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Abstract—The emerging orthogonal time frequency space
(OTFS) modulation technique has shown its superiority to the cur-
rent orthogonal frequency division multiplexing (OFDM) scheme,
in terms of its capabilities of exploiting full time-frequency diversity
and coping with channel dynamics. The optimal maximum a
posteriori (MAP) detection is capable of eliminating the negative
impacts of the inter-symbol interference in the delay-Doppler (DD)
domain at the expense of a prohibitively high complexity. To reduce
the receiver complexity for OTFS scheme, this paper proposes
a variational Bayes (VB) approach as an approximation of the
optimal MAP detection. Compared to the widely used message
passing algorithm, we prove that the proposed iterative algorithm is
guaranteed to converge to the global optimum of the approximated
MAP detector regardless the resulting factor graph is loopy or not.
Simulation results validate the fast convergence of the proposed VB
receiver and also show its promising performance gain compared
to the conventional message passing algorithm.

Index Terms—Orthogonal time frequency space, receiver design,
variational Bayes, low complexity

I. INTRODUCTION

Future wireless communication applications require reliable

data transmission in high mobility environments, such as vehic-

ular networks and high speed railway [1]. When facing a fast

time-varying channel, the widely adopted orthogonal frequency

division multiplexing (OFDM) modulation in currently cellular

networks suffers from a dramatic performance degradation due

to the inter-carrier interference imposed by Doppler shift [2].

Recently, a newly developed modulation scheme, namely, or-

thogonal time frequency space (OTFS) has attracted significant

attention since it is robust in doubly selective channels [3]. The

basic model of OTFS modulation/demodulation was devised in

[4]. In [5] and [6], the discrete time formulation of OTFS is

developed and it was shown that OTFS can be implemented via

appending a pre- and post-processing to conventional OFDM

schemes. In particular, OTFS modulator multiplexes information

symbols in the delay-Doppler (DD) domain. Based on a two-

dimensional inverse symplectic finite Fourier transform (ISFFT),

each symbol in the DD domain is spread over all lattices

in the time-frequency (TF) domain. Consequently, full time

and frequency diversity can be realized and exploited, which

leads to a further performance gain compared to conventional

OFDM schemes in time-varying channels [7]. Moreover, when

the number of reflectors/scatters is limited during propagation,

employing DD domain data multiplexing provides a sparse

channel representation, enabling a better channel estimation

performance and a low-complexity detector.

In practice, the time and frequency diversity can be fully

exploited with the optimal maximum a posteriori (MAP) de-
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tection. Yet, the complexity of the MAP detection increases

exponentially with the block size of each OTFS frame. As a

compromise approach, based on the factor graph and message

passing framework [8], the authors in [9] developed a low-

complexity receiver applying Gaussian approximation to cap-

ture the impact of the inter-symbol interference. Nevertheless,

message passing (MP) receivers will converge to a locally

optimal point in a loopy factor graph, which is very likely to

happen for OTFS in a multipath scenario [10]. Therefore, it is

highly desirable to develop a low-complexity receiver with fast

convergence for OTFS systems.

Motivated by the aforementioned discussions, in this paper,

a low-complexity detector for OTFS systems is designed. We

commence from the optimal MAP detection and derive an ap-

proximation of the a posteriori distribution exploiting Kullback-

Leibler (KL) divergence to reduce the detection complexity.

Then, a variational Bayes (VB) approach is used to maximize

the evidence lower bound (ELBO) iteratively, which yields a

marginal distribution for each symbol and thus results in a

low-complexity point-wise MAP detection. Compared to the

conventional MP receivers, the advantages of the proposed

variational Bayes approach are two-fold. Firstly, by choosing

the distribution family for the VB method appropriately, the

ELBO maximization problem is strictly convex such that the

globally optimal solution can be obtained efficiently, leading to

a convergence guaranteed receiver. Secondly, the VB approach

only requires a substantially lower complexity than that of

the message passing algorithms. Furthermore, we demonstrate

the rapid convergence and the better detection performance

compared to MP receivers through simulations, particularly in

a practical multipath propagation environment.

Notations: We use a boldface lowercase letter and boldface

capital letter to denote a vector and a matrix, respectively. The

superscript T, ∗, and H denote the transpose, conjugate, and the

Hermittian operations, respectively; ∝ represents both sides of

the equation are multiplicatively connected to a constant; | · |
denotes the modulus of a complex number or the cardinality of

a set; [·]N denotes the modulo operation with divisor N ; ‖ · ‖
denotes the ℓ2 norm; R{x} denotes the real part of complex

number x; Ep[x] denotes the expectation of x with respect to

distribution p; ∂ denotes the partial derivative operator; the big-

O notation O is an asymptotic notation describes the order of

complexity. The circularly symmetric complex Gaussian distri-

bution with mean µ and variance σ2 is denoted by CN (µ, σ2).

II. SYSTEM MODEL

The OTFS modulation and demodulation are realized by

employing two dimensional pre- and post-processing. We focus

on a point-to-point scenario. In particular, the transmitted coded

bits c are mapped to data symbols dk,l ∈ χ in the DD
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domain with constellation set χ, where k ∈ [0, N − 1] and

l ∈ [0,M − 1] denotes the index of Doppler shift and delay,

respectively. Integers N and M denote the numbers of available

time slots and subcarriers, respectively. The symbols {dk,l}
are transformed to time-frequency (TF) domain symbols Xn,m

through ISFFT, given by [4]

X = FH
NDFM , (1)

where X and D are matrices with elements Xn,m and dk,l and

FN denotes the normalized discrete Fourier transform (DFT)

matrix of dimension N . Then, the TF domain symbols X are

converted to a continuous transmitted signal s(t), expressed as

s(t) =

M−1∑

m=0

N−1∑

n=0

Xn,me
j2πm∆f (t−nT )gtx(t− nT ), (2)

where ∆f is subcarrier spacing and T = 1
∆f

is the symbol

duration. The above equation can be viewed as a two-step

process that first transforms the TF domain symbols to time

domain symbols and then shapes the pulse with function gtx(t).
For a linear time-variant channel, the received signal can be

expressed as

r (t) =

∫ ∫

h (τ, ν)ej2πν(t−τ)s (t− τ) dτdν + n(t), (3)

where the channel impulse response in the DD domain with P
resolvable paths is given by [4]

h (τ, ν) =

P∑

i=1

hiδ(τ − τi)δ(ν − νi), (4)

where τi and νi denote the delay and Doppler shift associated

with the ith path.

At the receiver side, we adopt g∗rx(t) as the receiving filter and

transform the received signal to the TF domain via performing

DFT. By sampling at t = nT and f = m∆f , the received

samples Yn,m is given by

Yn,m =

∫

r (t) g∗rx (t− nT ) e−j2πm∆f(t−nT )dt. (5)

According to [4], invoking ideal shaping and receiving pulses

gtx(t) and gtx(t) can simplify the TF domain input-output

relationship as

Yn,m = Hn,mXn,m +Wn,m, (6)

where Hn,m is the equivalent channel in the TF domain and

Wn,m ∼ CN (0, σ2) is the additive white Gaussian noise with a

noise power of σ2. Finally, we arrive at the DD domain received

sample yk,l by employing the symplectic finite Fourier transform

(SFFT), formulating as

yk,l =
∑N−1

k′=0

∑M−1

l′=0
dk′,l′hk,l [k

′, l′] + wk,l, (7)

where

hk,l [k
′, l′] =

P∑

i=1

hiw [k−k′−kνi , l−l
′−lτi] e

−j2π
kνi

lτi
NM (8)

and w [k, l] =
1

NM

N−1∑

n=0

M−1∑

m=0

e−j2πnT k
NT ej2πm∆f l

M∆f , (9)

where kνi and lτi denote the Doppler frequency shift index and

the delay index associated with the ith path, respectively, i.e.,

νi =
kνi

NT
and τi =

lτi
M∆f

.

III. RECEIVER DESIGN

A. Variational Bayes Approach

To facilitate the presentation of the proposed variational

Bayes approach, we stack the transmitted symbols and equiva-

lent channels into vectors yileding the following compact form

of (7):

yk,l = hT
k,ld+ wk,l, (10)

where d and hk,l denotes the data symbol vector and equivalent

channel vector, respectively, whose the (k′M + l′)th entry is

dk′,l′ and hk,l[k
′, l′]. As shown in Sec. IV. B of [11], using both

ideal pulse and practical rectangular pulse provides the same

input-output relationship form as in (10) by slightly changing

the equivalent channels. Therefore, it is worth to note that the

proposed detection in this work is applicable to both cases.

Furthermore, by stacking yk,l into a vector y, the optimal MAP

detection can be formulated as:

d̂ = argmax
d∈χ

p(d|y). (11)

Solving the optimization problem in (11) requires a computa-

tional complexity order of |χ|NM , which increases exponen-

tially with the size of d. As a compromise approach, we focus

on the variational Bayes method to handle (11) in the sequel.

Specifically, the idea behind variational Bayes aims for finding

a distribution q(d) from a tractable distribution family Q as an

optimized approximation of the a posteriori distribution p(d|y).
The approximation q(d) can be obtained by minimizing the

Kullback-Leibler divergence [12] D(q||p), i.e.,

q∗(d) = argmin
q∈Q

D(q||p)

= argmax
q∈Q

Eq [− ln q(d) + ln p(d|y)]
︸ ︷︷ ︸

L

, (12)

where the expectation is taken over d according to the proba-

bility density function q(d). The functional L on the right-hand

side of (12) is referred to as the evidence lower bound (ELBO),

which characterizes the difference of the distribution of latent

variables and the distribution of respective observed variables

[13]. Obviously, the family Q manages the complexity of the

optimization problem in (12). In the sequel, we consider a family

Q that all variables in q(d) are mutually independent, satisfying

q(d) =
∏

k,l qk,l(dk,l), also known as mean filed approximation.

Consequently, each latent variable dk,l is characterized by its

own variational factor qk,l(dk,l).
With the mean field approximation, q(d) can be determined

iteratively by maximizing the ELBO. Since the noise samples

wk,l and data symbols dk,l in the DD domain, ∀k, l, are

independent, p(d|y) can be rewritten as

p(d|y) =
∏

k,l

p(dk,l)p(yk,l|d). (13)

Since SFFT is an orthogonal transformation that does not

change the statistics of noise samples, wk,l is still Gaussian

distributed with zero mean and variance σ2, leading to a Gaus-

sian likelihood function p(yk,l|d). After some straightforward

manipulations, we can rewrite p(d|y) in a pairwise form, i.e.,

p(d|y) ∝
∏

k,l

ζk,l(dk,l)
∏

k,l

ψk,l(dk,l, dk′,l′), (14)
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where

ζk,l(dk,l) = p(dk,l) exp

(

−
ρk,l|dk,l|2 + ǫk,ldk,l

σ2

)

(15)

and ψk,l(dk,l, dk′,l′) = exp

(

−
̺k,l,k′,l′dk,ldk′,l′

σ2

)

, (16)

with ρk,l =
∑

k′,l′ |hk′,l′ [k, l]|2, ǫk,l = 2
∑

k′,l′ R{hk′,l′ [k, l] ·
yk′.l′}, and ̺k,l,k′,l′ = 2R{hk,l[k, l]h∗k,l[k

′, l′]}. Having p(d|y)
in hand, we substitute (14) and q(d) into L which yields

L = Eq




∑

k,l

lnψk,l(dk,l, dk′,l′)−
∑

k,l

ln
qk,l(dk,l)

ζk,l(dk,l)





= Eq

[

−

∑

k,l ̺k,l,k′,l′dk,ldk′,l′

σ2
−
∑

k,l

ln
qk,l(dk,l)

ζk,l(dk,l)

]

. (17)

Next, we aim for finding a stationary point of the variational L,

which is given by the solution of ∂L/∂q(d) = 0. According to

Euler-Lagrange equation [14], this requires the partial deriva-

tives of L with respect to all local functions qk,l(dk,l), ∀k, l,
being zero. To this end, we propose a simple iterative algorithm

to update each local function. Let us take the latent variable

dk,l in the iter-th iteration as an example to state the proposed

algorithm. Given the obtained local functions in the (iter− 1)-
th iteration qiter−1

k′,l′ (dk′,l′), ∀{k′, l′} 6= {k, l}, setting the partial

derivative ∂L/∂qk,l(dk,l) to zero leads to

Eq\k,l



−
1

σ2

∑

k′,l′

̺k,l,k′,l′dk,ldk′,l′





+ ln ζk,l(dk,l)− ln qiterk,l (dk,l) + C = 0, (18)

where q\{k, l} =
∏

{k′,l′}6={k,l} q
iter−1
k′,l′ (dk,l) and C denotes a

constant. Then, solving (18) for qk,l(dk,l) results in the local

distribution, expressed as

qiterk,l (dk,l)∝ζk,l(dk,l)exp



Eq\{k,l}



−
1

σ2

∑

k′,l′

̺k,l,k′,l′dk,ldk′,l′









∝p(dk,l) exp

(

−
ρk,l|dk,l|2 −mk,ldk,l

σ2

)

, (19)

where mk,l = ǫk,l −
∑

{k′,l′}6={k,l} ̺k,l,k′,l′Eq
iter−1

k′ ,l′
[dk′,l′ ]. In a

similar way, we repeat the above procedure to approximate a

posteriori distributions for all the data symbols iteratively, re-

sulting in the approximate marginals q∗k,l(dk,l), ∀k, l. Then, the

sophisticated MAP detection in (11) is simplified to a problem

of finding the maximum of marginal distribution q∗k,l(dk,l), i.e.,

d̂k,l = arg max
dk,l∈χ

q∗k,l(dk,l). (20)

It is easy to see that the complexity of the detection is reduced

to the order of |χ|NM , which is significantly lower than that

of the conventional MAP detection.

B. Comparison with MP Receiver

It is well known that the MP receiver converges to local

optimum if the factor graph has loops, especially in a rich-

scattering environments. Actually, even when the number of

paths is as small as 2, there may exist a large number of girth-4

loops. However, for the proposed variational Bayes approach,

it can be observed that the second order partial derivative of L
with respect to qk,l(dk,l), ∀k, l, is

∂2L

∂qk,l(dk,l)2
= −

1

qk,l(dk,l)
≤ 0, (21)

while ∂2L
∂qk,l(dk,l)∂qk′,l′ (dk,l)

= 0. Hence, the Hessian matrix of

the ELBO is diagonal with the (kM + l)th diagonal entry

being − 1
qk,l(dk,l)

. This observation indicates that L is a concave

functional and its local maximum is the global one. Therefore,

iteratively updating each local distribution qk,l(dk,l) according

to (19) is guaranteed to converge to an optimal approximate

distribution q∗(d) that maximizes the ELBO.

Moreover, in terms of computational complexity, both the MP

receiver and the proposed detector achieve a linear complexity

with the number of symbols. Nevertheless, we can observe from

(19) that the update of qk,l(dk,l) depends on the marginal means

of all the other symbols, which implies that the marginal means

need to be calculated only once in a single iteration. Therefore,

for a time-varying channel consisting of P propagation paths,

the total complexity of the proposed algorithm is O(|χ|NMP ).
On the contrary, for the MP receivers, the messages have to be

calculated individually for different connected factor vertices,

leading to a computational complexity of O(|χ|NMP 2).
To sum up, the proposed variational Bayes approach is

attractive in rich-scattering environments, owing to its low-

complexity and guaranteed convergence feature.

IV. NUMERICAL RESULTS

This section illustrates the numerical results via Monte Carlo

simulations. All simulation results are averaged from 2 × 104

OTFS frames and for each OTFS frame, we set M = 512
and N = 128 indicating that there are 128 time slots and 512

subcarriers in the TF domain. The carrier frequency is 4 GHz

and the subcarrier spacing is 15 kHz. Quadrature phase shift

keying (QPSK) modulation is utilized for symbol mapping. The

speed of the mobile user is set to be v = 120 km/h, leading

to a maximum Doppler frequency shift index kνmax
= 4. We

assume that the channel information is perfectly known at the

receiver and the maximum delay index is lτmax
= 10. The

Doppler index of the ith path is drawn with equal probabilities

from the set [−kνmax
, kνmax

] and the delay index belongs to

[1, lτmax
] excluding the first path which always satisfies lτ1 = 0.

The channel coefficients hi are generated according to the

distribution hi ∼ CN (0, qlτi ), where the normalized power

delay profile qlτi =
exp(−0.1lτi )∑
i
exp(−0.1lτi )

. The number of iterations

is set to 10.

We compare the bit error rate (BER) performance versus

Es/σ
2 corresponding to the proposed variational Bayes (VB)

method and the conventional MP for OTFS modulation over

delay-Doppler channels in Fig. 1, where Es denotes the symbol

energy. Two scenarios with P = 4 and P = 9 paths are

considered. It is observed that in the 4-path scenario, the

proposed algorithm and the MP method have virtually the

same performance. When P = 9, the performance of the

proposed VB method is significantly better than that of the

MP receiver. This is because in the P = 9 scenario, the MP

receiver converges to a local optimum due to the large amount of
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Fig. 1. Impact of number of paths on the BER performance.

girth-4 loops. Moreover, the performance improvement brought

by our proposed VB detector is magnified by the increasing

number of paths, compared to the MP receiver. In fact, due

to its convergence-guaranteed property, the proposed receiver

can exploit the TF diversity gain more efficiently offered by

OTFS modulation than that of the MP receiver. As a benchmark

algorithm, the performance for the MAP detector with 4 paths

is illustrated1. We can observe that the proposed VB-based

receiver approaches the performance of the MAP detector while

the complexity is significantly reduced.

To illustrate the convergence behaviors, we plot the BER

performance of the proposed VB method and the MP method

versus the number of iterations in Fig. 2, where Es/σ
2 is set

to 15 dB. Again, two scenarios with different number of paths

are included. We see that increasing the number of iterations

leads to a better performance for both algorithms. Moreover,

benefiting from the convexity of the ELBO, the proposed VB

algorithm converges much faster than the MP receiver in the

4-path scenario even they converge to almost the same BER.

On the other hand, for the 9-path scenario, the proposed VB

algorithm can converge faster and achieve a better detection

performance compared to that of the MP receiver. Thus, the

proposed VB method is very attractive in OTFS systems,

especially when the number of paths is large.

V. CONCLUSIONS

This paper proposed a variational Bayes-based receiver for

the promising OTFS modulation technology. To reduce the com-

plexity of the conventional MAP receiver, we approximate the

joint a posteriori distribution by the product of local marginals

via maximizing the ELBO. By choosing a distribution family for

the VB method appropriately, the ELBO is convexified which

guarantees the convergence of the proposed variational Bayes

approach. We further analyzed the complexity of the proposed

algorithm and showed that it is lower than that of both MAP and

MP receiver. Simulation results confirmed the fast convergence

1The MAP detection is obtained by exhaustive search. Note that, the curve
for the MAP detector with 9 paths is not shown due to the prohibitively high
computational complexity.

1 2 3 4 5 6 7 8 9 10

Number of iterations

10-4

10-3

10-2

10-1

B
E

R

MP 4 paths
VB 4 paths
MP 9 paths
VB 9 paths

Fig. 2. BER performance versus the number of iterations.

of the proposed algorithm and its superior detection performance

compared to the MP algorithm, especially in practical multipath

scenarios.
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