reason is that with the increasing in
block size, more time consumption is needed to verify the
candidate block. When Ik exceeds 30 MB, the utility turns
to be 0. This is because the time consumption on blockchain-
based content caching exceeds the maximal content delivery
latency (i.e., Tvi > τvi ). Fig. 9b depicts the utility of each
vehicle with respect to average distance between the vehicle
and the PoU selected leader. In general, the utility decreases
with the increasement of distance. This is because a larger



12

distance between a vehicle and the PoU selected leader, the
more communication time it needed for block verification. We
can conclude that the utility decreases with the increasement
of block size Ik and communication distance, which is in
accordance with our previous analysis in subsection V-B.

VII. CONCLUSION

In this article, we have proposed a secure and intelligent
content caching for vehicles by integrating deep reinforce-
ment learning and permissioned blockchain in vehicular edge
computing networks. We first proposed a blockchain empow-
ered distributed and secure content caching framework where
vehicles acted as caching requesters and caching providers
to perform content caching and BSs acted as verifiers to
build and maintain permissioned blockchain. To learn dynamic
network topology and time-variant wireless channel condition,
we utilized DRL to design an optimal content caching scheme.
We exploited permissioned blockchain to maintain the security
and privacy of content caching among vehicles and introduced
a new verifiers selection metric, PoU to accelerate block veri-
fication. Security analysis shows that our proposed blockchain
empowered content caching can achieve security and privacy
protection. Numerical results based on a real dataset from
Uber indicate that the DRL-inspired content caching scheme
significantly outperforms two benchmark policies.
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