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Abstract—Caching popular files in small base stations (SBSs)
has been proved to be an effective way to reduce bandwidth
pressure on the backhaul links of dense small cell networks
(DSCNs). Many existing studies on cache-enabled DSCNs at-
tempt to improve user experience by optimizing end-to-end file
delivery delay. However, under practical scenarios where files
(e.g., video files) have diverse quality of service requirements,
energy consumption at SBSs should also be concerned from
the network perspective. In this paper,we attempt to optimize
these two critical metrics in cache-enabled DSCNs. Firstly, we
formulate the energy-delay optimization problem as a Mixed
Integer Programming (MIP) problem, where file placement,
user association and power control are jointly considered. To
model the tradeoff relationship between energy consumption
and end-to-end file delivery delay, a utility function linearly
combining these two metrics is used as an objective function of the
optimization problem. Then, we solve the problem in two stages,
i.e. caching stage and delivery stage, based on the observation that
caching is performed during off-peak time. At the caching stage,
a local popular file placement policy is proposed by estimating
user preference at each SBS. At the delivery stage, with given
caching status at SBSs, the MIP problem is further decomposed
by Benders’ decomposition method. An efficient algorithm is
proposed to approach the optimal association and power solution
by iteratively shrinking the gap of the upper and lower bounds.
Finally, extension simulations are performed to validate our
analytical and algorithmic work. The results demonstrate that
the proposed algorithms can achieve the optimal tradeoff between
energy consumption and end-to-end file delivery delay.

Index Terms—Caching, Energy-delay optimization, File popu-
larity, Dense small cell networks

I. INTRODUCTION

To cope with the explosive mobile traffic growth, dense
small cell networks (DSCNs) are expected to be deployed in
fifth generation (5G) cellular networks. In DSCNs, small base
stations (SBSs) are usually connected to the core network via
low-capacity backhaul links due to physical and cost-related
limitations [1] [2]. That means the backhaul is prone to be
the system bottleneck. Moreover, the backhaul problem be-
comes more serious as the SBS deployment density increases.
Recently, enabling cache in DSCNs have been considered as
a promising way to handle the backhaul problem [2]–[5].
Statistical report has shown that a few popular files requested
by many users should account for most of backhaul traffic load
[3]. Based on this fact, popular files can be proactively cached
at SBSs, and delivered to users when requested, without
consuming backhaul bandwidth. The effect of caching on the
backhaul is determined by file reuse, i.e., the number of users

requesting the same file. If there is enough file reuse, caching
can replace backhaul communication [2].

In cache-enabled DSCNs, user experience is also improved
due to the reduction of end-to-end file delivery delay [1] [5]–
[8]. When a user requests a file cached in the local SBS, the
file is delivered by that SBS instead of the faraway Internet
file server. In this case, end-to-end file delivery delay is
significantly reduced. We can also see that minimizing end-
to-end file delivery delay is equivalent to maximizing the
cache hit ratio. Many existing studies attempt to improve
the cache hit ratio by optimizing file placement in cache of
SBSs [1] [2] [8]. However, the file placement optimization
problem is non-trivial, which is coupled with the file popularity
distribution (i.e., the probability that a file is requested by
users) and user association strategy. When the file popularity
distribution is known at each SBS, the file placement opti-
mization problem can be converted to a well-known knapsack
problem. Learning-based algorithm are proposed to obtain the
file popularity profile and cache the best files at SBSs when the
file popularity distribution is not known [1]. When users can
associate with multiple SBSs, a distributed caching optimiza-
tion problem is formulated based on a connectivity bipartite
graph model and approximation algorithms that lie within a
constant factor of the theoretical optimum are proposed [2]. In
cache-enabled DSCNs with mobile users, the file replacement
problem is optimized with recommendation via Q-learning [8].

Unlike end-to-end file delivery delay, energy consumption,
which is widely concerned in 5G cellular networks [9], has not
been well studied in cache-enabled DSCNs. There only exist a
few studies on this issue. In [5], the impact of various factors
(backhaul capacity, content popularity, cache capacity, etc.) on
downlink energy efficiency (EE) is analyzed. It also validates
that caching in DSCNs can achieve more EE gain compared
with caching in conventional cellular networks. However, in
this work, the user association strategy and quality of service
(QoS) requirements from files are not considered. On the one
hand, in DSCNs, multiple SBSs are available for a user that
locates at the edge of a small cell. It means that the user have
multiple association choices. In this case, the user association
strategy has a significant impact on energy consumption [10]
[11]. On the other hand, in practice, files have diverse QoS
requirements. As we known, video traffic plays a major part in
current mobile traffic, and is predicted to contribute over 80%
of total mobile traffic in 2020 [12]. For online video delivery,
the QoS requirement of each video file is usually expressed in
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Fig. 1: Cache-enabled DSCNs.

forms of rate [13]. Consequently, different transmission power
levels are configured at SBSs for video delivery to support
required rates under various channel conditions.

Both end-to-end file delivery delay and energy consumption
are critical metrics in cache-enabled DSCNs [14]. From the
perspective of user experience, lower end-to-end file delivery
delay are preferred, while less energy consumption is preferred
from the network perspective. Unfortunately, there is a con-
tradiction between these two metrics. Considering two SBSs,
i.e., b1 and b2, as well as their small cells described in Fig.
1, we assume that files have different QoS requirements in
terms of rate. u1, u2 and u4 request f1, and others request
f2. To minimize end-to-end file delivery delay, the optimal
user association strategy is: u1, u2 and u4 associate with b1,
others associate with b2. In this case, users can download
files from SBSs, without backhual delay. However, a different
user association strategy should be applied to achieve optimal
energy consumption, which is: u1, u2 and u3 associate with
b1, others associate with b2. In this case, users associate with
their nearest SBSs. Under practical scenarios, the tradeoff
relationship between energy consumption and end-to-end file
delivery delay is more complicated. In this paper, for the first
time, we study suck kind of tradeoff in cache-enabled DSCNs.
The main contributions are described as follows.

1) In cache-enabled DSCNs, we analyze end-to-end file
delivery delay and energy consumption. Based on our analysis,
we formulate the energy-delay tradeoff problem as a mixed
integer programming (MIP) problem, where file placement,
user association and power control are jointly considered.

2) To alleviate traffic pressure on the backhaul, file place-
ment is performed during off-peak time. Based on this fact,
we propose a local popular file placement policy at each SBS.
In the proposed policy, the optimal file placement problem is
converted to a knapsack problem and solved by an efficient
greedy algorithm.

3) With the proposed file placement policy, the energy-
delay tradeoff problem is reduced to a mixed integer linear
programming (MILP) problem and is further decomposed with
Benders decomposition method. Then, an efficient algorithm
is proposed to approach the optimal association and power
solution by iteratively shrinking the gap of the upper and lower
bounds.

Extension simulations are carried out to validate our the-

TABLE I: NOTATIONS

Symbol Description
bj , ui, fk SBS, user and file indexed by j, i, k respectively
pj , ej Transmission power and energy consumption at bj
Cj Cache capacity of bj
τk Wireless transmission delay of fk
ρik ui’s preference for fk
ψjk Popularity of fk at bj
dkij File delivery delay for fk when ui associates with bj

θik ∈ {0, 1} If ui requests fk , θik = 1.
xij ∈ {0, 1} If ui associates with bj , xij = 1.
yik ∈ {0, 1} If fk is in cache of bj , yik = 1.

oretical and algorithmic work. The results demonstrate that
the proposed algorithms have fast convergence speed and can
achieve the desired tradeoff between energy consumption and
end-to-end file delivery delay.

The rest of the paper is organized as follows. Section II
gives an overview of the system model. The energy-delay
tradeoff problem is formulated in cache-enabled DSCNs in
Section III. In Section IV, a local popular file placement
policy is proposed. Then, the energy-delay tradeoff problem
is decomposed and solved based on Benders’ decomposition
method. Performance evaluation is presented in Section V.
Finally, we conclude the paper in Section VI.

II. SYSTEM MODEL

Consider a downlink DSCN consisting of B SBSs (i.e.,
femto base stations or pico base stations) indexed by a set
B ={1, 2, ..., B}, as shown in Fig. 1. All SBSs are cache-
enabled and the cache capacity of SBS bj is denoted by Cj
(j ∈ B). U users are randomly deployed in the coverage of
DSCNs. Let U denote the user index set and U = {1, 2, ...,
U}. Assume each user ui (i ∈ U) can only associate with one
SBS.

The requested files are indexed by a set F = {1, 2, ...,
F}, which are stored as a file library at the file server and
cached at SBSs according to file placement policies. For file
fk (k ∈ F), its size is denoted by sk and its QoS requirement
in terms of rate denoted by Rk. It means that the transmission
rate of fk should be not less than Rk. SBS bj employs power
pj to transmit files and satisfy their rate requirements.

Some major notations are summarized in Table I.

A. Interference Model

Orthogonal frequency division multiplexing (OFDM) is as-
sumed to be used in cache-enabled DSCNs. In each small cell,
resource blocks (i.e., time and frequency) allocated to different
users are orthogonal. Therefore, only inter-cell interference
from neighbouring cells on the same frequency is considered.

For user ui associating with SBS bj , inter-cell interference
is

∑
l∈B,l 6=j

plgil, where pl is the transmission power of SBS

bl and gil denotes the channel gain between ui and bl. Thus,
signal-interference-noise-ratio (SINR) at ui associating with
bj can be expressed as

γij =
pjgij∑

l∈B,l 6=j
plgil + σ2

,



where σ2 denotes the noise power level. The downlink data
rate (bit/s) of ui is

rij = Wlog2(1 + γij), (1)

where W is the bandwidth allocated to one user. In this
paper, we consider practical scenarios where files (e.g., video
files) have diverse qualities of service requirements. When ui
requestes file fk, rij must satisfy rij ≥ Rk to guarantee the
delivery quality.

B. Local File Popularity Distribution

In Figure. 1, each SBS is equipped with cache. Files are
placed in cache according to the file popularity distribution.
Usually, the global file popularity distribution (e.g. Zipf dis-
tribution) is used and according to popularity rankings the
each SBS will cache the same files [3] [5]. However, such
coarse-grained file placement policy ignores the local file
popularity characteristic of each small cell, which incurs the
waste of cache resource. Local popularity means that different
sociological and cultural backgrounds of users at different
locations and popularities vary from region to region. Related
researches and studies have shown that files or contents have a
local popularity characteristic. In [15] [16], authors studied the
file popularity distribution and users access patterns in video
traffic from a campus network. By analysis of real-world trace
data, some significant conclusions are made as follows: 1)
global file popularity can not reflect the local file popularity
(e.g. a file popularity in a cell site), so the file popularity
among different cell sites may be different from each other.
2) users may have strong personal preferences toward their
specific file categories.

It is reasonable to assume that during T , the popularity
distribution of the files and the user preference for the files
are fixed. Typical examples include popular news and short
videos, which are updated every 1-3 hours. Besides, another
important assumption is made that during the same time scale
T , the users in the covering area of each cell are fixed. That
is to say, the users move slowly within the covering of the
cell during T . Therefore, for the convenience of this research
and considering the slow change of the file popularity, we first
intend to consider the fixed file popularity of one T .

Based on the above assumptions, to obtain a local file
popularity distribution, each SBS first needs to estimate the
preference of the central-zone users during off-peak time and
then calculates the local file popularity based on the user pref-
erence. In a small cell with SBS bj , based on users’ distance
to bj , users are divided into central-zone users and edge users.
Central-zone users are just around bj and are more likely to
associates with bj than edge users from the perspective of
energy consumption. Considering SBS bj , the users index set
in the central covering area is denoted by Φj = {i| ui is in
the central zone of Cell bj}. For user preference, we adopt the
definition and model of the user preference similar to that in
[16], where the user preference is modeled by kernel function.
Kernel function can efficiently reflect the correlation between
the user and the file. Let ψjk denotes the popularity of file

fk at SBS bj , which is the weighted sum of probabilities that
central-zone users request the file fk. Then we can get the
local file popularity distribution at SBS bj :

ψjk =
∑
i∈Φj

p(ui)ρik, fk ∈ F (2)

where p(ui) is the probability that user ui generates a file
request. ρik is used to stand for ui’s preference for file fk.
ψjk denotes the local popularity at bj and also reflects the
ratio of the requests for fk to the total ones in the central-
zone of the small cell at any moment.

III. PROBLEM FORMULATION

In this paper, we attempt to optimize end-to-end file delivery
delay and energy consumption by joint power control, user
association and file placement. Firstly, we analyze end-to-end
file delivery delay and energy consumption of SBSs in cache-
enabled DSCNs, respectively. Then, based on our analysis, we
formulate the optimization problem as an MILP problem. In
this section, end-to-end file delivery delay and system energy
consumption in cache-enabled DSCNs are analyzed. Based
on our analysis, we formulate the energy-delay optimization
problem.

A. Delay and Energy Consumption Analysis

In cache-enabled DSCNs, each SBS is equipped with cache.
If SBS caches the file that a user requests, the end-to-end file
delivery delay for this user equals to wireless transmission
delay. Otherwise, the end-to-end file has to be delivered by the
remote file server, and additional backhaul delay is involved.
Let dkij denote the end-to-end file delivery delay when user ui
associating with SBS bj requests file fk. We have

dkij =

{
τkij , yjk = 1,

τkij + wBHj , yjk = 0,
(3)

where binary variable yjk indicates whether file fk is cached
in bj or not, and τkij = sk

rij
represents wireless transmission

delay of fk transmitted from bj to ui. Backhaul delay of bj is
denoted by wBHj . For wired backhaul, backhaul delay of SBSs
is related to the average link distance, the average traffic load
and the average number of SBSs connecting to a remote file
server in Internet core. Hence, backhaul delay wBHj at SBS
bj can be modeled to be an exponentially distributed random
variable with a mean value of Dj [17].

Here the user request model is given and it is assumed that
each user request only one file once time. Let θik = 1 denote
whether user ui requests file fk or not. θik = 1 when the ui
requests fk. Otherwise, θik = 0. And

∑
k θik = 1 makes ui

only request one file once time. Then, we can derive end-to-
end file delivery delay for ui as follows.

di =
∑
j∈B

∑
k∈F

θikxij(τ
k
ij + (1− yjk)wBHj ), (4)

where xij ∈ {0, 1} is a binary variable. If user ui associates
with SBS bj , xij = 1. Otherwise, xij = 0. Then, one of our



optimization objectives is to minimize end-to-end file delivery
delay of all users:

min
X,p,Y

∑
i∈U

di

Energy consumption at SBS bj is expressed as follows:

ej = pjTj ,

where file serving time Tj =
∑
i∈U

∑
k∈F θikxijτ

k
ij at SBS

bj denotes the time required to complete transmission of all
requested files at bj .

Then, the other objective is to minimize total transmission
energy consumption:

min
X,p

∑
i∈U

ej ,

B. Energy and Delay Optimization

Compared with optimizing the two objectives separately,
jointly optimizing energy and delay belongs to a kind of multi-
objective optimization problem. To express such optimization
problem, we employ a weighted sum based utility function,
which is modeled by the weighted sum of energy cost and de-
lay cost [18]. We can formulate the energy-delay optimization
problem as follows.

min
X,p,Y

α
∑
j∈B

ej + (1− α)
∑
i∈U

di (5)

s.t. 0 <
∑
i∈U

pjxij ≤ Pmaxj ,∀j ∈ B, (6)

rij ≥ Rk,∀i ∈ U , k ∈ F , (7)
xij ∈ {0, 1},∀i ∈ U , j ∈ B, (8)

di =
∑
j∈B

∑
k∈F

θikxij(τk + (1− yjk)wBHj ), (9)∑
j∈B

xij = 1,∀i ∈ U , (10)

where α ∈ [0, 1] is reasonable in our paper and indicates the
different significance between energy consumption and end-
to-end file delivery delay. A larger α means that network
operators will pay more attention to reducing energy con-
sumption at the expense of increasing end-to-end file delivery
delay. Constraint (6) makes sure that total power supply does
not exceed maximal power available at each SBS. Constraint
(7) represents the transmission rate requirements of each file.
Specifically, the extended expression of constraint (7) is

Wlog(1 +
pjgij∑

l∈B,l 6=j
plgil + σ2

) ≥Wlog(1 + xijγkθik), (11)

where γk is SINR threshold that satisfies the rate requirement
of file fk. Constraint (7) can be rewritten as pjgij∑

l∈B,l6=j

plgil+σ2 ≥

xijγkθik. Thus, in stead of Rk, γk can be used to represent the
file transmission requirement. Each user association decision
is indicated by a binary variable xij and each user can only
associates with one SBS, which are expressed as constraint
(8) and (10).

The problem (5) with discrete user association decision and
continuous power control is an MIP problem. In order to solve
the problem, file placement, user association and power control
should be jointly considered, which also makes the problem
much more complicated.

To further clarify the complexity of the problem (5), we
introduce a simple optimization instance. By the analysis of
such instance, we show the challenge of solving (5) and the
proposition 1 is given below:

Proposition 1. When a file placement policy is chosen, for any
feasible power allocation result, the problem (5) is NP-hard.

Proof. In order to prove the proposition, we first introduce the
well-known Multidimensional 0-1 Knapsack Problems(MKP)
with block angular structures which is a NP-Hard problem
[19] [20].

In the problem MKP, there are q knapsacks with a maximum
weight load denoted by (wj , j = 1, · · · , q). And there are n
items. Each item has different values and weights in different
knapsacks. Then the value and weight vectors of items in
each knapsack can be denoted by (vj , j = 1, · · · , q) and
(bj , j = 1, · · · , q), respectively. The MKP policy (xj ∈
{0, 1}n, j = 1, · · · , q) is to let each knapsack to select a
subset of items, such that the total value of all knapsacks is
maximized under limited weight load of each knapsack. The
formulation os MKP is

max
x1,···,xq

vT1 x1 + · · ·+ vTq xq

s.t.



M1x1 + · · ·+Mqxq � a0

bT1 x1 ≤ w1

...
bTq xq ≤ wq
xj ∈ {0, 1}n, j = 1, · · · , q,

where vj and xj are n dimensional value column vectors,
Mj , j = 1, · · · , q are m0 × n coefficient matrices, and the
first set of inequalities denotes m0 coupling constraints. The
constraint bTj xj ≤ wj are mj dimensional block constraints,
where bj are n dimensional weight column vectors. Then such
problem can be viewed as a multidimensional 0-1 knapsack
problem with a block angular structure.

Back to problem (5), a simple optimization instance is in-
troduced. When the file placement and power allocation result
are given, (5) becomes a simple user association probelm.
Let (p̂j , j ∈ B) and (ŷjk, j ∈ B, k ∈ F) denote the file
placement and power allocation results. Specifically, when user
ui is connected to SBS bj , the related energy consumption and
end-to-end file delivery delay are êij = p̂j

∑
k∈F θikτ

k
ij and

d̂ij =
∑
k∈F θik(τkij+(1−ŷjk)wBHj ), respectively. According

to (1), for the given (p̂j , j ∈ B) the data rate rij and τkij are
fixed. Thus, êij is a fixed value. Besides, as file placement
policy (ŷjk, j ∈ B, k ∈ F) is known, according to (4), d̂ij
becomes a known end-to-end file delivery delay. Let cost
coefficient cij = êij + d̂ij to denote the sum of êij and
d̂ij . Base on the above analysis, we can rewrite our problem



(5) and obtain the below problem. To make the formulation
more explicit, we intend to maximize the negative value of
our problem.

max
X

−
∑
i∈U

∑
j∈B

(cijxij) (12)

s.t.


0 <

∑
i∈U p̂jxij ≤ Pmaxj , ∀j ∈ B∑

j∈B xij = 1,∀i ∈ U ,
xij ∈ {0, 1},∀i ∈ U , j ∈ B,

After comparing the problem (12) and the formulation of
MKP, it is apparent that (12) is equivalent to the original
instance of MKP. Therefore, the problem (12) is NP-Hard.

IV. PROBLEM SOLUTION

The problem (5) is difficult to be solved directly due to the
coupling relationship among file placement, user association
and power control. Then, we solve the problem in two stages,
i.e. caching stage and delivery stage, based on the observation
that caching is performed during off-peak time. At the caching
stage, a local popular file placement policy is proposed by
estimating user preference at each SBS. At the delivery stage,
with given caching status at SBSs, the MIP problem is further
decomposed by Benders’ decomposition method.

A. Local Popular File Placement Policy

File processing consists of two stages, i.e., file caching
and file delivery, which are implemented in different time
scales. Different from the file delivery phase including the
procedures of user association and power control, file caching
is determined at a much slower time-scale. In file caching
stage, based on the file popularity, files are often pre-fetched
from the file server and proactively cached at SBSs during
off-peak periods to alleviate traffic pressure on the backhaul
link [21]. In some researches [2] [22] [23], authors studied the
mixed-timescale problem: long-timescale file placement policy
and the short-term user association and wireless resource
allocation. However, in [23], each BS has to cache the same
files when they adopt the global file popularity-aware caching
polity, which ignores the difference of the file popularity
among small cells.

In this paper, compared with the short-term user association
and power control, the file placement policy is implemented
during a longer periods T such as some minutes or hours.
During T , the popularity distribution of the files and the user
preference for the files are fixed. For the convenience of this
research and to avoid considering the tumultuous changes
of the file popularity, the fixed file popularity of one T is
considered.

Based on the above analysis, we propose a local popular
file placement policy. With the goal of maximizing the cache
hit ratio, the local most popular files should be cached by each
SBS during off-peak time. At a SBS, the local file popularity
distribution can be obtained according to (2). Thus, the optimal
file placement problem can be solved independently for each

SBS. Considering SBS bj , we can convert the optimal file
placement problem to a knapsack problem, which is expressed
as follows.

max
yj

ψj =
∑
k∈F

ψjkyjk

s.t.
∑
k∈F

skyjk ≤ Cj , ∀j ∈ B

yjk ∈ {0, 1},

(13)

where the binary variable yjk denotes the caching decision
at bj . As the knapsack problem is NP-Hard, a heuristic
greedy algorithm for maximizing the caching hit probability
is proposed and described as Algorithm 1.

Algorithm 1: Greedy Algorithm for Maximum Caching
hit Probability
Input: F , B, ψjk,∀k ∈ F .
Output: ψ∗j , y

∗
j ,∀j ∈ B.

1 repeat
2 j = 1;
3 Sort F into F�j in descending order of ψjk

sk
;

4 Set g ←− 0, k ←− 1, and y�jk ←− 0, ∀k ∈ F ;
5 repeat
6 Let f

′

k be the k-th element of F�j ;
7 Set y�

jf
′
k

←− 1;

8 Update g ←− g + sk and k = k + 1;
9 until g > Cj and k > F ;

10 Calculate ψj by (13) using ψj ;
11 j = j + 1;
12 until j > B;

The algorithm requires B iterations. The complexity of each
iteration is O(Cj logCj).

B. Association and Power Solution

With the proposed popular file placement policy, the re-
maining problem (5) is reduced to a MILP problem but still
complicated with coupled user association and power control.
To solve the MILP problem, Benders’ decomposition is used
to partition it into two small problems and obtain a ε-optimal
solution by iterations.

1) Motivation: To reduce the complexity of the prob-
lem (5), wireless transmission delay τkij in (3) is re-
laxed to sk

Rk
. Then total wireless file transmission time∑U

i=1

∑B
j=1

∑F
k=1 θikτkxij becomes a constant D. This is

because that for user ui,
∑F
k=1 θik = 1 and

∑B
j=1 xij = 1

hold. Thus, the system load among SBSs can be controlled
by a load coefficient βj based on the capability of SBS
bj(j ∈ B). And the load of SBS bj is can be expressed as
Tj =D·βj = βj

∑B
i=1

∑F
k=1 θikτkxij .

With the above assumption and observation, given the
proposed local popular file placement policy, the problem (5)
becomes an MILP problem. However, user association and



power control is still coupled both in the objective function
and the constraints, which make the problem complicated
to be solved. Fortunately, based on the characteristics of
our problem, the Benders’ decomposition can be adopted to
decomposition it.

Benders’ decomposition is proposed for a class of MILP
problems [24] [25]. Instead of thinking about all variables of a
problem, it first consider the continuous part. Thus, the original
optimization problem is partitioned into two smaller problems:
a subproblem with only continuous variables and a master
problem with one continuous variable and multiple integer
variables. To be specific, when integer variables are fixed, the
resulting problem (subproblem) becomes a continuous linear
program (LP) problem which can be solved by the standard
duality theory of convex optimization. And then, the results
of the dual problem can be transferred to the master problem.

2) Subproblem: According to the Benders’ decomposition
method, after the (t − 1)th iteration, the energy consumption
problem is formulated as a subproblem:

min
p

∑
j∈B

ej (14)

s.t. 0 <
∑
j∈B

x
(t−1)
ij pj ≤ Pmaxj ,∀j ∈ B, (15)

gijpj + %−1(1− x(t−1)
ij )∑

l∈B,l 6=j
plgil + σ2

≥ γkθik, ∀i ∈ B, j ∈ U .

(16)

Given the user association strategy, the power constraint is
convex and hence will not change the nature of the for-
mulated problem. To satisfy the standard problem form in
Benders’ decomposition, we use a equivalent transformation
technique. A parameter % is introduced satisfying % =
min
i

1
γfi ((I−1)p̄ḡ+σ2) where p̄ = max

j
{Pmaxj } and ḡ =

max
i,j
{gij}. The introduction of % will not change the optimal

solution to the problem (5). For x∗ij = 1, the formulation forms
of (11) and (7) are equivalent. For x∗ij = 0, from (7) we can
deduce

gijpj + %−1∑
l 6=j gilpl + σ2

≥ ((I − 1)p̄ḡ + σ2)γfkθik∑
l 6=j gilpl + σ2

≥ γfi , (17)

No matter what p∗ij is, (17) always holds. In order to optimize
energy consumption, the objective will make p∗ij be 0. And
then based on the duality theory [26], we can get the dual

function of (14) as follows:

max
µ,ν

h(X(t−1),µ,ν)

s.t. h(X(t−1),µ,ν)

=
∑
j∈B

(−Pmaxj µj) +
∑
i∈U

∑
j∈B

(%−1(x
(t−1)
ij − 1) + σ2γfi)νij ,

ej + µj +
∑
i∈U

[−gijνij +
∑

l∈B,l 6=j

(γlθilgijνil)] ≥ 0,∀j ∈ B,

µ = [µj ] � 0, ∀j ∈ B,
ν = [νij ] � 0, ∀j ∈ B, i ∈ U .

(18)

The dual function (18) is an LP problem, so Interior Point
Method can be used to obtain the optimal solution [27].

3) Master Problem: In the remaining problem, we mainly
focus on end-to-end file delivery delay and low bound of
energy consumption denoted by η, both of them depend on
user association X .

min
η,X

αη + (1− α)
∑
i∈U

∑
j∈B

∑
k∈F

θikd
k
ijxij

s.t. h(X,µ(m)
p ,ν(m)

p ) ≤ η,∀m = 1, ...., k1,

h(X,µ(n)
q ,ν(n)

q ) ≤ 0,∀n = 1, ..., k2,

xij ∈ {0, 1},∀i ∈ U , j ∈ B,
B∑
j=1

xij = 1,∀i ∈ U ,

(19)

where in the optimal cut h(X,µ
(m)
p ,ν

(m)
p ) ≤ η, (µ

(m)
p ,ν

(m)
p )

is the optimal solution of the bounded problem (18). And
in the feasible cut h(X,µ

(n)
q ,ν

(n)
q ) ≤ 0 (µ

(n)
q ,ν

(n)
q ) is

the unbounded direction of the unbounded problem (18).
Both (µ

(m)
p ,ν

(m)
p ) and (µ

(n)
q ,ν

(n)
q ) form the constraint set

of the problem (19). At tth iteration, k1 and k2 must satisfy:
k1 + k2 = t.

4) Upper and Lower Bounds: The solutions of the problem
(18) and (19) at each iteration provide the upper and lower
bounds of the optimal values respectively. Proposition 2 as
follows: (UB and LB are denoted by Ψ

(t)
U and Ψ

(t)
L )

Proposition 2. At each iteration, the upper bounds Ψ
(t)
U and

lower bounds Ψ
(t)
L are updated as follows: Ψ

(t)
L =N (t), and

Ψ
(t)
U = min

0≤r≤t−1
{M (r) +ρ

∑
i

∑
j

∑
k θikd

k
ijx

(r)
ij }, where M (t)

and N (t) are the optimal values of (18) and (19) at the tth
iteration, respectively.

Proof. Lower Bound:
First, we consider how to calculate lower bound Ψ

(t)
L of

the original problem (5) at t-th iteration. The problem (18)
is a dual function of the linear function (14). According to
the strong duality of LP, we can say that the problem (5) is
equivalent to that in (20):



min
X,µ,ν

αh(X,µ,ν) + (1− α)
∑
i∈U

∑
j∈B

∑
k∈F

θikd
k
ijxij (20)

s.t. xij ∈ {0, 1},∀i ∈ U , j ∈ B, (21)
B∑
j=1

xij = 1,∀i ∈ U . (22)

Compared (19) and (20), the relaxing constraints in (19)
makes (19) is a relaxation of (20). At each iteration, a new
constraint is added to the problem (19). That is, the constraint
set in the problem (19) will be updated after each iteration.
According to the duality theory, this update of constraint set
makes (N (t) = αη(t) + (1 − α)

∑
i

∑
j θikd

k
ijx

(t)
ij ) become

lower bound of the optimal value in (20).
Then, N (t) is also the lower bound of the optimal values

α
∑
j p
∗
jτj + (1 − α)

∑
i

∑
j θikd

k
ijx
∗
ij , where (X∗,P ∗) is

assumed to be the optimal solution of the problem (5).
Therefore, the optimal value N (t) of (19) at t-th iteration

is a lower bound Ψ
(t)
U of problem (5).

Upper Bound:
We prove that min

0≤r≤t−1
{αM (r)+(1−α)

∑
i

∑
j θikd

k
ijx

(r)
(ij)}

is the upper bound of the problem (5) at the t-th iteration of .
As y(t−1) makes the problem (18) either bound or un-

bound, the optimal value M (r) of (18) will be either finite
or infinite, respectively. If M (r) is infinite, it is apparent that

min
0≤r≤t−1

{αM (r)+(1−α)
∑
i

∑
j

∑
k θikd

k
ijx

(r)
(ij)} is the upper

bound. If M (r) is finite, ω = arg min
0≤r≤t−1

{αM (r) + (1 −

α)
∑
i

∑
j θikd

k
ijx

(r)
(ij)}, where 0 ≤ ω ≤ t − 1. Correspond-

ingly, (X(ω),µ(ω),ν(ω)) and power p(ω) are the optimal so-
lution of h(X,µ,ν) and (14). According to the strong duality,

we have M (ω) = h(X(ω),µ(ω),ν(ω)) =
U∑
i=1

B∑
j=1

p
(ω)
j τj . If we

assume α
B∑
j=1

p(ω)τj + (1 − α)
U∑
i=1

B∑
j=1

θikd
k
ijx

(ω)
ij is less than

α
B∑
j=1

p(∗) + (1− α)
U∑
i=1

B∑
j=1

θikd
k
ijx
∗
ij , then (P (ω),X(ω)) will

be the optimal solution of the problem (5). It means after
ωth iteration Ψ

(t)
U < Ψ

(t)
L , which is contradictory. Hence,

min
0≤r≤t

{αM (r) + (1 − α)
∑
i

∑
j

∑
k θikd

k
ijx

(r)
ij } is the upper

bound Ψ
(t)
U of the problem (5).

5) Relaxed Master Problem (RMP): Considering the binary
nature of xij , which domains the computation complexity of
the problem (5), we decide to use a linear relaxation method.
Firstly, instead of xij ∈ {0, 1}, we make xij ∈ [0, 1] by
Proposition 3. Then we construct an equivalent formulation
with a penalty function by Proposition 4, which can reduce
the computation complexity of the problem (5).

In Proposition 3, the equivalence relationship between the
binary constraint and the linear relaxation is elaborated.

Proposition 3. Given the definitions

A := [0, 1]UB , (23a)

B :=

{
x ∈ RUB :

∑
i∈U

∑
j∈B

x2
ij −

∑
i∈U

∑
j∈B

xij < 0

}
, (23b)

the binary set {0, 1}UB is the difference of two convex sets A
and B, i.e., {0, 1}UB = A \B.

Proof. Obviously, we can get {0, 1}UB ⊂ A \ B. Besides,
xij ∈ {0, 1}UB is the result of

xij − x2
ij = 0, i = 1, ..., U ; j = 1, ..., B. (24)

Then, xij − x2
ij ≥ 0 holds for each xij ∈ A and∑U

i=1

∑B
j=1 xij −

∑U
i=1

∑B
j=1 x

2
ij ≤ 0 for xij /∈ B, so each

xij ∈ A \ B makes xij − x2
ij = 0. Therefore xij ∈ A \ B is

feasible to (24), i.e., A \B ⊂ {0, 1}UB .

Based on Proposition 3, (19) can be equivalently trans-
formed to (25). The detailed proof is given in Proposition
4.

Proposition 4. We can relax the binary set X in (19) to
[0, 1]UB and obtain an new objective function (25) which is
equivalent to (19) when λ� 1.

RMP:

min
η,X

αη + (1− α)
∑
i∈U

∑
j∈B

∑
k∈F

θikd
k
ijxij

+ λ

U∑
i=1

B∑
j=1

(xij − x2
ij)

s.t. h(X,µ(m)
p ,ν(m)

p ) ≤ η,∀m = 1, ..., t1,

h(X,µ(n)
q ,ν(n)

q ) ≤ 0,∀n = 1, ..., t2,

xij ∈ [0, 1],∀i ∈ U, j ∈ B,∑
ij

xij = 1,∀j ∈ B,

(25)

where λ is a constant penalty factor. The large parameter λ
makes the relaxed X be as binary as possible.

Proof. See Appendix.

Based on Proposition 4, when an appropriate value is chosen
for λ, the problem (19) is equivalent to the problem (25) in
the sense that they share the same optimal values as well as
optimal solution. The RMP is a minimization of a concave
quadratic function which can be solved by the method in [28].

C. Algorithm

In order to get an ε-optimal value, we propose a user as-
sociation and power control (UCWT) algorithm in Algorithm
2.

1) Analysis of the Convergency: The UCWT algorithm uses
the gap between Ψ

(t)
U and Ψ

(t)
L as the termination criterion. In

particular, if the gap is equal to zero the exact global optimal
solution to the problem (5) . If the gap is equal to ε, an ε-
optimal value is obtained. The following theorem proves the
convergence of the proposed algorithm.

Theorem 1. After a finite number of iterations, the proposed
UCWT algorithm converges to a global optimal value of (5).



Algorithm 2: User assoCiation and poWer conTrol
(UCWT) Algorithm for Energy-Delay Tradeoff

Input: Pmax, γ, θ
Output: P ∗, X∗

1 Initialization: Let X(0) = 0, Ψ
(0)
L = −∞, Ψ

(0)
U =

+∞, t = 1, m = 1, n = 1;
2 repeat
3 Subproblem:
4 Solve (µ(t),ν(t)) = arg max

(µ,ν)
h(X(t−1),µ,ν) in (18)

with Interior Point Method;
5 if (18) is bounded then
6 Get extreme point: (µ

(m)
p ,ν

(m)
p ) = (µ(t),ν(t));

7 else
8 Get extreme ray: (µ(n)

q ,ν
(n)
q ) = (µ(t),ν(t));

9 end
10 Calculate upper bound Ψ

(t)
U with

ω = arg min
0≤r≤t−1

{αM (r) +(1−α)
∑
i

∑
j

θikd
k
ijx

(r)
ij };

11 RMP:
12 Add a constraint: h(X,µ

(m)
p ,ν

(m)
p ) ≤ η or

h(X,µ
(n)
q ,ν

(n)
q ) ≤ 0 to (25);

13 Solve (25) to obtain X(t);
14 Calculate lower bound with the method in [28]:

Ψ
(t)
L = αη(t) +(1−α)

∑U
i=1

∑B
j=1

∑F
k=1 θikd

k
ijx

(t)
ij ;

15 t = t+ 1, n = n+ 1,m = m+ 1;
16 until Ψ

(t−1)
U − Ψ

(t−1)
L ≤ ε;

17 Get optimal solution P ∗ through solving the dual
problem of (18) with X(ω). Let optimal solution
X∗ = X(ω).

Proof. After each iteration, the constraint set of the prob-
lem (25) is updated by adding h(X,µ

(m)
p ,ν

(m)
p ) ≤ η or

h(X,µ
(n)
q ,ν

(n)
q ) ≤ 0, where (µ(m),ν(n)) or (µ(n),ν(n)) is

one feasible solution of the subproblem (18). According the
linear programming theory, the solution set of the problem (18)
is a finite number of the extreme points or extreme rays which
determine the total iteration number. After finite iterations, the
constraint set of the subproblem (18) is completed by adding
the total extreme points or extreme rays of (18). This implies
that optimal user association (X∗) can be obtained by (19). As
Ψ

(t)
L is increasing after each iteration t, the ΨL will arrive at

the optimal value of problem (5). For Ψ
(t)
U is also decreasing

after each iteration t, Ψ
(t)
U finally satisfies the optimal value of

(5) with the optimal solution (X∗) and (P ∗) solved by (18).
At last, the gap of Ψ

(t)
L and Ψ

(t)
U is shrunk to 0 within a finite

number of iterations.

2) Analysis of the Complexity: For the subproblem (18), it
is an LP problem and Interior Point Method has been proposed
as an efficient method in [27]. Here, Interior Point Method
needs be executed O(U2B2) times and at each time the
complexity is O(U2B). So the toatl complexity of subproblem
is O(U4B3).

TABLE II: SIMULATION SETTING

Symbol Description
Small cell radius 40m

Maximal transmit power of each SBS 23dBm
Number of subchannels 16
Subchannel bandwidth 200KHz
Thermal noise density -174dBm/Hz

Number of files 600
Size of file 0.5MB to 50MB

For the RMP (25), it is a concave quadratic function which
can be solved by the method in [28]. It needs t2 iterations and
each iteration complexity is O(U2B). So the toatl complexity
of RMP is O(t2U2B).

According to Theorem 1, the total number of iterations
in UCWT, relate to the finite number of extreme points or
extreme rays in subproblem (18), is determined by the scale
of the problem, i.e., total user number U and total SBS number
B. Thus, the total iterations in UCWT will be varied under
different value of U and B. In our simulations, UCWT usually
obtains a ε−optimal value after tens of iterations.

V. PERFORMANCE EVALUATION

Extensive simulations are carried out to validate our work.
The results demonstrate the convergency of the proposed
algorithm. Moreover, with the proposed algorithm, the desired
energy-delay tradeoff can be obtained under various scenarios
in cache-enabled DSCNs.

A. Simulation Settings

In the simulations, we study a cache-enabled DSCN con-
sisting of 25 small cells in a 250m-by-250m square area.
We assume that SBSs are uniformly distributed over a two-
dimensional network layout and each SBS is located at the
center of its serving cell. Users are randomly generated and de-
ployed according to the uniform distribution. The radius of the
central area is 25 meters [29]. We consider a distance depen-
dent path loss model and the loss factor from SBS bj to user ui
is given as d(−κ)

ij (2 ≤ κ ≤ 5). The physical layer parameters
are based on the 3GPP evaluation methodology document [30].
We use a file library of 600 files, the size of which follows
the uniform distribution between [0.5, 50](MB). The SINR
requirement of each file is set between 1.5 and 5, which can
be converted to rate requirement according to (11). We assume
that the probability that each user generates a request is equal,
namely p(ui) = 1

|Φj | . Therefore, Eq. (2) can be rewritten as:
ψjk =

∑
i∈Φj

1
|Φj |ρik, where |Φj | is the cardinality of the

set Φj . The penalty parameter λ for the proposed algorithm
is set to (10Pmax +

∑B
i=1

∑F
k=1 θikτk +

∑B
j=1 w

BH
j ), such

that the value of the penalty term λ
∑U
i=1

∑B
j=1(xij − x2

ij)is
comparable to the value of (19) [31]. Given that each SBS
has the same maximal transmission power, load coefficient
βj defined in Section III-A is set to be 1/B. Some major
parameters are configured in Table II.

In Algorithm 1, each user preference follows normal distri-
bution with different mean value (1∼600) and variances over



the total files, which is implemented at the beginning of the
simulation. For each SBS, the radius of the center area is set
as 25m. The central user requests for file fk at SBS bj must

satisfy :
∑

i∈Φj
θik

|Φj | = ψjk.

B. Convergence Analysis of UCWT
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Fig. 2: Upper and the lower bounds when performing UCWT

In order to verify the convergency of the proposed UCWT
algorithm, the number of iterations for an optimal value is
plotted in Fig. 2. The cache capacity of each SBS follows a
normal distribution with mean value(15 files) and the number
of users is 150. Total user requests for files in central area of bj
follows the distribution ψjk,∀k ∈ F . From Fig. 2, the upper
bound and lower bound become closer with increasing the
number of iterations. Through limited number of iterations, the
gap between UB and LB converges to a given ε. We observe
that, if the number of users is not very large, UCWT can
converge to an ε-optimal value after tens of iterations, which
is due to the fact that the number of the extreme points or rays
is limited in this case.

C. Energy-delay Tradeoff by Adjusting α
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Fig. 3: (a) energy consumption and (b) end-to-end file delivery
delay comparison under different number of users by varying
α

We investigate the tradeoff characteristics between energy
consumption and end-to-end file delivery delay by varying α.
Fig. 3 shows the energy-delay tradeoff curves by adjusting
α from 0 to 1 given average capacity 15(number of files).
We can see that, when the number of users is given, as the
α is increasing, energy consumption is in a decreasing trend
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Fig. 4: (a) energy consumption and (b) end-to-end file delivery
delay comparison under different average cache capacities by
varying α

(Fig. 3(a)) and end-to-end file delivery delay in a increasing
trend (Fig. 3(b)). This is because when α increases, more users
are forced to associate with the nearer SBSs regardless of
their file requests. Thus lower energy consumption is achieved.
Besides, by increasing energy consumption by 20%, end-to-
end file delivery delay can be reduced by an average 10% with
an proper α.

Fig. 4 shows the same tradeoff characteristics between
energy consumption and end-to-end file delivery delay under
different cache capacities given the number of user 150. Note
that, when the average cache capacity is large enough, energy
consumption and end-to-end file delivery delay are very small
and change a little with various α. This is due to the fact that
most of the required files can be cached in the nearest SBSs,
which saves a lot energy and delay.

D. Effects of Caching Strategies
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Fig. 5: (a) energy consumption and (b) end-to-end file delivery
delay comparison of caching strategies under different average
cache capacities

We compare the proposed local popular file placement
policy (LPF) with the following caching policies:
• Global Popularity Caching (GPC): It is assumed that

the file popularity in DSCNs follows a global popularity
distribution. That’s to say, all SBSs will cache the global
popular files and content in their cache is the same
without consideration of cache capacity.

• Random Caching (RC): Each SBS randomly chooses the
files to cache regardless of the file popularity distribution.



In Fig. 5, we compare the performance of different caching
policies under different average cache capacities at SBSs. The
number of user is 150 and α is 0.5. As the average cache
capacity increases, LPF achieves the best performance among
all three policies. This is due to the fact that the file popularity
distribution in different small cells may be different from each
other, and the global file popularity distribution does not reflect
local file popularity. In detail, for example, in Fig. 5(a) when
the average cache capacity measured in the number of files
is beyond 50, the energy consumption value obtained by LPF
will not decrease. The reason is that each SBS has enough
storage to cache all files requested by its local users. But for
GPC, each SBS needs much more storage to cache all global
popular files (about 350) to satisfy all requests from the local
users.

E. Performance Comparison
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Fig. 6: (a) energy consumption and (b) end-to-end file delivery
delay comparison under different numbers of user
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Fig. 7: (a) energy consumption and (b) end-to-end file delivery
delay comparison under different cache capacities

To demonstrate the advantages of the proposed energy-delay
tradeoff strategy in cache-enabled DSCNs, we refer to the
delay-optimal and energy-minimum algorithm under different
numbers of users and cache capacities.

• Delay-Optimal Algorithm (DOA): In order to minimize
end-to-end file delivery delay, a user will only associate
with the SBS caching the requested file from its SBS
neighbourhood [2]. This procedure will repeat until no
more delay increases.

• Energy-Minimum Algorithm (EMA): In the system model,
each user is associated with the closest SBS, and the SBS
chooses the most local popular contents in its cache [8].

In Fig. 6, we compare the three algorithms in terms of
energy consumption and end-to-end file delivery delay by
varying the number of users. The average capacity is 15.
In Fig. 6(a), as expected, EMA consumes least energy. The
proposed UCWT algorithm consumes more energy than EMA,
but always less than DOA. In Fig. 6(b), as expected, DOA
achieve minimum end-to-end file delivery delay. UCWT re-
sults in higher end-to-end file delivery delay than DOA, but
always lower than EMA. This is due to the fact that EMA
focuses on energy consumption minimization, which sacrifices
end-to-end file delivery delay. It is opposite for DOA that
focuses on optimizing delay. We can also see that UCWT
can obtain a balance between energy consumption and end-
to-end file delivery delay by adjusting tradeoff parameter α.
For example, when α is smaller, lower end-to-end file delivery
delay is achieved while more energy is consumed.

In Fig. 7, we compare the three algorithms in terms of en-
ergy consumption and end-to-end file delivery delay by chang-
ing the average cache capacity. The number of user is 150. In
Fig. 7(a), the energy consumption value obtained by EMA is
almost constant over different average cache capacities. The
reason is that users only associate with nearest SBSs without
consideration of cached files at SBSs. In Fig. 7(b), compared
with EMA and UCWT, DOA achieves minimum end-to-end
file delivery delay. From Fig. 7(a) and Fig. 7(b), when the
average cache capacity is large enough, both minimum end-
to-end file delivery delay and energy consumption are achieved
by the three algorithms. This is due to the fact that all users
can get required files from their local nearest SBSs.

VI. CONCLUSION

In this paper, we study energy consumption and end-to-end
file delivery delay tradeoff problem in cache-enabled DSCNs,
where file caching, user association and power control are
jointly considered. To solve the problem, firstly, a local popular
file placement policy is proposed to maximize the caching hit
probability at SBSs. With the proposed file placement policy,
the tradeoff problem is further decomposed with Benders’ de-
composition method. Extension simulations show the proposed
algorithms can obtain the desired energy-delay tradeoff under
various scenarios.

In the future, we will extend our work to the mobility envi-
ronments. Furthermore, machine learning based mechanisms
will be considered to estimate the file popularity distribution
at SBSs.



APPENDIX A
PROOF OF THE PROPOSITION 4

Based on the definition in (24), objective (19) can be
equivalently transformed to

min
η,X

αη + (1− α)

U∑
i=1

B∑
j=1

F∑
k=1

θikd
k
ijxij ,

s.t. xij ∈ [0, 1],∀i ∈ U,∀j ∈ B,
U∑
i=1

B∑
j=1

xij − x2
ij ≤ 0,

remaining constraints is the same as in (19).

(26)

The Lagrangian function of (26) with only one Lagrangian
multiplier λ ≥ 0 (which leads to (25))is

L(η,X, λ) : = αη + (1− α)

U∑
i=1

B∑
j=1

F∑
k=1

θikd
k
ijxij

+ λ

U∑
i=1

B∑
j=1

(xij − x2
ij)

(27)

The optimization problem (19) can be expressed by
min
(η,X)

max
λ≥0
L(η,X, λ) (29). According to the duality theory

in [26]. So

sup
λ

φ(λ) = sup
λ

min
(η,X)

L(η,X, λ), (28)

≤ min
η,X

max
λ
L(η,X, λ), (29)

= min(19),

where φ(λ) = min
(η,X)

L(η,X, λ) and φ(λ) is function over

λ. When
∑U
i=1

∑B
j=1 xij −

∑U
i=1

∑B
j=1 x

2
ij ≥ 0 for xij ∈

[0, 1],∀i, j, L(η,x, λ) is monotonically increasing over λ for
∀X ∈ A,∀η, then φ(λ) is increasing in λ and bounded by
the optimal value of (19). Let the optimal solution for (28)
is denoted by λ∗, η∗ and X∗, where λ∗ ∈ (0,+∞). Then,
the following two cases should be analyzed for the optimal
solution of (28).
• The first case is when

∑U
i=1

∑B
j=1 x

(∗)
ij −∑U

i=1

∑B
j=1(x

(∗)
ij )2 = 0. At this time, η∗ and X∗

are still feasible to (19). Then, when η = η∗ and
X = X∗, we have

φ(λ∗) = L(η∗,X∗, λ∗)

= αη∗ + (1− α)

U∑
i=1

B∑
j=1

F∑
k=1

θikd
k
ijx
∗
ij

≥ min(19),

(30)

Look back at (28) and (30), such following equation
holds:

sup
λ

min
(η,X)

L(η,X, λ) = min
η,X

max
λ
L(η,X, λ),

when
∑U
i=1

∑B
j=1 xij −

∑U
i=1

∑B
j=1(xij)

2 = 0.

As φ(λ) is monotonically increasing function over λ.
Then

φ(λ) = min(19),∀λ ≥ λ∗ (31)

Namely, (25) and (19) share the same optimal solutions
and value, where

∑U
i=1

∑B
j=1 xij−

∑U
i=1

∑B
j=1(xij)

2 =

0. Thus, proposition (4) holds for
∑U
i=1

∑B
j=1 xij −∑U

i=1

∑B
j=1(xij)

2 = 0.
• The second case is that we assume

∑U
i=1

∑B
j=1 xij −∑U

i=1

∑B
j=1(xij)

2 > 0, λ > 0 for optimizing (28).
Due the monotonicity of function φ(λ) over λ, max

λ≥0
φ(λ)

tends to +∞ with λ→+∞. Such result contradicts the
conclusion that (28) is less than the optimal value of
(19) in expression (29). Thus, there exists x̂ij satisfying∑U
i=1

∑B
j=1 x̂ij −

∑U
i=1

∑B
j=1(x̂ij)

2 = 0 with λ→+∞.

Based on the above analysis, we can conclude that when
an appropriate value is chosen for λ, the problem (19) is
equivalent to the problem (25) in the sense that they share
the same optimal value as well as optimal solution.
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