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A Sequential Subspace Method for Millimeter Wave
MIMO Channel Estimation

Wei Zhang, Student Member, IEEE, Taejoon Kim, Senior Member, IEEE, and Shu-Hung Leung

Abstract—Data transmission over the millimeter wave
(mmWave) in fifth-generation wireless networks aims to support
very high speed wireless communications. A substantial increase
in spectrum efficiency for mmWave transmission can be achieved
by using advanced hybrid analog-digital precoding, for which
accurate channel state information (CSI) is the key. Rather
than estimating the entire channel matrix, it is now well-
understood that directly estimating subspace information, which
contains fewer parameters, does have enough information to
design transceivers. However, the large channel use overhead
and associated computational complexity in the existing channel
subspace estimation techniques are major obstacles to deploy
the subspace approach for channel estimation. In this paper, we
propose a sequential two-stage subspace estimation method that
can resolve the overhead issues and provide accurate subspace
information. Utilizing a sequential method enables us to avoid
manipulating the entire high-dimensional training signal, which
greatly reduces the computational complexity. Specifically, in the
first stage, the proposed method samples the columns of channel
matrix to estimate its column subspace. Then, based on the
obtained column subspace, it optimizes the training signals to es-
timate the row subspace. For a channel with Nr receive antennas
and Nt transmit antennas, our analysis shows that the proposed
technique only requires O(Nt) channel uses, while providing
a guarantee of subspace estimation accuracy. By theoretical
analysis, it is shown that the similarity between the estimated
subspace and the true subspace is linearly related to the signal-to-
noise ratio (SNR), i.e., O(SNR), at high SNR, while quadratically
related to the SNR, i.e., O(SNR2), at low SNR. Simulation results
show that the proposed sequential subspace method can provide
improved subspace accuracy, normalized mean squared error,
and spectrum efficiency over existing methods.

Index Terms—Channel estimation, compressed sensing, mil-
limeter wave communication, multi-input multi-output, subspace
estimation.

I. INTRODUCTION

Wireless communications using the millimeter wave
(mmWave), which occupies the frequency band (30–300 GHz),
address the current scarcity of wireless broadband spectrum
and enable high speed transmission in fifth-generation (5G)
wireless networks [1]. Due to the short wavelength, it is
possible to employ large-scale antenna arrays with small-form-
factor [2]–[4]. To reduce power consumption and hardware
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complexity, the mmWave systems exploit hybrid analog-digital
multiple-input multiple-output (MIMO) architecture operating
with a limited number of radio frequency (RF) chains [2].
Under the perfect channel state information (CSI), it has
been shown that hybrid precoding can achieve nearly optimal
performance as fully-digital precoding [2], [3], [5]. In practice,
accurate CSI must be estimated via channel training in order
to have effective precoding for robust mmWave MIMO trans-
mission. However, extracting accurate CSI in the mmWave
MIMO poses new challenges due to the limited number of RF
chains that limits the observability of the channel and greatly
increases the channel use overhead.

To reduce the channel use overhead, initial works focused on
the beam alignment techniques [6], [7] utilizing beam search
codebooks. By exploiting the fact that mmWave propagation
exhibits low-rank characteristic, recent researches formulated
the channel estimation task as a sparse signal reconstruction
problem [8], [9] and low-rank matrix reconstruction problem
[10]–[15]. By using the knowledge of sparse signal recon-
struction, orthogonal matching pursuit (OMP) [8] and sparse
Bayesian learning (SBL) [9] were motivated to estimate the
sparse mmWave channel in angular domain. Alternatively, if
the channel is rank-sparse, it is possible to directly extract
sufficient channel subspace information for the precoder de-
sign [10], [11], [16]. These subspace-based methods employ
the Arnoldi iteration [16] to estimate the channel subspaces
and knowledge of matrix completion [10], [11] to estimate
the low-rank mmWave channel information.

Though the sparse signal reconstruction [8], [9] and matrix
completion [10], [11] techniques can reduce the channel use
overhead compared to traditional beam alignment techniques,
the training sounders of these techniques [8]–[11] are pre-
designed and high-dimensional, which leads to the fact that
these works suffer from explosive computational complexity
as the size of arrays grows. To reduce the computational com-
plexity, the adaptive training techniques have been investigated
in [4], [16], [17], where the training sounders can be adaptively
designed based on the feedback or two-way training. But
these adaptive training techniques could not guarantee the
performance on mean squared error (MSE) and/or subspace
estimation accuracy. Moreover, the techniques provided in [4],
[16], [17] will introduce additional channel use overhead due
to the required feedback and two-way training.

To resolve the feedback overhead and maintain the benefit
of adaptive training, in this paper, we present a two-stage sub-
space estimation approach, which sequentially estimates the
column and row subspaces of the mmWave MIMO channel.
Compared to the existing channel estimation techniques in
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[8]–[11], the training sounders of the proposed approach are
adaptively designed to reduce the channel use overhead and
computational complexity. Moreover, the proposed approach is
open-loop, thus it has no requirements of feedback and two-
way channel sounding compared to priori adaptive training
techniques [4], [16], [17]. The main contributions of this paper
are described as follows:

• We propose a two-stage subspace estimation technique
called a sequential and adaptive subspace estimation
(SASE) method. In the channel estimation of the pro-
posed SASE, the column and row subspaces are estimated
sequentially. Specifically, in the first stage, we sample a
small fraction of columns of the channel matrix to obtain
an estimate of the column subspace of the channel. In the
second stage, the row subspace of the channel is estimated
based on the obtained column subspace. In particular,
by using the estimated column subspace obtained in the
first stage, the receive training sounders of the second
stage are optimized to reduce the number of channel
uses. Compared to the existing works with fixed train-
ing sounders, where the entire high-dimensional training
signals are utilized to obtain the CSI, the proposed
adaptation has the advantage that the dimension of signals
being processed in each stage is much less than that of
the entire training signal, greatly reducing the computa-
tional complexity. Thus, the proposed SASE has much
less computational complexity than those of the existing
methods.

• We analyze the subspace estimation accuracy, which
guarantees the performance of the proposed SASE tech-
nique. Through extensive analysis, it is shown that the
subspace estimation accuracy of the SASE is linearly
related to the signal-to-noise ratio (SNR), i.e., O(SNR),
at high SNR, and quadratically related to the SNR, i.e.,
O(SNR2), at low SNR. Moreover, simulation results
show that the proposed SASE improves estimation ac-
curacy over the prior arts.

• After obtaining the estimated column and row subspaces,
an efficient method is developed for estimating the high-
dimensional but low-rank channel matrix. Specifically,
given the subspaces estimated by the proposed SASE,
the mmWave channel estimation task can be simplified to
solving a low-dimensional least squares problem, whose
computation is much lower. Simulation results show
that the proposed channel estimation method has lower
normalized mean squared error and higher spectrum
efficiency than those of the existing methods.

This paper is organized as follows, in Section II, we
introduce the mmWave MIMO system model. In Section III,
the proposed SASE is developed and analyzed. The channel
use overhead, computational complexity, and an extension of
the proposed SASE are discussed in Section IV. Finally, the
simulation results and the conclusion remarks are provided in
Sections V and VI, respectively.

Notation: Bold small and captial letters denote vectors and
matrices, respectively. AT ,AH ,A−1, |A|, ‖A‖F , tr(A), and
‖a‖2 are, respectively, the transpose, conjugate transpose,
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Fig. 1: The mmWave MIMO channel sounding model

inverse, determinant, Frobenius norm, trace of A, and l2-
norm of a. [A]:,i, [A]i,:, and [A]i,j are, respectively, the
ith column, ith row, and ith row jth column entry of A.
vec(A) stacks the columns of A and forms a column vector.
diag(a) denotes a square diagonal matrix with vector a as
the main diagonal. σL(A) denotes the Lth largest singular
value of matrix A. IM ∈RM×M is the identity matrix. The
1M,N ∈ RM×N , 0M ∈ RM×1,0M,N ∈ RM×N are the all
one matrix, zero vector, and zero matrix, respectively. col(A)
denotes the column subspace spanned by the columns of
matrix A. The operator (·)+ denotes max{0, ·}. The operator
⊗ denotes the Kronecker product.

II. MMWAVE MIMO SYSTEM MODEL

A. Channel Sounding Model

The mmWave MIMO channel sounding model is shown in
Fig. 1, where the transmitter and receiver are equipped with
Nt and Nr antennas, respectively. There are NRF ≥ 2 and
MRF ≥ 2 RF chains at the transmitter and receiver, respec-
tively. Without loss of generality, we assume Nt is an integer
multiple of NRF , and Nr is also an integer multiple of MRF .
In the considered mmWave channel sounding framework, one
sounding symbol is transmitted over a unit time interval from
the transmitter, which is defined as one channel use. It is
assumed that the system employs K channel uses for channel
sounding. The received signal y(k) ∈ CMRF×1 at the kth
channel use is given by

y(k) = WH
(k)Hf(k) + WH

(k)n(k), k = 1, . . . ,K, (1)

where W(k)=WA,kWD,k ∈ CNr×MRF is the receive sounder
composed of receive analog sounder WA,k ∈ CNr×MRF

and receive digital sounder WD,k ∈ CMRF×MRF in series,
f(k)=FA,kFD,ksk∈CNt×1 is the transmit sounder composed
of transmit analog sounder FA,k ∈ CNt×NRF and transmit
digital sounder FD,k ∈ CNRF×NRF in series with transmitted
sounding signal sk, and n(k)∈CNr×1 is the noise.

Considering that the transmitted sounding signal sk is in-
cluded in f(k), for convenience, we let sk=

1√
NRF

[1, . . . , 1]T ∈
RNRF×1, which enables us to focus on the design of FA,k
and FD,k. It is worth noting that the analog sounders are con-
strained to be constant modulus, that is, |[WA,k]i,j | = 1/

√
Nr,

and |[FA,k]i,j | = 1/
√
Nt,∀i, j. Without loss of generality,

we assume the power of the transmit sounder is one, that
is, ‖f(k)‖22 = 1. The noise n(k) is an independent zero
mean complex Gaussian vector with covariance matrix σ2INr .
Due to the unit power of transmit sounder, we define the



3

signal-to-noise-ratio (SNR) as 1/σ2.1 The details of designing
the receive and transmit sounders for facilitating the channel
estimation will be discussed in Section III.

To model the point-to-point sparse mmWave MIMO chan-
nel, we assume there are L clusters with L� min{Nr, Nt},
and each constitutes a propagation path. The channel model
can be expressed as [18], [19],

H =

√
NrNt
L

L∑
l=1

hlar(θr,l)a
H
t (θt,l). (2)

where ar(θr,l)∈CNr×1 and at(θt,l)∈CNt×1 are array response
vectors of the uniform linear arrays (ULAs) at the receiver and
transmitter, respectively. We extend it to the channel model
with 2D uniform planar arrays (UPAs) in Section IV-C. In
particular, ar(θr,l) and at(θt,l) are expressed as

ar(θr,l)= 1√
Nr

[1, e−j
2π
λ d sin θr,l ,· · ·, e−j 2π

λ d(Nr−1) sin θr,l ]T ,

at(θt,l)= 1√
Nt

[1, e−j
2π
λ d sin θt,l ,· · ·, e−j 2π

λ d(Nt−1) sin θt,l ]T ,

where λ is the wavelength, d = 0.5λ is the antenna spac-
ing, θr,l and θt,l are the angle of arrival (AoA) and angle
of departure (AoD) of the lth path uniformly distributed
in [−π/2, π/2), respectively, and hl ∼ CN (0, σ2

h,l) is the
complex gain of the lth path.

The channel model in (2) can be rewritten as

H = Ar diag(h)AH
t , (3)

where Ar = [ar(θr,1), . . . ,ar(θr,L)] ∈ CNr×L, At =
[at(θt,1), . . . ,at(θt,L)] ∈ CNt×L, and h = [h1, · · · , hL]T ∈
CL×1. The channel estimation task is to obtain an estimate
of H, i.e., Ĥ, from y(k), W(k), and f(k), k=1, · · · ,K in (1).

B. Performance Evaluation of Channel Estimation

To evaluate the channel estimation performance, the
achieved spectrum efficiency by utilizing the channel estimate
Ĥ is discussed in the following. Conventionally, the precoder
F̂∈CNt×Nd and combiner Ŵ∈CNr×Nd are designed, based
on the estimated Ĥ, where Nd is the number of transmitted
data streams with Nd≤min{NRF ,MRF }. Here, when eval-
uating the channel estimation performance, it is assumed the
number of transmitted data streams is equal to the number of
dominant paths, i.e., Nd = L. After the design of precoder and
combiner, the received signal for the data transfer is given by

y = ŴHHF̂s + ŴHn, (4)

where the signal follows s ∼ CN (0L,
1
LIL) and n ∼

CN (0Nr , σ
2INr ). It is worth noting that (4) is for data

transmission, while (1) is for channel sounding. The spectrum
efficiency achieved by Ŵ and F̂ in (4) is defined in [20] as,

R = log2

∣∣∣∣IL +
1

σ2L
R−1
n HeHe

H

∣∣∣∣ , (5)

where He = ŴHHF̂ ∈ CL×L and Rn = ŴHŴ ∈ CL×L.
In this work, we assume that the precoder and combiner are

1Here, the SNR is the ratio of transmitted sounder’s power to the noise’s
power, which is a common practice in the channel estimation literature [4],
[8]–[10], [16], [17].

Column 

subspace 

Sample m columns

H  =

Sample remaining Nt-m columns

H  =

training sounder adaptation

Row 

subspace 

Column subspace estimation

Row subspace estimation

Fig. 2: Illustration of SASE Algorithm

unitary, such that ŴHŴ = IL and F̂HF̂ = IL. Under this
assumption, we have Rn = IL in (5).

It is worth noting that the spectrum efficiency in (5) is
invariant to the right rotations of the precoder and combiner,
i.e., substituting F̃ = F̂RF and W̃ = ŴRW into (5), where
RF ∈ CL×L and RW ∈ CL×L are unitary matrices, does not
change the spectrum efficiency. Thus, the R in (5) is a function
of subspaces spanned by the precoder and combiner, i.e.,
col(F̂) and col(Ŵ). Moreover, the highest spectrum efficiency
can be achieved when col(F̂) and col(Ŵ) respectively equal
to the row and column subspaces of H.

Apart from the spectrum efficiency achieved by the signal
model in (4), we consider the effective SNR at the receiver,

γ =
‖ŴHHF̂‖2F
σ2‖Ŵ‖2F

=
‖ŴHHF̂‖2F

σ2L
. (6)

The received SNR γ in (6) has the same rotation invariance
property as the spectrum efficiency. In other words, the γ in
(6) is a function of the estimated column and row subspaces.
The maximum of the γ is also achieved when Ŵ and F̂ span
the column and row subspaces of H, respectively.

Inspired by the definition in (6), in this paper, the accuracy
of subspace estimation is defined as the ratio of the power
captured by the transceiver matrices [21] Ŵ and F̂ to the
power of the channel,

η(Ŵ, F̂) =
‖ŴHHF̂‖2F

tr(HHH)
. (7)

Similarly, the measures for the accuracy of column subspace
and row subspace estimation, i.e., ηc(Ŵ) and ηr(F̂), are
respectively defined as the ratio of the power captured by Ŵ
and F̂ to the power of the channel in the following,

ηc(Ŵ) =
tr(ŴHHHHŴ)

tr(HHH)
, (8)

ηr(F̂) =
tr(F̂HHHHF̂)

tr(HHH)
. (9)

Moreover, ηc and ηr are also rotation invariant. When the
values of ηc or ηr are closed to one, the corresponding Ŵ or
F̂ can be treated accurate subspace estimates.
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The illustration of the proposed SASE algorithm is shown in
Fig. 2. It consists of two stages: one is column subspace esti-
mation and the other is row subspace estimation. In particular,
the training sounders of the second stage can be optimized by
fully adapting them to the estimated column subspace, which
would reduce the number of channel uses and improve the
estimation accuracy.

III. SEQUENTIAL AND ADAPTIVE SUBSPACE ESTIMATION

A. Estimate the Column Subspace

In this subsection, we present the design of transmit and
receive sounders along with the method for obtaining the
column subspace of the mmWave channel. To begin with,
the following lemma shows that under the mmWave channel
model in (3), the column subspaces of H and sub-matrix HS

are equivalent.
Lemma 1: Let HS = HS ∈ CNr×m be a sub-matrix that

selects the first m columns of H with m ≥ L, where S is
expressed as

S =

[
Im

0Nt−m,m

]
∈ RNt×m.

For the mmWave channel model in (3), if all the values of an-
gles {θt,l}Ll=1 and {θr,l}Ll=1 are distinct, the column subspaces
of H and HS will be equivalent, i.e., col(HS) = col(H).

Proof See Appendix A.

Remark 1: Because {θt,l}Ll=1 and {θr,l}Ll=1 are continuous
random variables (r.v.s) in [−π/2, π/2), hence, they are dis-
tinct almost surely (i.e., with probability 1).

Lemma 1 reveals that when col(HS) = col(H), to obtain
the column subspace of H, it suffices to sample the first m
columns of H, i.e., HS , which reduces the number of channel
uses. However, the mmWave hybrid MIMO architecture can
not directly access the entries of H due to the analog array
constraints. This can be overcome by adopting the technique
proposed in [16]. Specifically, to sample the ith column of
H, i.e., [H]:,i, the transmitter needs to construct the transmit
sounder f(i) = ei ∈ CNt×1, where ei is the ith column of INt .
This is possible due to the fact that any precoder vector can be
generated by NRF ≥ 2 RF chains [22]. To be more specific,
there exists FA,i, FD,i, and si such that ei = FA,iFD,isi,

ei=
1√
Nt



1 1 · · ·
...

... · · ·
1 1 · · ·
1 −1 · · ·
1 1 · · ·
...

... · · ·
1 1 · · ·


︸ ︷︷ ︸

,FA,i



√
NRFNt

2 0 · · · 0

−
√
NRFNt

2 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


︸ ︷︷ ︸

,FD,i

1√
NRF


1
1
...
1


︸ ︷︷ ︸

,si

,

where FA,i=
1√
Nt

1Nt,NRF except for [FA,i]i,2 =− 1√
Nt

, the

FD,i=0NRF ,NRF except for [FD,i]1,1=
√
NRFNt

2 , [FD,i]2,1=

−
√
NRFNt

2 , and si=
1√
NRF

[1, . . . , 1]T ∈ RNRF×1.

At the receiver side, we collect the receive sounders of
Nr/MRF channel uses to form the full-rank matrix,

M = [W(i,1),W(i,2), · · · ,W(i,Nr/MRF )] ∈ CNr×Nr , (10)

where W(i,j) ∈ CNr×MRF , j = 1, . . . , Nr/MRF , denotes
the jth receive sounder corresponding to transmit sounder ei.
In order to satisfy the analog constraint where the entries in
analog sounders should be constant modulus, we let the matrix
M in (10) be the discrete Fourier transform (DFT) matrix.
Specifically, the analog and digital receive sounders associated
with W(i,j) in (10) are expressed as follows

W(i,j) = [M]:,(j−1)MRF+1:jMRF︸ ︷︷ ︸
analog sounder

IMRF︸ ︷︷ ︸
digital sounder

.

Thus, the received signal y(i,j) ∈ CMRF×1 under the
transmit sounder ei and receive sounder W(i,j) is expressed
as follows

y(i,j) = WH
(i,j)Hei + WH

(i,j)n(i,j),

where n(i,j) ∈ CNr×1 is the noise vector with n(i,j) ∼
CN (0Nr , σ

2INr ). Then we stack the observations of Nr/MRF

channel uses as yi = [yT(i,1), · · · ,y
T
(i,Nr/MRF )]

T ∈ CNr×1,
y(i,1)

y(i,2)

...
y(i, Nr

MRF
)


︸ ︷︷ ︸

,yi

=


WH

(i,1)

WH
(i,2)

...
WH

(i, Nr
MRF

)


︸ ︷︷ ︸

,MH

Hei︸︷︷︸
,[H]:,i

+


WH

(i,1)n(i,1)

WH
(i,2)n(i,2)

...
WH

(i, Nr
MRF

)
n(i, Nr

MRF
)


︸ ︷︷ ︸

,ñi

= MH [H]:,i + ñi, (11)

where ñi ∈ CNr×1 is the effective noise vector after stacking,
whose covariance matrix is expressed as,

E[ñiñ
H
i ]=σ2


WH

(i,1)W(i,1) · · ·WH
(i,1)W(i, Nr

MRF
)

...
. . .

...
WH

(i, Nr
MRF

)
W(i,1)· · ·WH

(i, Nr
MRF

)
W(i, Nr

MRF
)

. (12)

Because the DFT matrix M in (10) satisfies MHM =
MMH = INr , the following holds

WH
(i,j)W(i,k) =

{
IMRF

j = k,
0MRF

j 6= k.
(13)

Substituting (13) into (12), we can verify that E[ñiñ
H
i ] =

σ2INr , and precisely, ñi ∼ CN (0Nr , σ
2INr ). Moreover, by

denoting Ñ = [ñ1, · · · , ñm] ∈ CNr×m, it is straightforward
that the entries in Ñ are independent, identically distributed
(i.i.d.) as CN (0, σ2). Here, for convenience, we denote ỸS =
[y1, · · · ,ym] ∈ CNr×m where yi is defined in (11). Then,
we apply DFT to the collected observation ỸS , and obtain
YS = MỸS ∈ CNr×m as

YS = HS + NS , (14)

where NS = MÑ ∈ CNr×m and HS = [H]:,1:m ∈ CNr×m.
Before talking about the noise part NS in (14), the following
lemma is a preliminary which gives the distribution of entries
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in the product of matrices.
Lemma 2: Given a semi-unitary matrix A ∈ Cd×N with

AAH = Id, and a random matrix X ∈ CN×m with i.i.d.
entries of CN (0, σ2), the product Y = AX ∈ Cd×m also has
i.i.d. entries with distribution of CN (0, σ2).
Proof See Appendix B.

Therefore, considering the noise part in (14), i.e., NS =
MÑ, where M is unitary and Ñ has i.i.d. CN (0, σ2) entries,
the conclusion of Lemma 2 can be applied, which verifies that
the entries of NS in (14) are i.i.d. as CN (0, σ2).

Given the expression in (14), the column subspace estima-
tion problem is formulated as,

Û = argmax
U∈CNr×L

∥∥UHYS

∥∥2

F
subject to UHU = IL, (15)

where one of the optimal solutions of (15) can be obtained by
taking the dominant L left singular vectors of YS . Here, the
number of paths, L, is assumed to be known as a priori. In
practice, it is possible to estimate L by comparing the singular
values of YS [23]. Because YS = HS+NS and rank(HS) =
L, there will be L singular values of YS whose magnitudes
clearly dominate the other singular values. Alternatively, we
can set it to Lsup, which is an upper bound on the number of
dominant paths such that L ≤ Lsup.2

Now, we design the receive combiner Ŵ in (4) for data
transmission to approximate the estimated Û ∈ CNr×L in
(15). Specifically, we design the analog combiner ŴA ∈
CNr×MRF and digital combiner ŴD ∈ CMRF×L at the
receiver by solving the following problem(

ŴA,ŴD

)
= argmin

WA,WD

‖Û−WAWD‖F ,

subject to |[WA]i,j | =
1√
Nr

. (16)

The problem above can be solved by using the OMP algorithm
[5] or alternating minimization method [24]. The designed
receive combiner is given by Ŵ = ŴAŴD ∈ CNr×L with
ŴHŴ = IL. The methods in [5], [24] have shown to guaran-
tee the near optimal performance, such as col(Ŵ) ≈ col(Û).
The details of our column subspace estimation algorithm are
summarized in Algorithm 1.

In general, col(Ŵ) is not equal to the column subspace of
H, i.e., col(U) with U ∈ CNr×L, due to the noise NS in (14).
To analyze the column subspace accuracy ηc(Ŵ) defined in
(8), we introduce the theorem [25] below.

Theorem 1 ( [25]): Suppose X ∈ CM×N (M ≥ N) is of
rank-r, and X̂ = X+N, where [N]i,j is i.i.d. with zero mean
and unit variance (not necessarily Gaussian). Let the compact
SVD of X be

X = UΣVH ,

where U ∈ CM×r, V ∈ CN×r, and Σ ∈ Cr×r. We assume
the singular values in Σ are in descending order, i,e, σ1(X) ≥

2Due to the limited RF chains, the dimension of channel subspaces for
data transmission is less than min{MRF , NRF }. Thus, if the path number
estimate is larger than min{MRF , NRF }, we let it be min{MRF , NRF }.

Algorithm 1 Column subspace estimation

1: Input: channel dimension: Nr, Nt; number of RF chains
at receiver: MRF ; channel paths: L; parameter: m.

2: Initialization: channel use index k = 1.
3: for i = 1 to m do
4: Set transmit sounder as f(i) = ei.
5: for j = 1 to Nr/MRF do
6: Design receive training sounder as W(i,j) =

[M]:,(j−1)MRF+1:jMRF
IMRF

.
7: Obtain the received signal y(i,j) = WH

(i,j)Hf(i) +

WH
(i,j)n(i,j).

8: Update k = k + 1.
9: end for

10: yi =
[
yT(i,1), · · · ,y

T
(i,Nr/MRF )

]T
.

11: end for
12: YS = M [y1, · · · ,ym].
13: Column subspace Û is obtained by the dominant L left

singular vectors of YS .
14: Design Ŵ based on Û by solving (16).
15: Output: Column subspace estimation Ŵ.

· · · ≥ σr(X). Similarly, we partition the SVD of X̂ as

X̂ =
[
Û Û⊥

] [Σ̂1 0

0 Σ̂2

][
V̂H

V̂H
⊥

]
,

where Û ∈ CM×r, Û⊥ ∈ CM×(M−r), V̂ ∈ CN×r, V̂⊥ ∈
CN×(N−r), Σ̂1 ∈ Cr×r, and Σ̂2 ∈ C(M−r)×(N−r). Then,
there exists a constant C > 0 such that

E
[
σ2
r(UHÛ)

]
≥
(

1− CM(σ2
r(X) +N)

σ4
r(X)

)
+

,

E
[
σ2
r(VHV̂)

]
≥
(

1− CN(σ2
r(X) +M)

σ4
r(X)

)
+

,

where the expectation is taken over the random noise N. In
particular, when the noise is i.i.d. CN (0, 1), it has C = 2.

We have the following proposition for the accuracy of the
column subspace estimation in Algorithm 1.

Proposition 1: If the Euclidean distance ‖Ŵ − Û‖F ≤ δ1
in (16), then the accuracy of the estimated column subspace
matrix Ŵ obtained from Algorithm 1 is lower bounded as√

ηc(Ŵ) ≥ σL(ÛHU)− δ1, (17)

where U ∈ CNr×L is the matrix composed of L dominant
left singular vectors of H. In particular, if δ1 → 0, we have

E
[
ηc(Ŵ)

]
≥ σ2

L(ÛHU)

≥
(

1− 2Nr(σ
2σ2
L(HS) +mσ4)

σ4
L(HS)

)
+

, (18)

where the σL(HS) is the Lth largest singular value of HS .
Proof See Appendix C.

From (18), the larger the value of m is, the more accurate
the column subspace estimation. Thus, when more columns
are used for the column subspace estimation, the estimated
column subspace will be more reliable. In particular, when
the noise level is low such that σ2

L(HS)�mσ2 in (18), we
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have

E
[
ηc(Ŵ)

]
≥
(

1− 2Nrσ
2

σ2
L(HS)

)
+

.

It means that the column subspace estimation accuracy is
linearly related to the value of σ2/σ2

L(HS), i.e., O(SNR).
On the other hand, when the noise level is high such that
σ2
L(HS)�mσ2, the bound in (18) can be written as

E
[
ηc(Ŵ)

]
≥
(

1− 2Nrmσ
4

σ4
L(HS)

)
+

.

At low SNR, the column subspace estimation accuracy is
quadratically related to σ4/σ4

L(HS), i.e., O(SNR2).
Remark 2: When the number of paths, L, increases, the

value of σL(HS) in (18) will decrease, which can be in-
terpreted as follows. When m,Nr → ∞, the entries in
HS ∈ CNr×m can be generally approximated as standard
Gaussian r.v.s [26]. Moreover, it has been shown in [27], [28]
that the Lth largest singular value of σL(HS)∝ Nr+1−L√

Nr
with

high probability. As a result, the accuracy of column subspace
estimation will be decreased as L increases due to (18) of
Proposition 1.

B. Estimate the Row Subspace

In this subsection, we present how to learn the row subspace
by leveraging the estimated column subspace matrix Ŵ.
Because we have already sampled the first m columns of H in
the first stage, we only need to sample the remaining Nt−m
columns to estimate the row subspace as shown in Fig. 2.

At the kth channel use of the second stage, we observe the
(m + k)th column of H, k = 1, . . . , (Nt − m). To achieve
this, we employ the transmit sounder as

f(k) = em+k. (19)

For the receive sounder, given the estimated column subspace
matrix Ŵ in the first stage, we just let the receive sounder of
the second stage be Ŵ ∈ CNr×L.3 It is worth noting Ŵ is
trivially applicable for hybrid precoding architecture since Ŵ
is obtained from (16). Therefore, under the transmit sounder
f(k) in (19) and receive sounder Ŵ in (16), the observation
y(k) ∈ CL×1 at the receiver can be given by

y(k) = ŴHHf(k) + ŴHn(k)

= ŴH [H]:,m+k + ŴHn(k), (20)

where n(k) ∈ CNr×1 is the noise vector with n(k) ∼
CN (0Nr , σ

2INr ). Then, the observations k = 1, . . . , (Nt−m)
in (20) are packed into a matrix Q̂C ∈ CL×(Nt−m) as

Q̂C = [y(1),y(2), · · · ,y(Nt−m)]

= ŴH(HC + NC), (21)

where HC = [[H]:,m+1, . . . , [H]:,Nt ] ∈ CNr×(Nt−m), and
NC = [n(1), . . . ,n(Nt−m)] ∈ CNr×(Nt−m).

3It is worth noting that because the estimated column subspace of the first
stage is Ŵ ∈ CNr×L, thus the dimension for receive sounder of second
stage is Nr × L rather than Nr ×MRF in (1).

Algorithm 2 Row subspace estimation

1: Input: channel dimension: Nr, Nt; channel paths: L; es-
timated column subspace: Ŵ; observations of first stage:
YS ; parameter: m.

2: Set the receive training sounder as Ŵ.
3: for k = 1 to (Nt −m) do
4: Set the transmit training sounder as f(k) = em+k.
5: Obtain the received signal:
6: y(k) = ŴHHf(k) + ŴHn(k).
7: end for
8: Stack all the observations and (22):
9: Q̂C = [y(1),y(2), · · · ,y(Nt−m)].

10: Calculate Q̂: Q̂ =
[
ŴHYS , Q̂C

]
.

11: Row subspace matrix V̂ is obtained by the dominant L
right singular vectors of Q̂.

12: Design F̂ based on V̂ by solving (24).
13: Output: row subspace estimation F̂.

In addition, given the receive sounder Ŵ and observations
YS of the first stage in (14), we define Q̂S ∈ CL×m as,

Q̂S = ŴHYS = ŴH(HS + NS). (22)

Combining (22) and (21) yields Q̂ ∈ CL×Nt expressed as,

Q̂ =
[
Q̂S , Q̂C

]
=

[
ŴH(HS + NS),ŴH(HC + NC)

]
= ŴHH︸ ︷︷ ︸

,Q̄

+ ŴHN︸ ︷︷ ︸
,N̄

, (23)

where N = [NS ,NC ]∈ CNr×Nt , H = [HS ,HC ] ∈ CNr×Nt ,
Q̄ = ŴHH ∈ CL×Nt , and N̄ = ŴHN ∈ CNr×Nt .
Meanwhile, since Ŵ is semi-unitary and the entries in N are
i.i.d. with distribution CN (0, σ2), according to Lemma 2, the
entries in N̄ are also i.i.d. with distribution CN (0, σ2).

Now, given the expression Q̂ in (23), the row subspace
estimation problem is formulated as,

V̂ = argmax
V∈CNt×L

‖Q̂V‖2F subject to VHV = IL,

where the estimated row subspace matrix V̂ ∈ CNt×L is ob-
tained as the dominant L right singular vectors of Q̂. Similarly,
in order to design the precoder F̂ in (4) for data transmission,
we need to approximate the estimated row subspace matrix V̂
under the hybrid precoding architecture. Specifically, we de-
sign the analog precoder F̂A ∈ CNt×NRF and digital precoder
F̂D ∈ CNRF×L by solving the following problem(

F̂A, F̂D

)
= argmin

FA,FD

‖V̂ − FAFD‖F ,

subject to |[FA]i,j | =
1√
Nt
. (24)

Therefore, the transmit precoder is given by F̂ = F̂AF̂D ∈
CNt×L with F̂HF̂ = IL. Similarly, the method on solving
(24) in [5] can guarantee col(F̂) ≈ col(V̂). The details of our
row subspace estimation algorithm are shown in Algorithm 2.
We have the following proposition about the estimated row
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subspace accuracy for Algorithm 2.
Proposition 2: If the Euclidean distance ‖F̂− V̂‖F ≤ δ2 in

(24), then the accuracy of the estimated row subspace matrix
F̂ obtained from Algorithm 2 is lower bounded as√

ηr(F̂) ≥ σL(V̂HV)− δ2, (25)

where V ∈ CNt×L is the matrix composed of the L dominant
right singular vectors of H. In particular, if δ2 → 0, we have

E
[
ηr(F̂)

]
≥ σ2

L(V̂HV)

≥
(

1− 2Nt(σ
2σ2
L(Q̄) + Lσ4)

σ4
L(Q̄)

)
+

, (26)

where σL(Q̄) is the Lth largest singular value of Q̄ in (23).

Proof See Appendix D.

Similar as the column subspace estimation, the row sub-
space accuracy linearly increases with the SNR, i.e., O(SNR)
at high SNR, and quadratically increases with SNR, i.e.,
O(SNR2), at low SNR. Also, the accuracy of row subspace
estimation decreases with the number of paths, L. As the value
of σL(Q̄) in (26) grows, we can have a more accurate row
subspace estimation. Moreover, considering Q̄ = ŴHH, it is
intuitive that the estimated column subspace matrix Ŵ will
affect the value of σL(Q̄), and then affect the accuracy of row
subspace estimation. Specifically, when col(Ŵ) = col(U), we
will have σL(Q̄) = σL(H), which attains the maximum. In the
following, we further discuss the relationship between σL(Q̄)
and σL(H).

With the SVD of H, i.e., H = UΣVH , we have Q̄ =
ŴHH = ŴHUΣVH . Then, the following relationship is
true due to the singular value product inequality,

σL(Q̄) ≥ σL(ŴHU)σL(ΣVH)

= σL(ŴHU)σL(H). (27)

Therefore, σL(Q̄) is lower bounded by the product of the Lth
largest singular values of ŴHU and H. When the estimation
of the column subspace becomes accurate, the σL(ŴHU)
will approach to one. As a result, the value of σL(Q̄) is
approximately equal to σL(H), resulting in a further enhanced
row subspace estimation. The inequality in (27) reveals that
the column subspace estimation affects the accuracy of the
row subspace estimation.

Given the estimated column subspace Ŵ in Algorithm 1
and row subspace F̂ in Algorithm 2, the following lemma
shows the subspace estimation accuracy of the proposed
SASE, i.e., η(Ŵ, F̂) defined in (7).

Lemma 3: If we assume δ1 → 0 and δ2 → 0 in (16)
and (24), the subspace estimation accuracy defined in (7)
associated with Ŵ and F̂ is lower bounded as

η(Ŵ, F̂) ≥ σ2
L(ÛHU)σ2

L(V̂HV). (28)

Proof Using the definition of η(Ŵ, V̂) in (7), we have the

following expressions,

η(Ŵ, F̂) = ‖ŴHHF̂‖2F /tr(HHH)
(a)
= ‖ÛHHV̂‖2F /tr(HHH)

= ‖ÛHUΣVHV̂‖2F /tr(HHH)
(b)

≥ σ2
L(ÛHU)σ2

L(V̂HV),

where the equality (a) holds for δ1 → 0 and δ2 → 0, and
the inequality (b) holds based on the singular value product
inequality.

Lemma 3 tells that the power captured by Ŵ and F̂ is
lower bounded by the product of σ2

L(ÛHU) and σ2
L(V̂HV).

These two parts denotes the two stages in the proposed SASE,
which are column subspace estimation and row subspace
estimation, respectively. Ideally, when col(Û) = col(U) and
col(V̂) = col(V), we have η(Ŵ, F̂) = 1. Nevertheless, the
proposed SASE can still achieve nearly optimal η(Ŵ, F̂). This
is because σ2

L(ÛHU) and σ2
L(V̂HV) are close to one accord-

ing to the bounds provided in (18) and (26), respectively.

C. Channel Estimation Based on the Estimated Subspaces

In this subsection, we introduce a channel estimation
method based on the estimated column subspace Ŵ ∈ CNr×L
and row subspace F̂ ∈ CNt×L. Let the channel estimate be
expressed as

Ĥ = ŴR̂F̂H , (29)

where R̂ ∈ CL×L. Now, given Ŵ and F̂, it only needs to
obtain R̂ in an optimal manner.

Recalling the column subspace estimation in Section III-A
and row subspace estimation in Section III-B, the correspond-
ing received signals are expressed as

YS = HS + NS

Q̂C = ŴHHC + ŴHNC .

It is worth noting that the entries in NS and ŴHNC are both
i.i.d with distribution CN (0,σ2). Based on the expression of
Ĥ in (29), the maximum likelihood estimation of R̂ in (29)
can be obtained through the following least squares problem,

min
R∈CL×L

‖YS − ĤS‖2F + ‖Q̂C − ŴHĤC‖2F

subject to ĤS=[ŴRF̂H ]:,1:m, ĤC=[ŴRF̂H ]:,m+1:Nt.(30)

Before discussing how to solve the problem in (30), for
convenience, we define

r = vec(R) ∈ CL
2×1,

yS = vec(YS) ∈ CmNr×1,

q̂C = vec(Q̂C) ∈ C(Nt−m)L×1,

A1 = ([F̂]H:,1:m)T ⊗ Ŵ ∈ CmNr×L
2

,

A2 = ([F̂]H:,m+1:Nt)
T ⊗ IL ∈ C(Nt−m)L×L2

.

Using the definitions above, the minimization problem in (30)



8

TABLE I: Channel Uses of Algorithms

Algorithms Number of Channel Uses
SASE mNr/MRF + (Nt −m)

MF [11] O(L(Nr +Nt)/MRF )
SD [10] O(L(Nr +Nt)/MRF )

Arnoldi [16] 2qNr/MRF + 2qNt/NRF
OMP [8] O(L ln(G2)/MRF )
SBL [9] O(L ln(G2)/MRF )

ACE [17] s2L3logs(Nm/L)/MRF

can be rewritten as

min
r∈CL2×1

‖yS−A1r‖22+‖q̂C−A2r‖22 . (31)

The following lemma provides the solution of problem (31).
Lemma 4: Given the problem below

min
r∈CL2×1

‖yS −A1r‖22+‖q̂C−A2r‖22 ,

the optimal solution is given by

r̂ = (AH
1 A1 + AH

2 A2)−1(AH
1 yS + AH

2 q̂C). (32)

Proof The problem is convex with respect to r. Thus, the
optimal solution can be obtained by setting the first order
derivative of the objective function to zero as

AH
1 (A1r− yS) + AH

2 (A2r− q̂C) = 0. (33)

The solution of (33) is exactly the result in (32), which
concludes the proof.

It is worth noting that after we have obtained the column and
row subspace estimates, i.e., Ŵ and F̂, the channel estimation
is simply to compute r̂ = vec(R̂) in (32). Since the dimension
of R̂ is much lower than that of H, the channel estimation
complexity is substantially reduced as shown in Lemma 4.

IV. DISCUSSION OF ALGORITHM

In this section, we analyze the complexity of the proposed
SASE method in terms of the channel use overhead and com-
putational complexity. Moreover, we discuss the application
of the SASE in other channel scenarios.

A. Channel Use Overhead

Considering the channel uses in each stage, the total number
of channel uses for the SASE is given by

KSASE = mNr/MRF + (Nt −m). (34)

Therefore, the number of channel uses grows linearly with
the channel dimension, i.e., O(Nt). In particular, when we
let m = L, the number of channel uses in (34) will be
LNr/MRF + (Nt − L). Considering that each channel use
contributes to MRF observations in the first stage, and L
observations in the second stage, the total number of the
observations is LNr + L(Nt − L), which is equivalent to the
degrees of freedom of rank-L matrix H ∈ CNr×Nt [29].

The numbers of channel uses of the proposed SASE and
other benchmarks [8]–[11], [16], [17] are compared in Table
I. For the angle estimation methods in [8], [9], [17], the

TABLE II: Computational Complexity of Algorithms

Algorithms Computational Complexity
SASE O(LDNr)

MF [11] O(KMRFL
2(N2

r +N2
t ))

SD [10] O(KMRFL
2(N2

r +N2
t ))

Arnoldi [16] O(K2M2
RF /(Nr +Nt))

OMP [8] O(LKMRFG
2)

SBL [9] O(G6)
ACE [17] O(KM2

RFDNr/(sL) +KN2
RFDNt/(sL))

number of required channel uses for the OMP [8] and SBL
[9] is KOMP = KSBL = O(L ln(G2)/MRF ), where G is
the number of grids with G ≥ max{Nr, Nt}. The number
of channel uses for adaptive channel estimation (ACE) [17]
is KACE = s2L3logs(Nm/L)/MRF , where 2π/Nm with
Nm ≥ max{Nr, Nt} is the desired angle resolution for the
ACE, and s is the number of beamforming vectors in each
stage of the ACE. For the subspace estimation methods in
[10], [11], [16], the numbers of required channel uses for
subspace decomposition (SD) [10] and matrix factorization
(MF) [11] are KSD = KMF = O(L(Nr + Nt)/MRF ), while
it requires KArnoldi = 2qNr/MRF + 2qNt/NRF channel uses
where q ≥ L for Arnoldi approach [16]. Because the number
of estimated parameters of the angle estimation methods such
as OMP, SBL, and ACE, is less than that of the proposed
SASE, they require slightly fewer channel uses than SASE.
Nevertheless, the proposed SASE consumes fewer channel
uses than those of the existing subspace estimation methods
[10], [11], [16] as shown in Table I.

B. Computational Complexity

For the proposed SASE, the computational complexity of
the first stage comes from the SVD of YS , which is O(m2Nr)
[28]. The complexity of the second stage is dominated by the
design of Ŵ in (16), which is O(LDNr), where D ≥ Nr
denotes the cardinality of an over-complete dictionary. Hence,
the overall complexity of the proposed SASE algorithm is
O(m2Nr + LDNr) = O(LDNr). The computational com-
plexities of benchmarks, i.e., the angle estimation methods
OMP [8], SBL [9], and ACE [17] along with the subspace
estimation methods Arnoldi [16], SD [10], and MF [11]
are compared in Table II, where K denotes the number of
channel uses. For a fair comparison, when comparing the
computational complexity, we assume the number of channel
uses, K, is equal among the benchmarks. As we can see from
Table II, the proposed SASE has the lowest computational
complexity.

C. Extension of SASE

In this subsection, we extend the proposed SASE to the 2D
mmWave channel model with UPAs. There are Ncl clusters,
and each of cluster is composed of Nray rays. For this model,
the mmWave channel matrix is expressed as [5], [30], [31]

H =

√
NrNt
NclNray

Ncl∑
i=1

Nray∑
j=1

hijar(φ
r
ij , θ

r
ij)a

H
t (φtij , θ

t
ij), (35)
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where hij represents the complex gain associated with the
jth path of the ith cluster. The ar(φ

r
ij , θ

r
ij) ∈ CNr×1 and

at(φ
t
ij , θ

t
ij) ∈ CNt×1 are the receive and transmit array re-

sponse vectors, where φrij(φ
t
ij) and θrij(θ

t
ij) denote the azimuth

and elevation angles of the receiver (transmitter). Specifically,
the ar(φ

r
ij , θ

r
ij) and at(φ

t
ij , θ

t
ij) are expressed as

ar(φ
r
ij , θ

r
ij) =

1√
Nr

[1, · · · , ej 2π
λ d(mr sinφrij sin θrij+nr cos θrij),

· · · , ej 2π
λ d((

√
Nr−1) sinφrij sin θrij+(

√
Nr−1) cos θrij)],

at(φ
t
ij , θ

t
ij) =

1√
Nt

[1, · · · , ej 2π
λ d(mt sinφtij sin θtij+nt cos θtij),

· · · , ej 2π
λ d((

√
Nt−1) sinφtij sin θtij+(

√
Nt−1) cos θtij)],

where d and λ are the antenna spacing and the wavelength,
respectively, 0 ≤ mr, nr <

√
Nr and 0 ≤ mt, nt <

√
Nt are

the antenna indices in the 2D plane.
For the channel model in (35), it is worth noting that the

rank of H is at most NclNray. Using the similar derivations
as the proof of Lemma 1, we can verify that when m ≥
NclNray, the sub-matrix HS = [H]:,1:m ∈ CNr×m satisfies
rank(HS) = rank(H). Therefore, it is possible to sample
the first m columns of H in (35) to obtain column subspace
information, and sample the remaining columns to obtain the
row subspace information. This means that the proposed SASE
can be extended directly to the channel model given in (35).

In summary, the proposed SASE has no strict limitations
to be applied to other channel models if the channel matrix
H experiences sparse propagation and col(HS) = col(H).
Moreover, because the proposed SASE is an open-loop frame-
work, it can be easily extended to multiuser MIMO downlink
scenarios.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
SASE algorithm by simulation.

A. Simulation Setup

In the simulation, we consider the numbers of the receive
and transmit antennas are Nr = 36, and Nt = 144, re-
spectively, and the numbers of the RF chains at the receiver
and transmitter are MRF = 6 and NRF = 8, respectively.
Without lose of generality, it is assumed that the variance
of the complex gain of the lth path is σ2

h,l = 1,∀l. We
consider three subspace-based channel estimation methods as
the benchmarks, i.e., SD [10] and MF [11], and Arnoldi [16],
where SD and MF aim to recover the low-rank mmWave chan-
nel matrix, and Arnoldi is to estimate the dominant singular
subspaces of the mmWave channel. For a fair comparison,
the considered benchmarks are to estimate the subspace rather
than the parameters such as the angles of the paths.

B. Numerical Results

In order to evaluate the subspace accuracy of different
methods, we compute the subspace accuracy η(Ŵ, F̂) in (7),
column subspace accuracy ηc(Ŵ) in (8), and row subspace ac-
curacy ηr(F̂) in (9) for comparison. We also evaluate the nor-
malized mean squared error (NMSE) and spectrum efficiency.

0

1

2

3

4

5

6

0 4 8 12 16 20 24 28 32 36 40

Fig. 3: rank(HS) versus m (Nt = 144;Nr = 36;L = 4)

The NMSE is defined as NMSE = E[‖H− Ĥ‖2F /‖H‖2F ],
where Ĥ denotes the channel estimate. In particular, the
channel estimate of the SASE is obtained by the method
derived in Section III-C. The spectrum efficiency in (5) is
calculated with the combiner Ŵ and precoder F̂, which
are designed according to the precoding design techniques
provided in [5] with the obtained channel estimate Ĥ via
channel estimation.

1) Equivalence of Subspace: It is worth noting that the
column subspace estimation in Section III-A depends on the
fact of subspace equivalence between HS and H in (14). We
illustrate in Fig. 3 the rank of HS with different m. In this
simulation, we set L = 4 and m = {1L, 2L, . . . , 10L}. It can
be seen in Fig. 3 that the rank of HS is equal to L for all the
values of m, i.e., the rank of HS is equal to the rank of H,
for m ≥ L. This validates the fact that col(HS) = col(H).

2) Performance versus Signal-to-Noise Ratio: In Fig. 4
and Fig. 5, we compare the performance versus SNR of the
proposed SASE algorithm to SD, MF and Arnoldi methods.
The number of paths is set as L = 4. For a fair comparison,
the numbers of channel uses for the benchmarks are kept
approximately equal, i.e., K = 244.

In Fig. 4(a), the column subspace accuracy ηc of the
proposed SASE is compared with the benchmarks. As we
can see, the SASE and SD methods obtain nearly similar
column subspace accuracy, and they outperform over the MF
and Arnoldi. It means that sampling the sub-matrix HS of the
channel H can provide a robust column subspace estimation.
In Fig. 4(b), the row subspace accuracy ηr versus SNR is
plotted. We found that the proposed SASE outperforms over
the others. It verifies that adapting the receiver sounders to
the column subspace can surely improve the accuracy of row
subspace estimation. In Fig. 4(c), the subspace accuracy η de-
fined in (7) of the proposed SASE is evaluated. As can be seen
that the proposed SASE achieves the most accurate subspace
estimation over the other methods. For the SASE, MF and
SD, the nearly optimal subspace estimation, i.e., η ≈ 1, can
be achieved in the high SNR region (10dB ∼ 20dB). Since the
performance of the Arnoldi highly depends on the number of
available channel uses, its accuracy is degraded and saturated
at high SNR due to the limited channel uses (K = 244). Thus,
the ideal performance of the Arnoldi relies on a large number
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Fig. 4: The subspace accuracy versus SNR (dB) when Nt =
144, Nr = 36, L = 4,MRF = 6, NRF = 8,K = 244: (a)
Column subspace accuracy ηc, (b) Row subspace accuracy ηr,
(c) Subspace accuracy η.

of channel uses or enough RF chains [16].
In Fig. 5(a), the NMSE of the proposed SASE is decreased

as the SNR increases. It has similar characteristis as that of the
MF, but has much lower value. The NMSE of the SD is almost
constant in the low SNR region and decreases in higher SNR
region. Overall, the SASE outperforms the SD when SNR ≥
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Fig. 5: The channel estimation performance versus SNR (dB)
when Nt = 144, Nr = 36, L = 4,MRF = 6, NRF = 8,K =
244: (a) NMSE, (b) Spectrum efficiency.

−15dB. In Fig. 5(b), the spectral efficiency of the SASE is
plotted. The curve for perfect CSI with fully digital precoding
is plotted for comparison. The proposed SASE achieves the
nearly optimal spectrum efficiency among all the methods.
It is observed that the spectrum efficiency of the SASE has
a different trend from the NMSE in Fig. 5(a), while it has
similar characteristic as the subspace accuracy in Fig. 4(c). The
evaluation validates the effectiveness of the SASE in channel
estimation to provide good spectrum efficiency.

3) Performance versus Number of Channel Uses: In Fig.
6, we show the channel estimation performance of the SASE
for different numbers of channel uses. The simulation setting
is L = 4,SNR = 5, 20dB. The value of m in (34) is in the
set of {4, 8, · · · , 48}. Accordingly, the set of the numbers of
channel uses is K = {164, 184, · · · , 384}.

Fig. 6(a) shows the subspace estimation performance versus
the number of channel uses. As the number of channel
uses increases, the subspace accuracy of all the methods
is increased monotonically. It is worth noting that when
K = 164 (m = 4), the subspace accuracy of the SASE is
slightly lower than that of the SD. This is because there are
only m = L = 4 columns sampled for column subspace
estimation that affects the column subspace accuracy of the
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Fig. 6: The channel estimation performance versus the number
of channel uses K when Nt = 144, Nr = 36, L = 4,MRF =
6, NRF = 8,SNR = 5dB, 20dB: (a) Subspace accuracy η, (b)
Spectrum efficiency.

SASE slightly. Nevertheless, when m ≥ 8, i.e., K ≥ 184,
the SASE obtains the most accurate subspace estimation, i.e.,
η ≈ 1, among all the methods. In particular, when the SNR
is moderate, i.e., SNR= 5dB, the SASE clearly outperforms
over the other methods. This means that the SASE requires
less channel uses to provide a robust subspace estimation.

Fig. 6(b) shows the spectrum efficiency versus the number
of channel uses. The curve for perfect CSI with fully digital
precoding is also plotted for comparison. Again, the SASE
achieves nearly optimal spectrum efficiency compared to the
other methods. The performance gap between the SASE and
the other methods are more noticeable at SNR= 5dB. In
particular, as seen in the figure, when the number of channel
uses, K ≥ 244, the performance gap between the SASE and
perfect curve at SNR= 5dB is less than 1.5bits/s/Hz.

4) Performance versus Number of Paths: In Fig. 7, we
evaluate the estimation performance of the SASE for different
numbers of paths, L. The number of channel uses is K = 244
and SNR = 5, 20dB. Due to the limited number of channel
uses, the Anorldi method can not perform the channel estima-
tion for L ≥ 5. Thus, we only show the performance of the
Arnoldi for L ≤ 4.
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Fig. 7: The channel estimation performance versus the number
of paths L when Nt = 144, Nr = 36,MRF = 6, NRF =
8,K = 244,SNR = 5dB, 20dB: (a) Subspace accuracy η, (b)
Spectrum efficiency.

In Fig. 7(a), the subspace accuracy η of different methods
versus number of paths, L, is illustrated. As we can see,
the SASE, SD and MF achieve a more accurate subspace
estimation compared to the Arnoldi. It is seen that the Arnoldi
has a sharp decrease in the accuracy for L > 2. It means
that the Arnoldi can provide a good channel estimate only
for L ≤ 2 with the use of K = 244 channel uses. When
SNR= 5dB, the SASE outperforms over the other methods.
When the SNR is high, i.e., SNR= 20dB, for the proposed
SASE, the subspace accuracy decreases slightly with the
number of paths, L, which verifies our discussion about the
effect of L in Remark 2 of Section III.

In Fig. 7(b), the spectrum efficiency versus number of paths,
L, is shown. Apart from the Arnoldi, the spectrum efficiency
achieved by the SASE, MF and SD increases with the number
of paths. When the SNR is high, i.e., SNR= 20dB, the
SASE, MF and SD can achieve nearly optimal performance.
When the SNR is moderate, i.e., SNR= 5dB, the proposed
SASE achieves the highest spectrum efficiency among all
the methods. Moreover, for the SASE, MF and SD, their
performance gaps with the curve of perfect CSI is getting
wider as L increases. Nevertheless, the spectrum efficiency
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Fig. 8: The channel estimation performance with inaccurate
path information when Nt = 144;Nr = 36;L = 4;MRF =
6;NRF = 8;K = 244: (a) Subspace accuracy η, (b) NMSE,
(c) Spectrum efficiency.

of the SASE is more closer than the other methods, which
implies that the SASE can leverage the property of limited
number of paths in mmWave channels more effectively than
the other methods.

5) Performance versus Inaccurate Path information: Thus
far, in the previous simulations, we have assumed the number

of paths, L, is known a priori. In Fig. 8, we evaluate the
performance of the SASE under the situation that the accurate
path information is not available. As discussed in Section
III-A, we utilize the upper bound of the number of paths
for simplicity, where we let Lsup = {5, 6} while L = 4.4

For a clear illustration, we also evaluate the performance of
proposed SASE by using the lower bound of number of paths,
i.e., Linf = 3. As can be seen in Fig. 8, compared to the
case of Linf = 3, using the upper bound Lsup = {5, 6} for
SASE achieves a similar performance as the accurate path
information of L = 4. In particular, it is noted in Fig. 8(a) and
Fig. 8(b) that the estimation performance of Lsup is slightly
worse than that of accurate path information when SNR is
high, while it is marginally better when SNR is low. This is
because using inaccurate path information Lsup with Lsup ≥ L
does not affect the column subspace estimation, but according
to Proposition 2, it provides worse row subspace estimation at
high SNR and more accurate row subspace estimation at low
SNR.5 Nevertheless, in overall, the performance of proposed
SASE is not sensitive to the inaccurate path number.

VI. CONCLUSION

In this paper, we formulate the mmWave channel estimation
as a subspace estimation problem and propose the SASE
algorithm. In the SASE algorithm, the channel estimation task
is divided into two stages: the first stage is to obtain the
column channel subspace, and in the second stage, based on
the acquired column subspace, the row subspace is estimated
with optimized training signals. By estimating the column and
row subspaces sequentially, the computational complexity of
the proposed SASE was reduced substantially to O(LDNr)
with D ≥ Nr. It was analyzed that O(Nt) channel uses
are sufficient to guarantee subspace estimation accuracy of
the proposed SASE. By simulation, the proposed SASE has
better subspace accuracy, lower NMSE, and higher spectrum
efficiency than those of the existing subspace methods for
practical SNRs.

APPENDIX A
PROOF OF LEMMA 1

From the mmWave channel model in (3), when the angles
{θt,l}Ll=1 and {θr,l}Ll=1 are distinct,

rank(At) = rank(Ar) = L,

which holds due to the fact that At and Ar are both Vander-
monde matrices. Then, HS = HS can be expressed as

HS = Ar diag(h)AH
t S.

4If the Lsup with Lsup ≥ L is utilized for SASE, the estimated subspaces
will be Ŵ ∈ CNr×Lsup and F̂ ∈ CNt×Lsup . For a fair comparison, we
choose the dominant L modes in Ŵ and F̂ when evaluating the performance.

5It is worth noting that if Lsup is utilized for SASE, according to
Proposition 2, the row subspace accuracy is bounded as E[ηr(F̂)] ≥(
1− 2Nt(σ2σ2

L(Q̄) + Lsupσ4)/σ4
L(Q̄)

)
+

. The statements can be verified
easily through analyzing this row subspace accuracy bound.
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Combining the rank inequality of matrix product rank(HS) ≤
rank(H) = L and the following lower bound,

rank(HS) ≥ rank(Ar diag(h)) + rank(AH
t S)− L

= rank(AH
t S),

yields L ≥ rank(HS) ≥ rank(AH
t S). Therefore, in order to

show col(HS) = col(H), namely, rank(HS) = L, it suffices
to show that rank(AH

t S) = L. Considering that AH
t S is a

Vandermonde matrix, it has rank(AH
t S) = L. This completes

the proof.

APPENDIX B
PROOF OF LEMMA 2

It is trivial that the entries in Y follow the identical
distribution of CN (0, σ2). Therefore, it remains to show that
all the entries in Y are independent. Because of the typical
property of Gaussian distribution, it suffices to prove that they
are uncorrelated. For any i 6= j or m 6= n, the following holds,

E [[Y]i,m[Y]j,n] = E
[
Ai,:[X]:,m[X]H:,n[A]Hj,:

]
= 0.

Therefore, the entries in Y are uncorrelated and thus indepen-
dent, which concludes the proof.

APPENDIX C
PROOF OF PROPOSITION 1

Based on the definition of ηc(Ŵ) in (8), it has√
ηc(Ŵ) =

√
tr(ŴHHHHŴ)

tr(HHH)

=
‖(Ŵ − Û + Û)HH‖F

‖H‖F
(a)

≥ ‖ÛHH‖F
‖H‖F

− ‖(Ŵ − Û)HH‖F
‖H‖F

=
‖ÛHUΣVH‖F

‖H‖F
− ‖(Ŵ − Û)HH‖F

‖H‖F
(b)

≥ σL(ÛHU)− ‖Ŵ − Û‖2,
≥ σL(ÛHU)− δ1, (36)

where the inequality (a) holds from the triangle inequality,
and the inequality (b) comes from the fact that for A ∈ Cn×n
with rank(A) = n and B ∈ Cn×k, ‖AB‖2F ≥ σ2

n(A)‖B‖2F ,
where the latter follows by ‖AB‖2F =

∑k
i=1 ‖A[B]:,i‖22 ≥∑k

i=1 σ
2
n(A)‖[B]:,i‖22 = σ2

n(A)‖B‖2F . Thus, this concludes
the proof for the inequality in (17).

Then, by letting δ1 → 0 in (17), we take expectation of
squares of both sides in (36), then it has the following

E
[
ηc(Ŵ)

]
≥ E

[
σ2
L(ÛHU)

]
(c)

≥
(

1− 2Nr(σ
2σ2
L(HS) +mσ4)

σ4
L(HS)

)
+

,(37)

where the inequality (c) holds from Theorem 1, and this
concludes the proof.

APPENDIX D
PROOF OF PROPOSITION 2

Recall that the row subspace matrix V̂ is given by the right
singular matrix of Q̂ = Q̄ + N̄ in (23), and the elements
in N̄ are i.i.d. with each entry being CN (0, σ2) according to
Lemma 2. Thus, Theorem 1 is applied, which gives

E
[
σ2
L(V̂HV)

]
≥
(

1− 2Nt(σ
2σ2
L(Q̄) + Lσ4)

σ4
L(Q̄)

)
+

. (38)

Then, based on the subspace accuracy metric in (9), it has√
ηr(F̂) =

√
tr(F̂HHHHF̂)

tr(HHH)

=
‖H(F̂− V̂ + V̂)‖F

‖H‖F

≥ ‖HV̂‖F
‖H‖F

− ‖H(F̂− V̂)‖F
‖H‖F

=
‖UΣVHV̂‖F
‖H‖F

− ‖H(F̂− V̂)‖F
‖H‖F

≥ σL(V̂HV)− ‖F̂− V̂‖2,
≥ σL(V̂HV)− δ2. (39)

Thus, the inequality (25) is proved. Moreover, under the
condition δ2 → 0, taking expectation of the squares of both
sides in (39) yields

E
[
ηr(F̂)

]
≥ E

[
σ2
L(V̂HV)

]
(a)

≥
(

1− 2Nt(σ
2σ2
L(Q̄) + Lσ4)

σ4
L(Q̄)

)
+

,

where the inequality (a) holds from (38). This concludes the
proof for the row estimation accuracy bound in (26).
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