
1

RACE: Reinforced Cooperative Autonomous
Vehicle Collision AvoidancE

Yali Yuan† , Robert Tasik† , Sripriya Srikant Adhatarao, Yachao Yuan, Zheli Liu Member, IEEE,
and Xiaoming Fu, Senior Member, IEEE

Abstract—With the rapid development of autonomous driving,
collision avoidance has attracted attention from both academia
and industry. Many collision avoidance strategies have emerged
in recent years, but the dynamic and complex nature of driv-
ing environment poses a challenge to develop robust collision
avoidance algorithms. Therefore, in this paper, we propose a
decentralized framework named RACE: Reinforced Cooperative
Autonomous Vehicle Collision AvoidancE. Leveraging a hierar-
chical architecture we develop an algorithm named Co-DDPG to
efficiently train autonomous vehicles. Through a security abiding
channel, the autonomous vehicles distribute their driving policies.
We use the relative distances obtained by the opponent sensors
to build the VANET instead of locations, which ensures the
vehicle’s location privacy. With a leader-follower architecture
and parameter distribution, RACE accelerates the learning of
optimal policies and efficiently utilizes the remaining resources.
We implement the RACE framework in the widely used TORCS
simulator and conduct various experiments to measure the
performance of RACE. Evaluations show that RACE quickly
learns optimal driving policies and effectively avoids collisions.
Moreover, RACE also scales smoothly with varying number of
participating vehicles. We further compared RACE with existing
autonomous driving systems and show that RACE outperforms
them by experiencing 65% less collisions in the training pro-
cess and exhibits improved performance under varying vehicle
density.

Index Terms—Autonomous Driving, Deep Reinforcement
Learning, Collision Avoidance, Privacy, VANET

I. INTRODUCTION

The 2018 global road traffic accident report from the World
Health Organization [1] revealed that an estimated 1.35 million
people died worldwide due to road accidents. Even though
the rate of death relative to the world’s population remains a
constant, the United Nations’ goal to realize 50% reduction
in road accidents by 2020 remains a distant dream. Moreover,
there is no observed reduction in road accidents in low income
countries. The cost to endure traffic accidents per year is
approximated to 518 billion US dollars [2], [3]; approximately
1% of the gross national product (GNP) in low income
countries. Most of the road or traffic accidents are caused

Yali Yuan, Robert Tasik, Sripriya Srikant Adhatarao and Xiaoming Fu are
in Computer Networking Group, Institute of Computer Science, University
of Goettingen, 37077 Goettingen, Germany. Emails: yali.yuan, fu, sripriya-
srikant.adhatarao@cs.uni-goettingen.de, robert.tasik@stud.uni-goettingen.de.

Yachao Yuan is in Smart Mobility Research Group, Institute of Infor-
mation Systems, University of Goettingen, 37075 Goettingen, Germany.
Email:yachao.yuan@uni-goettingen.de.

Zheli Liu is in college of computer and control engineering, Nankai
University, Tianjin, China. Email: liuzheli@nankai.edu.cn.

† Yali Yuan (corresponding author) and Robert Tasik have equal contribu-
tions and are both first authors.

by collisions [4]. Substituting the error-prone human driving
with autonomous vehicles using artificial intelligence has the
potential to circumvent the collision problems. Nevertheless,
developing efficient computing models for robust autonomous
vehicles that replicate the desired driving behaviour to avoid
the collisions is still an ongoing research challenge [5].

Widespread research in the field of collision avoidance in
autonomous driving has led to numerous solutions ranging
from control theoretic formalization [6] and optimal control
methods [7] to potential field-based and rule-based tech-
niques [8]. Recent advancements in the field of machine learn-
ing with imitation learning and deep reinforcement learning
have facilitated improved data-driven approaches to minimize
collisions. For example, in [9], Min et al. predicted collisions
using neural networks with optimized genetic algorithms and
back propagation and in [10], Chen et al. explored collision
avoidance using deep reinforcement learning with multiple
agents. However, these approaches cannot effectively scale to
accommodate the increasing road safety requirements. Further,
many collision avoidance algorithms use precise information
(e.g., location) of the agents1 [11], [12] to avoid collisions and
thereby compromise the privacy of participating agents during
autonomous driving.

Moreover, we observed that, autonomous vehicles learn
their surrounding environment and optimal driving strategies
through a large amount of onboard sensors, such as lidar, radar
and acceleration sensors. However, because of the limited
communication range of the vehicles, the collected information
from one vehicle is not sufficient to fulfill large-scale road
safety requirements and improve the collision performance
efficiently. Therefore cooperation among the vehicles is a
promising solution to overcome the above-mentioned short-
coming. In cooperated vehicle communication, the vehicles
can communicate with each other. Each vehicle can learn their
neighbor’s surrounding environment. As a result, the cooper-
ated vehicles communication enables the vehicles to incorpo-
rate essential environmental information and thereby improve
their autonomous driving behaviors. However, Kaushik et
al. [13] show that, cooperated vehicle communication strategy
faces the challenges of enforcing vehicles within lanes and
prevent unnecessary over-takings. They proposed parameter
sharing to resolve these issues, but failed to take the scalability
of their solution into account since with increasing number
of agents the collisions increased exponentially. Some recent
works [14], [15], [16] also proposed centralized solutions,

1Please note we use the terms agent and vehicle interchangeably.

ar
X

iv
:2

00
4.

01
28

6v
1

 [
cs

.N
I]

 2
 A

pr
 2

02
0

where a server deployed at the central location computes
efficient collision avoidance strategies for all participating
agents. The centralized server maintains the comprehensive
knowledge about all the agents as they send their current state
information to the server and wait for the most intelligent
driving strategy from the server. However, such centralized
algorithms cannot effectively scale under heavy workload,
especially when many agents are simultaneously requesting for
driving instructions. Moreover, such systems heavily depend
on the availability of a secure and private communication
network between the agents and the server, which is hard
to guarantee in an agile driving environment [17]. Therefore,
further research is required to provide optimal autonomous
driving solutions that satisfy the desired driving requirements.
especially efficient collision avoidance solutions which also
fulfill the privacy needs of the users [18], [19].

Based on the above discussion, we propose RACE:
Reinforced Cooperative Autonomous Vehicle Collision
AvoidancE, a robust and efficient autonomous driving frame-
work to overcome the above mentioned shortcomings. In
RACE, we provide a hierarchical multi-agent deep reinforce-
ment learning model that exploits the well-known Deep De-
terministic Policy Gradients (DDPG) [20] algorithm to effec-
tively avoid collisions during autonomous driving. We leverage
the cooperated vehilce communication model, and develop
a private and dynamic ad-hoc vehicular network algorithm
based on VANETs, to build hierarchical vehicular networks
with leading and following agents. Using the distribution of
parameters from the leading agent to the following agents,
we foster a resource efficient real-time deep reinforcement
collision avoidance algorithm.

RACE is designed to meet real-world autonomous driving
design goals and hence it can rapidly adapt to the changes
in the driving environments, such as sparsity or density of
vehicles at intersections, and reduce the number of collisions.
During learning, RACE enforces varying levels of stringent
penalties when collisions or potential situations, which may
lead to collisions, occur; in order to build a robust learning
environment. Employing the TORCS [21] simulator, we im-
plement RACE in a non-deterministic real-world car driving
scenario in a racing environment. With evaluations using the
TORCS simulator, we show that RACE effectively learns from
the environment and its neighboring agents. As the agents
learn, we observe an exponential decrease in the number of
collisions and a stable increase in rewards during learning. We
compare RACE with existing baselines from Pinxin et al. [22]
and show that RACE outperforms existing works and dramat-
ically reduces the collisions by 65% and improves resource
utilization by exploiting the multi-level agents. Interestingly,
we also observed that due to the varying levels of penalties
designed in RACE, with sufficient learning, the vehicles chose
to go off track in a potential collision scenario rather than
collide with other vehicles or nearby objects to minimize
the risk and liability. Thus, RACE provides a robust learning
environment with the proposed Co-DDPG algorithm, which
converges quickly and distributes the best parameters among
the participating agents. The main contributions in this work
include:

• A novel hierarchical collision avoidance framework
named RACE to administer an efficient autonomous driv-
ing environment. Through leveraging the deep reinforce-
ment learning and the cooperated vehicle communication,
RACE provides an efficient autonomous driving system
that achieves the desired driving goals and ensures the
location privacy of vehicles.

• A dynamic hierarchical ad-hoc mobile network creation
algorithm based on VANETs to create and maintain
vehicular networks during autonomous driving. The net-
work is used to communicate necessary information to
the participating agents in order to ensure smooth driving
experience.

• An improved deep reinforcement learning algorithm
named Co-DDPG to efficiently learn the driving patterns.
Employing parameter distribution, the learned driving
patterns are communicated with neighbors to utilize the
resources efficiently and share the learning experiences
among agents.

• Extensive evaluations using TORCS simulator to demon-
strate the benefits of RACE in comparison to existing
solutions in an autonomous driving environment.

II. SYSTEM DESIGN

In this section, we elaborate the design goals of autonomous
driving and the rationale behind them. This is followed by
a detailed description of the RACE framework and a use
case example. Figure 1 shows an overview of the proposed
RACE framework along with its internal system components
to realize the design goals of an autonomous driving system.

A. Design goals

An autonomous driving system should fulfill the following
design goals:
• Risk mitigation: It is crucial for an autonomous driving

system to avoid any potential collision and damage in
order to offer safe transportation with minimal risk.

• Robustness: An autonomous driving system should be
able to overcome technical difficulties arising during
driving and opt for safer alternatives to avoid impending
danger.

• Uncertainty: An autonomous driving system should be
able to account for unpredictable and unexpected com-
plications arising from the surrounding environment and
neighboring vehicles.

• Resource utilization: An autonomous driving system
should optimally consume the available resources, such
as computational resources and energy. This is crucial
to ensure an efficient and safe driving experience. More-
over, many resources are often depleted at a faster rate
during driving and are often difficult to replenish in some
scenarios.

• Efficiency: In autonomous driving, with increasing num-
ber of agents the complexity of machine learning models
also increases. The learning algorithm should be able to
scale easily and handle the learning complexity efficiently
in order to generate accurate driving actions in real-time.

Level 0

Level 1

Level N

A 𝟏𝟏 A 𝟏𝒎 A 𝟏𝑴

A 𝑵𝟏 A 𝑵𝒌 A 𝑵𝑲

LA 𝟎𝟏 LA 𝟎𝟐

Environment

Co-DDPG VANET
Collision

Information

Update Agents Update Neighbor(s)

External Input

Connection

Internal Functions

(a) RACE Framework.

Co-DDPG

Environment

Agent

Parameter
Distribution

DDPG
Collision

Avoidance

VANET

Start

(b) System Overview of Agent.
Figure 1: RACE Architecture.

• Location Privacy: As the information is distributed in
an open access environment in VANET, drivers’ location
privacy is critical and has to be satisfied to provide a
reliable system.

B. Architectural Components

The proposed RACE framework, which satisfies the above
mentioned design goals is illustrated with an example scenario
in Figure 1 along with an overview of the system in every au-
tonomous vehicle. The framework in Figure 1(a) is composed
of N layers organized hierarchically where, LAij represents
the leading agent LAj in the ith layer. Correspondingly,
A(i+1)m is the following agent Am in the (i + 1)th layer
of the leading agent LAij . The agents at level 0 are always
considered as leading agents, whereas the agents at subsequent
layers can take up the role of both leading and following agents
based on their level in the hierarchy. The main components of
this framework are described as follows:
• Environment: It represents the collective information re-

garding various road conditions gathered by the on board
sensors in the autonomous vehicles e.g., distance towards
the track edge, speed, angle, etc. We build dynamic
VANETs to facilitate the agents to communicate with
each other and update their environmental conditions.

• VANET: This component creates a dynamic vehicular
ad-hoc network, i.e. VANET to rapidly find any nearby
vehicle(s) and create a network for communication and
efficient driving. Essentially, every agent identifies its
neighboring autonomous vehicles and adds them to its
local list of neighbors to which it is already connected.
This module is mainly responsible for opening, leaving
and closing the connections of an agent with its neighbors
in a VANET.

• Hierarchical Agent Network: This is a submodule of
the VANET. It is created to dynamically allocate agents
with their respective roles in the VANET. The roles are
designated based on varying levels of their available
resources to ensure efficient operation. This hierarchical
network is composed of many layers with various agents
found on different layers. However, we can broadly

Figure 2: Parameter distribution.
classify the agents into two categories, namely leading
agents and following agents. A leading agent represents
an autonomous vehicle at a layer with maximum available
resources in comparison to its following agents located
at the lower layers. Every agent stores its corresponding
following agents in a list similar to the neighbors list used
during the VANET creation.

• Collision Avoidance: This component tries to minimize
the collisions during driving by allotting penalties for
undesired driving behaviours such as crashing or driving
too closely with other participating vehicles and rewards
for good driving behaviours like keeping on the road,
avoiding collisions and minimizing the arrival time.

• Co-DDPG: Cooperative Deep Deterministic Policy Gra-
dients (Co-DDPG) algorithm is an enhanced version of
the standard DDPG algorithm designed in RACE. Along
with autonomous learning, it also facilitates collision
avoidance with neighboring agents during deep reinforce-
ment learning within a VANET.

• Parameter Distribution: The parameter distribution en-
ables leading agents in RACE to accumulate deep learn-
ing parameters through Co-DDPG, such as weights, bi-
ases and rewards and distribute them to their following
agents.

C. Parameter Distribution

One major component in the system design of Co-DPPG is
the Parameter Distribution module. In RACE, the parameter

distribution is facilitated by the creation of VANETs, which
ensure that all participating vehicles can communicate with
each other. The crux of parameter distribution is based on
comparing the average reward accumulated by each agent
for every action executed during autonomous driving. As this
reward in reinforcement learning represents the incentives for
good driving behaviour, it enforces and enriches the desired
learning process. Therefore, we consider the average reward
as a suitable metric to design the parameter distribution in
RACE. Please note that in RACE, the following agents can
choose to either learn or wait for distributed parameters from
their leading agent(s) based on their available resources. If a
following agent chooses to wait, it updates its parameters with
the distributed parameters from a leading agent with highest
average reward. Otherwise, a following agent compares its
average reward based on its learned parameters with that of the
leading agent. The following agent will update its parameters
with the distributed parameters, if the leading agent’s average
reward is higher than its current average reward. Otherwise,
the following agent will forward its parameters to the leading
agent to ensure that all agents learn the best policy. For in-
stance in Figure 2, Agent 1 and Agent 2 distribute two different
set of parameters to their following agent i.e., Agent 3. Based
on the average rewards associated with these two parameter
sets, Agent 3 will select the parameters with the highest
possible reward and incorporates it into its learning model.

D. Design

We acknowledge that it is challenging to implement a
multi-agent autonomous driving learning environment. This is
mainly due to the increasing complexity and uncertainty of the
participating agents and their responses to other agents and
the varying environmental conditions. Each agent explores the
learning environment with an aim to find the best policy under
current circumstances and thereby increase the complexity
of its learning. Subsequently, this also influences the learn-
ing complexity of other participating agents. With increasing
number of agents, the resulting resource consumption also
increases and thus, an inefficient learning environment will
negatively impact the desired goals of autonomous driving.
Therefore, we introduce an efficient decentralized learning
algorithm named Co-DDPG (see Section IV) based on deep
reinforcement learning and parameter distribution in RACE
to ensure adequate learning in a multi-agent environment that
satisfies the desired learning goals.

The RACE framework shown in Figure 1(a) employs a hier-
archical agent network, where each agent runs the Co-DDPG
algorithm with its supporting system components shown in
Figure 1(b). The Co-DDPG algorithm enables reinforcement
learning parameters such as weights and biases to be shared
among all the connected agents in the VANET. The initial
parameters are distributed by a primary leading agent that
instantiates the vehicular network. For instance in Figure 2,
an initial network was created by the leading Agent 1 and
leading Agent 2 and thus, they distribute the initial learning
parameters to their subsequent following agents i.e., Agent 3.
Each agent’s model parameters are updated whenever there

exists a better trained model in the network. With such a
learning behaviour, all agents in the VANET benefit from
distributed and learned experiences with each other. Some
agents may receive parameters from two or more leading
agents e.g., Agent 3 in Figure 2 received two parameter
distributions, one each from Agent 1 and Agent 2. In such
a scenario, the agents will select the best parameters from
the received choices. This ensures that, in RACE always the
best collision avoidance parameters are shared among the
agents to maintain a safe distance between the participating
vehicles and to stay on the road by avoiding the edges of
the road. Specifically, every agent in RACE is organized in to
a hierarchical leader-follower architecture. The leading agents
learn from the current environment and distribute their learned
parameters, specifically the weights and bias, to their following
agents. The following agents can choose to either learn from
the environment similar to their leading agent(s) or wait and
download the parameters from their leading agent(s) based
on their available resources. If the following agents choose
to learn from the environment, they compare their learned
parameters with the received parameters from their leading
agents and store the best policy. If the following agent learns
the best policy, then the following agent communicates the best
policy to its leading agent. This ensures that all agents in the
current environment learn the best possible driving behaviours.

Essentially, with N number of layers organized hier-
archically, the set of all layers is represented as L =
{L0, L1, · · · , Li, · · · , LN}. If the agents in layer Li are desig-
nated as leading agents, then the agents in the following layer
Li+1 are considered to be the followers of the agents in the
layer Li. The number of agents in each layer is denoted as
M , where M ∈ [0, N] and M , N are integers. The set of all
agents in layer i is given as V = {Ai1, · · · , Aim, · · · , AiM}.
Initially, two agents in the top most layer are selected as the
leading agents. The agents run the Co-DDPG (see Section
IV) learning algorithm to find the optimal driving strategy
and how to interact with other neighboring vehicles. The
following agents in the communication range of the leading
agent estimate their remaining available resources and choose
to either learn by running their Co-DDPG algorithm or wait
for their leading agents to distribute the parameters. After the
leading agents distribute their trained parameters, the following
agents select the parameters from the leading agents and
updates their current Co-DDPG parameters with the received
parameters. Since we optimally organize the agents based on
their available resources into leader or follower and further
provide the followers with an option to wait in order to
conserve their remaining resources, RACE guarantees optimal
utilization of the available resources.

E. Use case Example

Let us consider a car driving on a road as an example
use case to describe the operation of a system implemented
using the proposed RACE framework. Initially, the road is
empty, and at time Ti, where i ∈ [0, N], a single agent,
Agent 1, enters the road and starts driving. Since there are
no neighboring agents to connect and synchronize the driving,

Algorithm 1 checkVANETradius()

1: for Neighbor in vehicle.Neighbor do
2: if opponent < VANET RADIUS then
3: if not vehicle.openedVANET and not vehi-

cle.insideVANET then
4: vehicle.openVANET()
5: else
6: vehicle.identifyNeighbors()

Agent 1 learns its best driving behaviour primarily from Co-
DDPG. At time Ti+1, a second agent, Agent 2, enters the road
and soon comes in the connection range of Agent 1. Agent 1
and Agent 2 initialize the VANET module and thus create a
VANET and assign the roles of leading and following agents
based on their available resources. This process is repeated
each time, a new vehicle comes in the VANET radius of
the vehicles already in the VANET. The resulting neighbors
are added to the neighbors list in every agent and used for
communication as the learning continues. The participating
agents continuously compute the distance between each other
using the values from their neighboring agent’s sensors and
maintain a safe distance to avoid collision. The DDPG module
in Co-DDPG collects the necessary state information from the
environment, VANET and collision avoidance modules and
generates the optimal driving actions along with the associated
reward under current conditions. Using the parameter distribu-
tion module, the computed parameters from the leading agents
are distributed to their following agents. Whenever a collision
occurs, or if the vehicles overstep their safe distance threshold,
a penalty with negative reward is awarded for that action.
With a hierarchical networking architecture, RACE unites all
the necessary autonomous driving components in Co-DDPG
to provide an efficient learning platform that enhances the
existing autonomous driving learning algorithms.

III. VANET

In this section, we describe the dynamic vehicular ad-hoc
network creation algorithm, i.e., the VANET component shown
in Figure 1(b).

A. Opening, Leaving and Closing VANETs

The basic objective of a VANET during autonomous
driving in RACE is achieved with three main functions:
openVANET(), leaveVANET() and closeVANET(). If
a vehicle scanning for neighbors identifies another vehicle
in its VANET range, then a VANET connection is opened
using the openVANET() function to initialize the connection.
Contrary to openVANET(), as soon as a vehicle moves
out of the VANET’s range, this vehicle leaves the network
using leaveVANET() function and disconnects with its
neighbors located in that network. Subsequently, the neighbors
of this vehicle remove its information from their list of
connected vehicles. When all except one vehicle leaves the
VANET, then the scanning vehicle closes the VANET using
the closeVANET() function.

Algorithm 2 identifyNeighbors()

1: identifiedNeighbor = False
2: for VehicleX in LocalVehicleList do
3: for VehicleA in LocalVehicleList do
4: if VehicleX != VehicleA then
5: if VehicleX not in VehicleA.Neighbors &&

Distance between A and X < VANET RADIUS then
6: identifiedNeighbor = True
7: Add VehicleX to VehicleA.Neighbors
8: Add VehicleA to VehicleX.Neighbors

B. VANET Operation

In order to create a VANET, it is fundamental to identify
the vehicles driving in the area of interest. Hence in RACE,
we declare the desired VANETs range in meters and utilize
the on-board sensors in the vehicles to compute the distance
between vehicles located in this range.

In Co-DDPG, we define an algorithm called checkVANET
radius() to find any neighboring vehicle in the specified
VANET radius of a vehicle. A pseudocode of the algorithm
is given in Algorithm 1. Essentially, every vehicle scans with
checkVANETradius() the VANET radius e.g., 200 meters
to find any nearby vehicles to connect with. Since we follow
a decentralized approach, every vehicle in RACE maintains a
local list of connected vehicles called LocalVehicleList,
which is a subset of the global list of all participating
vehicles. If a vehicle is found within this range and there
is no available VANET to connect with, then the scanning
vehicle initially opens a VANET using the openVANET()
function. This is followed by opening a connection with the
identified neighbor for communication. This is accomplished
by calling the method identifyNeighbors() shown in
Algorithm 2. All vehicles, continue to scan the VANET
radius to find potential neighbors to connect with. Further,
the identifyNeighbors() method is also responsible for
maintaining the presently connected vehicles within a list.

In addition to VANET creation, when a vehicle enters the
VANET, it takes on the role of a leading or a following agent
with each of its neighbors based on its available resources.
Specifically, a new agent joining the VANET notifies its
neighbours that it would like to be a leading or a following
agent while its neighbours can choose to be either its leader
or be a follower of the new agent. If a neighbouring agent
is already a follower, then it notifies the new agent that it is
already a following agent and provides the list of its leading
agent(s). Since each vehicle available resources can vary, a
following vehicle at level i may become a leading agent for
a vehicle at level i + 1 if the resources of the agent at level
i+ 1 are less than that of agents located at the level i.

Utilizing the values gathered by the on-board sensors,
the identifyNeighbors() method verifies the distance
between the host vehicle and its neighbors and sends it
to the collision avoidance component, which in turn sends
this information to the Co-DDPG approach to learn collision
avoidance during autonomous driving. We implemented an
autonomous driving system using the RACE framework in
the TORCS simulator by primarily using the opponent range
sensor. According to the TORCS user manual [23], the op-

Figure 3: Distance computation in VANETs.

ponent range measurement is achieved using 36 minor range
on-board sensors located on each agent to cover the complete
360 degree space around the vehicle. A pictorial representation
of the opponents range sensor in TORCS is shown in Figure 3.
Each of these sensors has a sensing range of up to 200 meters
and span a coverage area of 10 degrees. Each sensor returns the
distance between the hosting vehicle and any nearby vehicle(s)
within its sensing range.

IV. CO-DDPG
In this section we describe the core of the proposed au-

tonomous driving strategy designed in RACE, i.e., the system
model for deep reinforcement learning in Co-DDPG.

Due to the compelling design of the standard DDPG [20],
we utilized it as the basis for learning in RACE. DDPG can
efficiently learn competitive policies for all tasks considered
in an autonomous driving environment using low-dimensional
observations and handle continuous action spaces effectively.
However, we model the autonomous driving learning strategy
through enhancing the standard DDPG algorithm with hier-
archical multi-agent parameter distribution to further improve
the performance of learning. We refer to this enhanced version
as Co-DDPG in this work and a pseudocode of the algorithm
is provided in Algorithm 3. The actor network’s update (line
23 in Algorithm 3) is based on the application of chain
rules computed by the loss function (line 22 in Algorithm
3). The target network’s weights are then updated according
to θ′ ← τθ + (1 − τ)θ′, where τ << 1. The overall benefit
in a multi-agent autonomous driving environment is achieved
with the efficient collaboration of the surrounding components
in the system design of Co-DDPG as shown in Figure 1(b).
Co-DDPG receives input from the VANET and Collision
Avoidance modules to enforce efficient driving behavior. We
further improve the learning by allotting positive rewards for
good driving behaviour and penalties for bad driving behaviour
with negative rewards. Thereby, the system model of Co-
DDPG is created in RACE using three essential concepts,
namely the state, action and reward.

A. State Space

The state space represents the on-board sensors in a vehicle
and is thus a representation of the autonomous driving envi-
ronment. The state is defined as S = {s1, s2, · · · , sI}, where

Algorithm 3 Co-DDPG algorithm

1: Randomly initialize critic network Q(s, a|θQ) and actor
µ(s|θµ) with weights θQ and θµ

2: Initialize target network Q′ and µ′ with weights θQ
′ ←

θQ, θµ
′ ← θµ

3: Initialize action-value function Q with random weights
4: Initialize replay buffer R
5: for episode = 1 to M do
6: initializeVANET()
7: Initialize a random process N for action exploration
8: Receive initial observation state s1
9: for t = 1 to T do

10: setSensors(st)
11: Select action at = µ(st|θµ) +Nt according to the

current policy and exploration noise
12: Execute action at
13: checkCollisionRadius()
14: Observe reward rt and observe new state st+1

15: checkVANETradius()
16: if t == 100 and VANET is open then
17: distributeParameters()
18: Store transition (st, at, rt, st+1) in R
19: Sample a random minibatch of N transitions

(si, airi, si+1) from R
20: Set yi = ri + γQ′(si+1, µ

′(si+1|θµ
′
)|θQ′

)
21: Update critic by minimizing the loss: L =

1
N

∑
i(yi −Q(si, ai|θQ))2

22: Update the actor policy using the sampled policy
gradient:

∇θµJ ≈
1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θ
µ)|si

23: Update the target networks:

θQ
′
← τθQ + (1− τ)θQ

′

θµ
′
← τµQ + (1− τ)µQ

′

I is the total number of states. The states represent a vehicle’s
sensors and forms the basis for the actions taken by the agents.
As mentioned before, we collected the state information from
the sensors available in the TORCS simulator. Please note that
sensors provided in TORCS e.g., range finding sensors operate
in a similar fashion as the real world sensors implemented
with LiDAR, radar or ultrasonic sensor technologies. Hence,
the data produced by the sensors in TORCS enabled us to
build a simulated learning environment akin to driving in the
real world. Due to their prominent role, the sensors formed
the basis for an autonomous vehicle to conduct any action in
its environment.

The following list of sensors, which are also the state space
variables, are used to form the state space in Co-DDPG:
• angle: It is the angle between the vehicle axis and the

track axis during driving with values ranging between −π
to π and is measured in rad.

• opponents: It is a vector containing the 36 range
finding sensors from TORCS. Each opponent sensor
spans a coverage area of 10 degrees with a sensing range

Figure 4: Reward computation. Figure 5: Experimental racing track.

of up to 200 meters. The vector returns the closest vehicle
in the scanned area.

• rpm: It stands for the rotation per minute executed by
the vehicle’s engine.

• v: It denotes the vehicle’s speed within the vehicle’s
longitudinal axis in km/h.

• speedY: It denotes the vehicle’s speed within the vehi-
cle’s transverse axis in km/h.

• speedZ: It denotes the vehicle’s speed within the vehi-
cle’s z-axis in km/h.

• track: It is a vector containing 19 range finding sensors
that gather readings from the front of the vehicle with
90 degrees left and right from the vehicle’s axis. Each
sensor returns the distance between the vehicle and the
track edge within a range of 200 meters.

• trackPos: It denotes the distance between the vehicle
axis and the track axis. It returns a value of 0 when the
vehicle is found on the track axis, −1 when the vehicle
is on the right track edge and 1, when the vehicle is on
the left track edge.

• wheelSpinVel: It represents a vector of four sensors
capturing the rotation speed of the wheels.

B. Action Space
The action space is a three dimensional vector consisting

of acceleration (i.e. accel), brake and steering. It is denoted
as A = {a1, a2, · · · , aH}, where H is the total number of
actions and is extracted from the following effectors:
• accel: It represents the simulated gas pedal and returns

the values in the range of [0, 1], where 0 represents no
gas while 1 represents full gas.

• brake: It represents the simulated brake pedal and
returns values in the range of [0, 1], where 0 represents
no brake while 1 represents full brake.

• steering: It represents the simulated steering values
in the range of [−1, 1], where −1 represents full right
brake while 1 represents full left brake with an angle of
0.366519 rad.

C. Reward
The reward function in Eq. (1), which is our objective,

is defined by considering three factors including collision
avoidance, minimizing the arriving time of all vehicles and
keeping vehicles on the road.

rti = wcc
t
i + whh

t
i + woo

t
i, (1)

where rti denotes the reward r of the ith vehicle at timestep t.
Essentially, higher the reward value, better is the autonomous
driving behavior. cti, h

t
i and oti are the rewards generated by

avoiding collisions, minimizing the arriving time and keeping
the vehicles on the road of the ith vehicle at timestep t,
respectively. wc ∈ [0, 1], wh ∈ [0, 1] and wo ∈ [0, 1] are the
weights for them to define the contribution of each factor to
the final reward function, where wc + wh + wo = 1.

Co-DDPG obtains penalties by defining a cti to avoid
collisions, and is given as follows,

cti =

{
−(Dt

min,i − dti) · wp dti ≤ Dt
min,i,

0 otherwise,
(2)

where Dt
min,i calculated in Eq. (3) is the safe distance between

two vehicles at timestep t, wp is the punished value per
distance, dti is the distance between two vehicles at timestep
t. For instance, for two vehicles i and j, dti defined as
dti =

√
(xti − xtj)2 + (yti − ytj)2. Please note that we use the

opponent sensors in the vehicles to get dti (See Section III-B)
and Dt

min,i is the safe distance that should be maintained
between vehicles. Similar to [24], we design the vehicle
deceleration rate as atcur ∈ [amin, amax], whereas the safe
distance between vehicles vti and vvj is calculated as follows,

Dt
min,i =

Tsv

A
+

v2t
B|at0|

− v2t
B|atmax|

, (3)

where Ts is the delay for detecting an emergency by on board
sensors in the vehicles. This also incorporates the autonomous
vehicle’s brakes response time. We set A = 3.6 to convert the
vehicle speed v from km/h to m/s while B = 25.92. B is
defined as 2|a| × (A)2 and it converts v2 from (km/h)2 to
(m/s)2.
hti is the reward to minimize the traveling time, defined by

hti =

{
10wp arrival to the destination,
wp|vti × sin(βti)| otherwise

(4)

where wp is the reward value as in Eq. (2).
oti is an incentive awarded to the vehicle to encourage good

driving behaviour whereby the vehicle drives within the road,
the factors of which are described in Figure 4. It is calculated
as follows,

oti = vti × |trackPosti|+
(
|vti × sin(βti)| − vti × cos(βti)

)
,

(5)

where vti × cos(βti) depicts the value of the longitudinal
velocity of vehicle i at timestep t, which we want to minimize.
The term |vti×sin(βti)| computes the transverse velocity and it
is aimed to be as high as possible, since the vehicle should stay
on the road. Lower values indicate that the vehicle is going off
the road edge. The third term, vti×|trackPosti|, also represents
stable driving on the center of the road and hence it should be
as high as possible. In Co-DDPG, whenever |vti×sin(βti)| and
vti × |trackPosti| are low, the reward is reduced by awarding
penalties.

V. EVALUATION

In this section, we evaluate the benefits of RACE through
demonstrating the performance of our system implemented
using the RACE framework with the TORCS simulator. We
further compare the performance of this system with existing
baselines and show that RACE effectively outperforms the
existing systems with respect to collisions and scalability; the
pivotal requirements of autonomous driving.

A. Assumptions

The following assumptions were made during the experi-
ments to fulfill the basic requirements of autonomous driv-
ing. Security and privacy are intrinsic components of the
autonomous driving system, hence we ensure security by
following the proposal from Samara et al. [25]. As for the
privacy, RACE can guarantee the location privacy by using
the relative distance to build VANET instead of the absolute
location of the vehicles.

We observed that underlying communication technology
was necessary to ensure efficient operation of the overall
system. Even though many communication technologies exist
and newer technologies like 5G are gaining momentum [26],
[27], the RACE framework is agnostic to these technologies.
Therefore, we made one assumption that any underlying
communication technology that fulfills the requirements for
performance, latency and parameter distribution in an au-
tonomous driving environment could be used in RACE.

Additionally, we made another assumption that VANETs
created in the autonomous driving environment were robust
in nature, wherein they effectively minimized connectivity
failures and supported efficient data transfer among the partic-
ipating agents. This was necessary to maintain stable networks
especially during long training/driving sessions.

B. TORCS Simulator

As mentioned earlier, we implemented a system using
the RACE framework in the widely used TORCS simulator
developed by Wymann et al. [21]. Over the years, TORCS
has become a profound testing environment for autonomous
driving research [28]. Intrinsically, by including the basic
vehicular dynamics and physics, TORCS provides realistic
physical surroundings that are suitable for simulating desired
driving environments. The participating vehicles also known
as players are characterized as robots in TORCS and they
are primarily external entities loaded by the simulation. In

particular, TORCS allows developers to create their own
artificial intelligence agents to simulate desired experimental
environments. This is accomplished by a low-level API located
at the driver level that enables partial access to the state
of simulation including the status of the ongoing race or
robot information such as agent’s speed, agent’s distance
from the track edge or the distance to other participating
agents. Nevertheless, TORCS limits access to most of the
components in the simulation and thus poses a challenge to
even partially observe basic driving problems [21]. Despite
such limitations, many TORCS robots were created over the
years by researchers and developers to further examine the
paradigms of Artificial Intelligence and Machine Learning.
Many of these research efforts have enhanced the TORCS
system to a point that it is now possible to execute driving
scenarios that surpasses human-level driving.

C. Experimental Setup

We perform extensive experiments to measure three most
important metrics of autonomous driving namely collisions,
scalability and latency of the system during driving. We use
the racing environment with CG track 2 in TORCS shown
in Figure 5 as an example to illustrate the performance of
RACE. Since CG track 2 is one typical track example in
TORCS [29]. The width and length of it are about 3186m
and 15m, respectively.

We gradually introduced vehicles on to the racing track and
observed their performance with respect to the effectiveness
of their learning behaviour. For example, in these simulations,
10 Normal Driving Vehicles (NDVs) are running on the road.
Then, we vary the number of Autonomous Driving Vehicles
(ADVs) equipped with Co-DDPG to test the proposed RACE
framework. We set weights of the reward function in Eq. (1)
as wc = 0.6 and wh = wo = 0.2. These values are obtained
by comparing the performance from various simulations. The
reward value of wp in Eq. (2) is set to 1000 and the commu-
nication range R of each vehicle is R ∈ [0, 200] meter. The
speed range of vehicles is from 40 km/h to 60 km/h. Other
parameters’ values, like steering, acceleration, brake, angle,
etc., are listed in detail in the TORCS documentation [23].
We implemented the RACE framework in TensorFlow where
the Co-DDPG used two hidden layer neural networks as a
non-linear function to achieve the optimal policy. There are
300 to 400 neurons in each layer, respectively. The learning
rate is 1e−4 with a batch size of 32. We use the decentralized
sensor-level collision avoidance policy for multi-robot systems
named POMDP proposed by Pinxin et al. [22] as the baseline
to compare the performance of RACE. POMDP uses a multi-
stage deep reinforcement learning framework to help multiple
robots to learn an optimal collision avoidance strategy using
the policy gradient approach.

One episode in the experiment denotes one instance on the
real world racing track and thus one complete race from the
start line until the finish line. However, there are instances
when the race ends abruptly, such as when an agent turns
back due to collision or leaves the track edge. As RACE
is the foundation for the experiment, every leading agent

0 100 200 300 400 500
0

20

40

60

Number of Episodes

N
um

be
r

of
C

ol
lis

io
ns

One Co-DDPG ADV with Ten NDVs in RACE
Two Co-DDPG ADVs with Ten NDVs in RACE
Three Co-DDPG ADVs with Ten NDVs in RACE

Figure 6: The total number of collisions of ADVs over
different number of episodes during the training process.

trains with the Co-DDPG algorithm and shares the parameters
with its following agents in the VANET. One main vehicle is
depicted as the leading agent that distributes its learned model
parameters within one local VANET with its following agents
and the following agents remain idle and await the learned
parameters from their leading agent. Since we designed a non-
deterministic autonomous driving environment, we executed
each experiment ten times and computed the average results
from all runs.

D. RACE Performance Analysis

Using the RACE system in TORCS, the agents learns
the best driving behavior during the simulations to master
collision avoidance policy. The agents’ goal is to dynamically
enhance their driving behaviour by learning to avoid collision
with other agents and objects in their vicinity. Meanwhile,
they also minimize their arrival time. It is essential for an
autonomous driving system to scale efficiently as the number
of vehicles fluctuate. Therefore, we measure the scalability
of RACE under varying density of participating ADVs. We
used ten NDVs along with one, two and three number of
ADVs installed with Co-DDPG to measure the performance
of RACE.

The performance of ADVs is estimated by primarily exam-
ining the number of collisions experienced by the agents and
the reward achieved by agents during the experiments, which
is shown in Figure 6 and 7. The One CO-DDPG, Two Co-
DDPG and Three Co-DDPG in the results denote ten NDVs
with one, two and three ADVs operating with Co-DDPG in
RACE, respectively.

In Figure 6, the average number of collisions over a span
of 500 episodes during the training process is presented.
The value of each collision point in this figure is calculated
by summing the collision number within every 50 episodes.
We observe from the results that as the number of episodes
increased, the average number of collisions in all scenes
are decreased. The number of collisions experienced by the
Two Co-DDPG is between that of One Co-DDPG and Three

0 100 200 300 400 500
−1

0

1

·106

Number of Episodes

A
vg

.R
ew

ar
d

pe
r

A
D

V

One Co-DDPG ADV with Ten NDVs in RACE
Two Co-DDPG ADVs with Ten NDVs in RACE
Three Co-DDPG ADVs with Ten NDVs in RACE

Figure 7: The average reward per ADV over different number
of episodes during the training process.

Co-DDPG, as expected. Compared to Three Co-DDPG, the
average number of collisions experiences by One Co-DDPG
is around 211% higher. This is because in RACE, the param-
eter distribution strategy (See Section II-C) in Co-DDPG is
employed to improve the performance of ADVs. We select
the best driving policy for each vehicle by comparing the Co-
DDPG rewards of neighboring autonomous driving vehicles
in a VANET. The highest reward represents the best driving
behaviours of the autonomous vehicles. Additionally, we also
notice that longer training time is needed by One Co-DDPG
to achieve zero collision in Figure 6. Whereas, in comparison
with Two DDPG, the Three DDPG ADVs is 13% faster in
reaching the zero collision goal during training phases.

The Co-DDPG rewards gain by the autonomous driving
vehicles is measured and the results are shown in Figure 7.
The results describe the summation of the reward recorded
during every 50 episodes. We notice that as the number of
episodes increases, the average reward increases in RACE. In
the beginning, the reward is low in all scenes, since Co-DDPG
of each autonomous driving vehicle is initialized with random
learning parameters in the initial stage. Therefore, the vehicles
may not select the correct action for their next movement,
which leads to many collisions. Co-DDPG punishes the failure
actions by decreasing the rewards to help Co-DDPG learn from
the bad behavior. Then, during next episode, it has the ability
to choose the correct action based on its previous experiences.
As the learning experiences of the vehicles increase with fur-
ther episodes, the rewards start to increase. This is because the
vehicles learned to make a suitable action to avoid collisions.
In such scenarios, incentives are awarded for encouraging the
desired driving behaviours and thereby minimize any collision.
We observe that One Co-DDPG has the lowest reward over a
span of 500 episodes compared to that in Two Co-DDPG and
Three Co-DDPG. The reward per autonomous driving vehicle
in Three Co-DDPG is about 33% higher than that in Two
Co-DDPG on average. Moreover, our algorithm also awards
penalties when there is a possibility for collision e.g., when the
agents drive too close to each other. Interestingly, we observe
that as they learned better policies, the agents choose to go

Figure 8: The comparison of total number of collisions of
ADVs over the number of episodes in the training process.

off track rather than collide with other vehicles.

E. Comparison Analysis

In this section, we compare the performance of
POMDP [22] with the proposed RACE framework. We
utilize three metrics namely, collisions, reward and latency
for this comparison.

The comparison results showing the number of collisions
in RACE and POMDP over different number of episodes are
shown in Figure 8, where three ADVs installed Co-DDPG and
ten NDVs are used. Each value of point denotes a summation
of the number of collisions experienced during every 50
episodes by all ADVs. We can see that number of collisions in
RACE is around 65% lower than that in POMDP on average
during the training process. In addition, compared to POMDP,
RACE learned the best collision avoidance policy by 42%
faster on average.

Figure 9 illustrates the average reward gained by every ADV
in both POMDP and RACE. The simulation vehicles are same
as in Figure 8. We add every 50 episodes’ reward of all ADVs
first. Then the summation reward value divides the number of
ADVs to get the average reward point value in this figure.
With increasing number of episodes, the average reward per
ADV for both POMDP and RACE increases, which means
that both of them can improve their driving policy by learning
from the environment. However, compared to POMDP, RACE
achieved 215% higher rewards. This demonstrates that RACE
has the ability to learn better driving policies. Because RACE
not only uses the parameter distribution strategy to speed up
the learning ability but also employs the adaptive dynamic
reward function to process the collision scenario. Besides, the
learning process in RACE is more stable than in POMDP.

Figure 10 shows the latency per ADV over different models,
where 1Co-D, 2Co-D and 3Co-D represents One Co-DDPG
ADV with ten NDVs in RACE, Two Co-DDPG ADVs with
ten NDVs in RACE and Three Co-DDPG ADVs with ten
NDVs in RACE. Latency is the time duration from the trained
Co-DDPG in one ADV collecting states information from

0 100 200 300 400 500
−1

0

1

·106

Number of Episodes

A
vg

.R
ew

ar
d

pe
r

A
D

V

POMDP
RACE

Figure 9: The comparison of average reward per ADV over
the number of episodes in the training process.

1Co-D 2Co-D 3Co-D POMDP
0

0.5

1

1.5
·10−3

Various Models

A
vg

.L
at

en
cy

pe
r

A
D

V
(s

)

Figure 10: The comparison of latency over different models
in the testing process.

the environment to the time of obtaining its action, such as
push the brake. We observed that 3Co-D in RACE has the
lowest latency among all models. 2Co-D in RACE performed
better than 1Co-D in RACE. Since RACE utilizes the leading-
following framework and parameter distribution strategy, a
higher number of ADVs with Co-DDPG leads to learning
better driving policies. Compared to POMDP, the latency per
ADV was about 19% lower in RACE with 3Co-D.

VI. RELATED WORK

In this section we describe the related work through broadly
classifying the relevant literature into two main categories,
namely collision avoidance and multi-agent collision avoid-
ance in an autonomous driving environment.

A. Collision Avoidance

Collision avoidance for autonomous vehicles and robots
is an actively researched topic. Various methods including

rule-based [30], optimization-based [14], traditional machine
learning [31], [32] and deep learning methods [22], [33] have
been proposed in recent years to minimize collisions during
autonomous driving. However, rule-based solutions do not
easily adapt to different scenarios, while optimization-based
methods may rapidly converge to local minimal solutions
and hence, have relatively low computational efficiency. In
addition, a study by Namazi et al. [34] shows that traditional
machine learning-based solutions are not suitable for a com-
plex and dynamic environment such as autonomous driving.
Leveraging deep learning especially the Convolutional Neural
Networks (CNNs), Lv et al. [35] handled collision avoidance
by predicting the traffic flow while Chen et al. [10] utilized
DRL with multi-agents settings to avoid collisions. In addition,
Cheng et al. [36] formulated an automated enemy avoidance
problem with Markov Decision Process and resolved it with
temporal-difference reinforcement learning. However, these
proposals cannot effectively minimize the collisions since the
participating robots do not communicate with each other. Chen
et al. [37] predicted rear-end collisions using GA-optimized
neural networks. Collisions between cyclists and heavy goods
vehicles were prevented in [38] by solving the side-to-side
collisions problem. However, these approaches did not con-
sider collisions from any other directions. On the other hand,
Long et al. [22] used deep learning to avoid collisions among
robots and Lu et al. [39] investigated interaction between
three pedestrians and one robot while Sangiovanni et al. [40]
considered an unpredictable object as an obstacle to avoid
collision. All of the above mentioned proposals failed to
consider dynamic and complex environments with possibly
high speed vehicles.

B. Multi-Agent Collision Avoidance

In the following we discuss the recent proposals that avoid
collisions in a multi-agent environment.

In [7], [41], authors utilize connected networks and simu-
lated overtaking maneuvers to avoid collisions. However, these
proposals mainly focus on a specific type of collision and use
complex mathematical models instead of machine learning
methods. Hence they require expert knowledge to design
efficient mathematical models. In addition, long et al. [33]
proposed sensor-level collision avoidance policies. However,
the supervised policies face limitations during learning w.r.t
training dataset. In [42], Lou et al. proposed a formation
control law using a combination of consensus-based formation
control method and a collision avoidance algorithm, while
lu et al. [39] proposed a human-aware algorithm to find a
smooth and collision-free path. However, these algorithms are
computationally intensive and were not tested in complex en-
vironments and hence their effectiveness is difficult to assess.

In [43], [44], authors proposed centralized solutions. How-
ever, centralized learning produces obvious limitations for
effective transmissions of the policies. The high computational
burden of an optimization-based centralized scheme makes
the deployment of the control system on real platforms chal-
lenging. On the other hand, Chen et al. [10] developed a
decentralized multi-agent collision avoidance algorithm where

two agents were simulated to navigate toward their own goal
positions and learn a value network that encodes the expected
time to goal. However, cooperative information among robots
is not accounted for in the solution and the design is not
suitable for high speed scenarios. The Optimal Reciprocal
Collision Avoidance (ORCA) framework from Van et al.
[45] along with its extensions [46], [47] is widely used in
crowd simulation and multi-agent systems. It provides the
necessary conditions for multiple robots to avoid collisions
with each other in a short time span, and easily scales to handle
large systems with many robots. However, these methods are
sensitive to the uncertainties in the real world driving scenarios
as they assume that each robot has accurate information about
the surrounding agents’ positions, velocities and shapes.

Based on the above mentioned literature and our extensive
studies, we believe that RACE provides a more private,
dynamic and efficient solution for collision avoidance during
autonomous driving. In comparison to existing approaches,
RACE is more dynamic than rule-based methods and has
less computational complexity than optimization-based and
other above mentioned deep leaning methods. Hence, RACE
optimally enhances autonomous driving behaviors of vehicles
and effectively minimizes collisions during driving.

VII. CONCLUSION

In this work, we studied the requirements of autonomous
driving in detail and provided the necessary design goals.
We proposed an efficient and decentralized framework called
RACE to fulfill these goals. We developed an efficient collision
avoidance algorithm named Co-DDPG which exploits a hier-
archical multi-agent environment in VANET. The rewards in
Co-DDPG are defined by considering the collision avoidance,
minimizing arrival time and maintaining vehicles on the road.
Its value measures the quality of driving behavior e.g., a higher
reward represents a better driving behaviour. The parameter
distribution strategy is employed to expedite the learning
process. Using a location-private communication strategy with
a leader-follower multi-agent architecture, we distribute the
best policies in the VANET and conserve important resources
during driving. With extensive experiments in TORCS, we
showed that RACE effectively reduced the number of col-
lisions and scaled effortlessly with increasing number of
autonomous vehicles. We also demonstrated the meticulous
learning in RACE, where vehicles learned to go off-track
instead of colliding with other vehicles. This improved the
driving behaviour and minimized the associated risk and
liability. As part of future work, we plan to enhance RACE
through incorporating images or videos of the surroundings by
camera during driving into the learning process. Additionally,
we consider to improve RACE to adapt to the scenario, where
the road has no speed range requirement.

ACKNOWLEDGEMENT

This project has received funding from the European
Union’s Horizon 2020 COSAFE project under grant agreement
No 824019 and the China Scholarship Council under Grant ID
201706050095.

REFERENCES

[1] S. World Health Organization, Geneva, “Global status report on road
safety 2018: Supporting a decade of action.” Available: https://www.
who.int/violence injury prevention/road safety status/2018/en/, 2018.
[Online]. Accessed: August 9, 2019.

[2] A. Mukhtar, L. Xia, and T. B. Tang, “Vehicle detection techniques for
collision avoidance systems: A review,” IEEE Transactions on Intelligent
Transportation Systems, vol. 16, no. 5, pp. 2318–2338, 2015.

[3] World Health Organization, Geneva, Switzerland, “World report on road
traffic injury prevention: Summary,” 2004.

[4] J. J. Rolison, S. Regev, S. Moutari, and A. Feeney, “What are the factors
that contribute to road accidents? an assessment of law enforcement
views, ordinary drivers opinions, and road accident records,” Accident
Analysis & Prevention, vol. 115, pp. 11–24, 2018.

[5] J. Wang, J. Liu, and N. Kato, “Networking and communications in
autonomous driving: A survey,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 2, pp. 1243–1274, 2018.

[6] A. Liniger and J. Lygeros, “A noncooperative game approach to au-
tonomous racing,” IEEE Transactions on Control Systems Technology,
2019.

[7] R. Deng, B. Di, and L. Song, “Cooperative collision avoidance for
overtaking maneuvers in cellular v2x-based autonomous driving,” IEEE
Transactions on Vehicular Technology, 2019.

[8] T. Statheros, G. Howells, and K. M. Maier, “Autonomous ship colli-
sion avoidance navigation concepts, technologies and techniques,” The
Journal of Navigation, vol. 61, no. 1, pp. 129–142, 2008.

[9] M. Chen, Y. Tian, G. Fortino, J. Zhang, and I. Humar, “Cognitive internet
of vehicles,” Computer Communications, vol. 120, pp. 58–70, 2018.

[10] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning,” in 2017 IEEE international conference on robotics and
automation (ICRA), pp. 285–292, IEEE, 2017.

[11] L. Jiang, B. G. Cai, Y. P. Wang, and W. Jian, “Location-based coopera-
tive vehicle collision avoidance for unsignalized intersections: A multi-
sensor integration approach,” in International Conference on Connected
Vehicles and Expo, 2012.

[12] H. Su, D. Ko, and S. An, “Power-aware location-based anti-collision
protocol for rfid-sensor networks,” in International Conference on Ubiq-
uitous and Future Networks, 2009.

[13] M. Kaushik, K. M. Krishna, et al., “Parameter sharing reinforcement
learning architecture for multi agent driving behaviors,” arXiv preprint
arXiv:1811.07214, 2018.

[14] L. Riegger, M. Carlander, N. Lidander, N. Murgovski, and J. Sjöberg,
“Centralized mpc for autonomous intersection crossing,” in 2016 IEEE
19th international conference on intelligent transportation systems
(ITSC), pp. 1372–1377, IEEE, 2016.

[15] B. Alrifaee, M. G. Mamaghani, and D. Abel, “Centralized non-convex
model predictive control for cooperative collision avoidance of net-
worked vehicles,” in 2014 IEEE international symposium on intelligent
control (ISIC), pp. 1583–1588, IEEE, 2014.

[16] K. Loayza, P. Lucas, and E. Peláez, “A centralized control of movements
using a collision avoidance algorithm for a swarm of autonomous
agents,” in 2017 IEEE Second Ecuador Technical Chapters Meeting
(ETCM), pp. 1–6, IEEE, 2017.

[17] J. Ning, J. Wang, J. Liu, and N. Kato, “Attacker identification and
intrusion detection for in-vehicle networks,” IEEE Communications
Letters, 2019.

[18] Q. Luo and J. Liu, “Wireless telematics systems in emerging intelligent
and connected vehicles: Threats and solutions,” IEEE Wireless Commu-
nications, vol. 25, no. 6, pp. 113–119, 2018.

[19] Q. Luo, Y. Cao, J. Liu, and A. Benslimane, “Localization and navigation
in autonomous driving: Threats and countermeasures,” IEEE Wireless
Communications, vol. 26, no. 4, pp. 38–45, 2019.

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[21] B. Wymann, C. Dimitrakakis, A. Sumner, E. Espié, and C. Guionneau,
“Torcs: The open racing car simulator,” 2015.

[22] P. Long, T. Fanl, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
optimally decentralized multi-robot collision avoidance via deep rein-
forcement learning,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA), pp. 6252–6259, IEEE, 2018.

[23] D. Loiacono, L. Cardamone, and P. L. Lanzi, “Simulated car rac-
ing championship: Competition software manual,” arXiv preprint
arXiv:1304.1672, 2013.

[24] P. Tientrakool, Y.-C. Ho, and N. F. Maxemchuk, “Highway capacity
benefits from using vehicle-to-vehicle communication and sensors for
collision avoidance,” in 2011 IEEE Vehicular Technology Conference
(VTC Fall), pp. 1–5, IEEE, 2011.

[25] G. Samara and Y. Al-Raba’nah, “Security issues in vehicular ad hoc
networks (vanet): a survey,” arXiv preprint arXiv:1712.04263, 2017.

[26] X. Cheng, C. Chen, W. Zhang, and Y. Yang, “5g-enabled cooperative
intelligent vehicular (5genciv) framework: When benz meets marconi,”
IEEE Intelligent Systems, vol. 32, no. 3, pp. 53–59, 2017.

[27] K. Katsaros and M. Dianati, “Evolution of vehicular communications
within the context of 5g systems,” Enabling 5G Communication Systems
to Support Vertical Industries, pp. 103–126, 2019.

[28] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforce-
ment learning framework for autonomous driving,” Electronic Imaging,
vol. 2017, no. 19, pp. 70–76, 2017.

[29] B. Wymann, “Cg track 2.” Available: http://www.berniw.org/trb/tracks/
track view.php?viewtrackid=11, 2017. [Online]. Accessed: May 12,
2019.

[30] G. Lu, L. Li, Y. Wang, R. Zhang, Z. Bao, and H. Chen, “A rule based
control algorithm of connected vehicles in uncontrolled intersection,”
in 17th International IEEE Conference on Intelligent Transportation
Systems (ITSC), pp. 115–120, IEEE, 2014.

[31] J. Tian, M. Gao, and E. Lu, “Dynamic collision avoidance path planning
for mobile robot based on multi-sensor data fusion by support vector
machine,” in 2007 international conference on mechatronics and au-
tomation, pp. 2779–2783, IEEE, 2007.

[32] Y.-H. Liu and C.-J. Shi, “A fuzzy-neural inference network for ship
collision avoidance,” in 2005 International Conference on Machine
Learning and Cybernetics, vol. 8, pp. 4754–4759, IEEE, 2005.

[33] P. Long, W. Liu, and J. Pan, “Deep-learned collision avoidance policy
for distributed multiagent navigation,” IEEE Robotics and Automation
Letters, vol. 2, no. 2, pp. 656–663, 2017.

[34] E. Namazi, J. Li, and C. Lu, “Intelligent intersection management sys-
tems considering autonomous vehicles: A systematic literature review,”
IEEE Access, vol. 7, pp. 91946–91965, 2019.

[35] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow
prediction with big data: a deep learning approach,” IEEE Transactions
on Intelligent Transportation Systems, vol. 16, no. 2, pp. 865–873, 2015.

[36] Q. Cheng, X. Wang, J. Yang, and L. Shen, “Automated enemy avoidance
of unmanned aerial vehicles based on reinforcement learning,” Applied
Sciences, vol. 9, no. 4, p. 669, 2019.

[37] C. Chen, H. Xiang, T. Qiu, C. Wang, Y. Zhou, and V. Chang, “A rear-
end collision prediction scheme based on deep learning in the internet
of vehicles,” Journal of Parallel and Distributed Computing, vol. 117,
pp. 192–204, 2018.

[38] Y. Jia and D. Cebon, “Field testing of a cyclist collision avoidance
system for heavy goods vehicles,” IEEE Transactions on Vehicular
Technology, vol. 65, no. 6, pp. 4359–4367, 2016.

[39] X. Lu, Y. Cao, Z. Zhao, and Y. Yan, “Deep reinforcement learning based
collision avoidance algorithm for differential drive robot,” in Interna-
tional Conference on Intelligent Robotics and Applications, pp. 186–198,
Springer, 2018.

[40] B. Sangiovanni, A. Rendiniello, G. P. Incremona, A. Ferrara, and
M. Piastra, “Deep reinforcement learning for collision avoidance of
robotic manipulators,” in 2018 European Control Conference (ECC),
pp. 2063–2068, IEEE, 2018.

[41] S. Y. Gelbal, S. Zhu, G. A. Anantharaman, B. A. Guvenc, and L. Guvenc,
“Cooperative collision avoidance in a connected vehicle environment,”
tech. rep., SAE Technical Paper, 2019.

[42] G. Lou and W. Yang, “Formation control and collision avoidance
of multi-agent system with switching communication topology,” in
Proceedings of the 2nd International Conference on Computer Science
and Application Engineering, p. 47, ACM, 2018.

[43] J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson, “Learning
to communicate with deep multi-agent reinforcement learning,” in
Advances in Neural Information Processing Systems, pp. 2137–2145,
2016.

[44] J. Dentler, M. Rosalie, G. Danoy, P. Bouvry, S. Kannan, M. A. Olivares-
Mendez, and H. Voos, “Collision avoidance effects on the mobility of
a uav swarm using chaotic ant colony with model predictive control,”
Journal of Intelligent & Robotic Systems, vol. 93, no. 1-2, pp. 227–243,
2019.

[45] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in Robotics research, pp. 3–19, Springer,
2011.

https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/
https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/
http://www.berniw.org/trb/tracks/track_view.php?viewtrackid=11
http://www.berniw.org/trb/tracks/track_view.php?viewtrackid=11

[46] J. Snape, J. Van Den Berg, S. J. Guy, and D. Manocha, “The hybrid
reciprocal velocity obstacle,” IEEE Transactions on Robotics, vol. 27,
no. 4, pp. 696–706, 2011.

[47] D. Bareiss and J. van den Berg, “Generalized reciprocal collision
avoidance,” The International Journal of Robotics Research, vol. 34,
no. 12, pp. 1501–1514, 2015.

	I Introduction
	II System Design
	II-A Design goals
	II-B Architectural Components
	II-C Parameter Distribution
	II-D Design
	II-E Use case Example

	III VANET
	III-A Opening, Leaving and Closing VANETs
	III-B VANET Operation

	IV Co-DDPG
	IV-A State Space
	IV-B Action Space
	IV-C Reward

	V Evaluation
	V-A Assumptions
	V-B TORCS Simulator
	V-C Experimental Setup
	V-D RACE Performance Analysis
	V-E Comparison Analysis

	VI Related Work
	VI-A Collision Avoidance
	VI-B Multi-Agent Collision Avoidance

	VII Conclusion
	References

