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Abstract—Video services have hold a surprising proportion of
the whole network traffic in wireless communication networks.
Accurate prediction of video traffic can endow networks with
intelligence in resource management, especially for the forth-
coming beyond the fifth-generation (B5G) networks. However,
the existing approaches fail to accurately predict video traffic
with all types of frames, due to the natures of strong long-range
dependence, self-similarity and burstiness. Obviously, it is unable
to meet the QoS and QoE requirements of dynamic bandwidth
allocation. In this paper, we propose the feasibility of advanced
machine learning methodology applied in nonstationary video
traffic prediction, i.e., smoothing-aided support vector machine
(SSVM) model. The model utilizes classical smoothing methods
to preprocess video traffic by relieving the drastic fluctuation
of video stream. It can provide an effective association for
the subsequent support vector regression, as the preprocessed
data becomes more smooth and continuous than the original
unprocessed one. Experimental results show that our proposed
model significantly outperforms the state of the art model,
i.e., logistic smooth transition autoregressive, in prediction
performance. The superior nonlinear approximation capacity is
further demonstrated by visualized statistical analysis.

Index Terms—Variable bit rate, video traffic prediction, re-
source management, machine learning, support vector machine.

I. INTRODUCTION

BEyond the fifth-generation (B5G) networks are expected
to provide rather reliable services with large-scale con-

nectivity, superhigh transmission rate, ultra-low latency, much
enhanced security, very little energy loss, and excellent quality
of experience (QoE) [1]. Given these superiorities, the rising
B5G networks should be intelligent enough to cope with more
autonomous [2]–[4], self-organizing and dynamic situations,
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such as dynamic topologies, application-oriented storage,
autonomic and scalable computing, and various quality of
service (QoS) requirements. For the design of such smart
networks, machine learning is deemed as a critical element
and it has been adopted in many applications [5]–[16].

With the deployment of 5G mobile networks [17], traffic
has been governed by explosive video applications including
IPTV, video assisted surgery, video conference and augmented
reality. For the following B5G networks, this situation can be
further exacerbated. Network operators are confronted with
a significant issue: if they intend to reduce the bandwidth
provision for a users requirement to enable more users to
access the network, it may lead to potential packet loss that
has a significant impact on the communication quality; on the
other hand, if they oversupply bandwidth to cope with possible
bursts in data, bandwidth wastage occurs. These diversified
multimedia services certainly require higher bandwidth con-
figuration in contrast to traditional network traffic, such as web
and email. Generally, excellent rate control mechanisms are
design for video stream in dynamic heterogeneous network
scenarios. It yields well-known variable bit rate (VBR)
traffic. In this case, resource management should possess
potential robustness and efficiency, aiming at guaranteeing
high bandwidth utilization, so that any QoS requirement can be
protected [18]–[20]. Conventional fixed allocation of network
resource suggests the reservation of a great many bandwidth
for a specific QoS guarantee. Nevertheless, dynamic allocation
under the framework of video traffic prediction is an alternative
technique to solve this intractable issue [21].

From data characteristics, VBR traffic shows the properties
of strong nonlinearity, variability, and slow-decaying auto-
correlations between samples. These implicit traits determine
the long range dependent (LRD) of video streaming. Fixed
allocation mode has to abandon the available bandwidth.
To this problem, dynamic bandwidth allocation appears to
prevent probable network congestion. In this dynamic mode,
frame size prediction is regarded as a crucial supplementary
mean. However, the one-step ahead prediction models on
LRD video traffic can not respond to dynamic bandwidth
allocation in high-latency links. Hence, long-term video traffic
prediction should be required for ensuring flexible network
control strategies [22].

A great deal of machine learning research has been focused
on multiple-steps ahead video traffic prediction, mainly includ-
ing statistical learning methods and neural networks (NNs).
The key issue is how to improve nonlinear approximation
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capacity as much as possible [23]–[25]. It is demonstrated
that classic AR, ARMA and ARIMA can only seizure both
linearity and short range dependencies (SRD) hidden between
video data, but are powerless to LRD, which leads to weak
performance in video traffic prediction [26]. In [27], a logistic
smooth transition autoregressive was developed for VBR video
traffic prediction, where adaptive least mean square and its
extensions were considered for the determination of model
parameters. It could achieve a nonlinear approximation up to
300-step ahead prediction. In [28], a seasonal autoregressive
method was used for high definition video stream modeling.
In [29], a Markovian model was presented for the specific B-
frame prediction, aiming at reducing bandwidth requirements
and smoothing the video stream. In [30], a hybrid deep
computing model, consisting of stacked restricted Boltzmann
machine and minimum complex reservoir, was proposed for
one-step video frame size prediction. In [31], six NN models
were compared according to the capacities in predicting
each frame type of MPEG-4, i.e., I, P and B. Moreover,
this work was further extended, where more NNs were
introduced for whole MPEG-4 video stream processing [32].
In spite of these positive results, the accurate multiple-steps
ahead prediction of video traffic in autonomous network
management remains an challenging task and the technology
is far from actual deployment. This is mainly due to the
hight-variability in frame size of video traffic, i.e., burstiness.
This paper focuses on exploring more effective multi-steps
ahead prediction method of video traffic supporting intelligent
resource management towards B5G networks.

Support vector machine (SVM) is deemed as a powerful
machine learning tool for prediction, whose success lies
in Vapniks pioneering study in statistical learning theory
[33], including robustness, restorability to over-fitting, optimal
solution, and modularity of kernel mapping. Concretely, SVM
has remarkable characteristics of impressive generalization
capability, no local minimum and sparse representation of
solution [34]. It has been used widely for multi-steps ahead
prediction in numerous scenarios, such as inbound tourist
arrivals, physiological abnormal signals and consumer’s heat
load [35]–[37]. Besides, it has been demonstrated that data
smoothing is beneficial for nonlinear approximation in time
series prediction [38]. This preprocessing method could
handle significant fluctuations and outliers by adjusting the
built-in sliding window. Inspired by these, we consider the
combination of SVM and smoothing for the multi-steps ahead
prediction of VBR video traffic.

In this paper, we propose a smoothing-aided SVM (SSVM)
model for VBR video traffic prediction method in order
to meet the requirement of dynamic resource allocation.
Structurally, it can be viewed as a uniform and successive
system with functional modules of smoothing and regression.
The employed smoother is capable of reducing the size of
leptokurtic frame, thereby alleviating drastic fluctuation of
video stream. This way can facilitate obtaining a well-behaved
SVM for multi-steps ahead prediction. The effectiveness of
our proposal is illustrated on different video traffic prediction
tasks.

The rest of this paper is organized as follows. For the

dynamic resource allocation demands of B5G networks, Sec-
tion II provides a detailed description on the smoothed-aided
SVM model for nonstationary video traffic prediction. Section
III gives some experiments to verify the performance of our
proposal, including smoothing analysis, prediction accuracy
and statistical validation. Finally, Section IV concludes the
paper and points out the future research directions.

II. MODEL DESCRIPTION AND OUR PROPOSED METHOD

Tackling the challenges of resource management in B5G
network environments, a promising machine learning model,
combining with smoothing methods and SVM, is applied for
VBR video traffic prediction, called SSVM. In fact, it is
derived from the promising finding in [38]. In structure, our
video traffic prediction model consists with functional devices
of smoother and predictor. The prioritized smoothing aims at
effectively eliminating the tricky abrupt fluctuations of video
traffic, i.e., short-term burstiness. It is conducive to providing
more suitable initial points for nonlinear approximation. The
well-behaved SVM serves as a predictor, characterised by
a high-dimensional feature transformation based on kernel
projecting. Combining these two components, our model is
expected to achieve a strong prediction performance. For
a better insight, we provide a detailed description on the
functionalities of both.

Generally known, significant burstiness often appears in
compressed video over numerous time scales. This is largely
due to the special frame structures determined by different
encoding schemes and high variations related to scenes. More-
over, burstier VBR traffic can be formed from aggregations of
multiple video streams attaching orchestrated text, audio and
images. In our scenario, smoothing is used to decrease bit
rate variability appropriately, so that it can produce a relative
smooth video stream in priority for acceptable nonstationary
VBR video traffic prediction. The following four smoothing
methods are considered [38], given by

� Moving average (MA) is viewed as a simplest version of
smoothing methods. Its readout can be generated from
the average of its corresponding neighboring points in a
customizable window, expressed as follows

Z(zi) =
1

2n+ 1

n∑
k=−n

zi+k (1)

where z denotes a sample of this smoother input, 2n+1
is the size of moving window, and j offers an index of
the current readout value.

� Gaussian smoothing (GS) is on the basis of the well-
known normal distribution, defined by the following
probability density function

G(x) =
1√
2πσ

e−
x2

2σ2 (2)

where x is the sample value obeying Gaussian distri-
bution, σ, σ2 and µ denotes the standard deviation, the
variance and the mean of samples, respectively.
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� Robust locally weighted smoothing (RLWS) is achieved
by a bisquare function wi, given by

wi =

{
(1− (ri/κ)2)2 |ri| < κ

0 |ri| ≥ κ
(3)

where ri denotes the i-th residual value generated form
the current smoothing, and κ is the sixfold median
absolute deviation (MAD) of these residuals, given by

MAD = median(|r|) (4)

� Savitzky-Golay smoothing (SG) is actually regarded as
a low-pass filter that has the ability of local least-square
polynomial approximation. Considering a window i ∈
(M,N −M), the smoothing has the following form

SG(i) =

n∑
k=0

aki
k (5)

where N denotes the sample size, n denotes the poly-
nomial degree, and a denotes the vector of coefficients,
calculated by

E =

M∑
i=−M

[SG(i)− xi]2. (6)

Once the smoothing on VBR traffic streams is completed,
the LS-SVM based predictor works for the subsequent
nonlinear approximation. For a given video dataset V =
{(si, oi), si ∈ Rn, oi ∈ R}li=1, the regression output is
measured by a nonlinear mapping function ϕ(·), defined as
follows

f(s) = wT · ϕ(s) + b (7)

where w denotes a weight vector, and b is the corresponding
bias. Given this, a separating hyperplane emerges for the fitting
of o and s.

Through the rule of structure risk minimization, the regres-
sion related to LS-SVM can be converted to the following
optimization issue, given by

min
w,b,e

O(w, b, e) =
1

2

(
‖w‖2 + C

l∑
i=1

e2i

)
(8)

obeying

oi = w · ϕ(s) + b+ ei, i = 1, 2, 3, · · ·, l (9)

where ei denotes a randomly generated error, and C > 0
denotes a regularization measure. It can be solved by the
Lagrange multiplier method, formulated as follows

L(w, b, ei, αi) = O(w, b, ei)−
l∑
i=1

αi[w · ϕ(si) + b+ ei−oi]
(10)

where αi is a Lagrange multiplier. Furthermore, we have the
following partial differentials

∂L
∂w = 0→

l∑
i=1

αiϕ(si) = w

∂L
∂w = 0→

l∑
i=1

αi = 0

∂L
∂ei

= 0→ Cei = αi
∂L
∂αi

= 0→ w · ϕ(si) + b+ ei−oi = 0

(11)

TABLE I: Model performance on the prediction tasks of NBC
News video traffic traces (QP=10 and QP=34) over different
prediction steps.

Video Step QP
Predictor

SSVM LSTAR [27]

News

1
10 0.0231 0.3466

34 0.0330 0.3424

50
10 0.2823 0.3409

34 0.1871 0.3960

200
10 0.3616 0.4015

34 0.3506 0.4822

Through eliminating the common parameters w and ei, we
have [

0
→
IT

→
I Ω + C−1I

] [
b
α

]
=

[
0
y

]
(12)

where 
I = [1, 1, 1, · · ·, 1]T

Ω= {Ωij |i, j = 1, . . . , l}
α = [α1, α2, α3, · · ·, αl]T
y = [y1, y2, y3 · ··, yl]T

(13)

and Ωij = ϕ(si)
Tϕ(sj) = K(si, sj), for i, j = 1, 2, 3, · · ·, l

with K a Mercer kernel function. In our case, the linear kernel,
the polynomial kernel, the radial basis function kernel (RBF)
and multi-layer perceptron kernel (MLP) are considered, given
by

K (sj , si) = sj · si (14)

K (sj , si) = ((sj · si) + 1)
d (15)

K (sj , si) = esp

(
−‖sj − si‖

2

σ2

)
(16)

K (sj , si) =tanh (η < sj , si > +θ) (17)

Solving the linear equation (12), α and b can be determined. It
implies the completion of the LS-SVM training. Our optimal
model is given by

f(x) =

l∑
i=1

αiK(x, xi) + b (18)

Subsequently, the trained model can be used for real-world
VBR video traffic prediction.

III. EXPERIMENT RESULTS AND DISCUSSIONS

In this section, an exhaustive simulation is provided for the
performance assessment of our SSVM paradigm, considering
real-world nonstationary VBR video traces. During evaluation-
s, we consider different types of smoothers under user-defined
sliding window, such as MA, GS, RLWS and SG, as well
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(a) QP=10, MA (b) QP=34, MA

(c) QP=10, GS (d) QP=34, GS

(e) QP=10, RLWS (f) QP=34, RLWS

(g) QP=10, SG (h) QP=34, SG

Fig. 1: Comparisons of the original NBC News video traffic series (QP=10 and QP=34) and the smoothed ones via time
windows for the considered smoothing methods. The time window is set to the values from 0 to 200 (from left to right), where
the time step is 10.

as SVM-based predictor with the linear kernel. To prove the
effectiveness of our hybrid model, we also compare the logistic

smooth transition autoregressive model (LSTAR) in the same
application scenario [27]. Model parameters are determined by
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0 500 1000 1500 2000 2500 3000

Frame number

0

0.5

1

1.5

2

F
ra

m
e 

si
ze

 (
by

te
)

104

Actual output
Predicted output

(d) QP=34, Step=1 (RLWS)
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Fig. 2: Output comparisons of our SSVM model with optimal smoothing on the prediction tasks of NBC News video traffic
traces (QP=10 and QP=34) over different prediction steps.
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Fig. 3: NMSE versus time window size for SSVM on the 50-
step ahead prediction tasks of NBC News video traffic traces.

the grid search method. All results are given over an average
of the experiments repeated 10 times.

A. Data and Assessment Criteria

Here, NBC news dataset from the video
trace library is used in experiments, found at
http://trace.kom.aau.dk/h264/index.html. With regard to
its characteristics, there exist frequent transitions among
scenes. Two types of NBC news video stream (QP=10 and
QP=34) are considered, and the number of frame is 49521.
These video frames encoded by H.264/AVC have a structure
of G16B3 GOP, in which 16 frames are introduced between
adjacent I and B frames. The prediction performance of
our model is measured by normalized mean squared error
(NMSE), given by

NMSE =
1

Lσ2
x

L∑
l=1

(x(n)− x̂(n))
2 (19)

where σ2
x is the variance of video traffic series x over L points,

x̂(n) denotes the predicted value of x(n).

B. Smoothing Analysis

To investigate the effect of the smoothing on the series
characteristics, we plot the trends of the 21 video traffic
series as a function of the time window in Fig. 1, where
the time window is 0, meaning the original series, while its
other settings correspond to the 20 smoothed series. From
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Fig. 4: Histogram fitting of our SSVM model with optimal smoothing on the prediction tasks of NBC News video traffic traces
(QP=10 and QP=34) over different prediction steps.

this figure, it can be seen that the original video series
shows a dramatic fluctuation, since there exit a great deal
of bursty sources. The specific data characteristic enables
accurate multi-step ahead prediction of video traffic to be a
quite challenging work. In fact, smoothing effectively reduces
significant oscillations in our scenario. Moreover, as the time
window increases, this smoothed series become relatively
stationary for the considered smoothing methods, which is
highly beneficial for prediction. However, this increase is
not arbitrary, because video streams may have fundamental
changes in internal and external characteristics, such as self-
similarity, bursty and trend. Hence, the reasonable choice of
the time window in smoothing is critical for given video
traffic prediction tasks. It requires an effective tradeoff between
prediction accuracy and data characteristics, but this is beyond
the scope of this paper. Our study aims at exploring the
feasibility in smoothing assisted video traffic prediction for
dynamic resource management.

C. Prediction Performance

Fig. 2 plots comparison curves of the actual signal and
the predicted output yielded by our SSVM model over frame
numbers, where multiple-steps ahead prediction, such as 1,
50 and 200, is considered for NBC News video traffic traces
(QP=10 and QP=34), as well as the most suitable smoothing
method and its time window are suggested for each prediction
mode. It can be observed from this figure that our model

readout is consistent with the actual series, especially for
the one-step ahead prediction. Nevertheless, this trend fitting
results become relative poor as the prediction step increases,
as shown in Fig. 2(c) and Fig. 2(f). The superior performance
of our model over LSTAR is further listed in Table I. It
is worth noting that compared with LSTAR, SSVM has
NMSE decreases of 32.35% and 30.94% for one-step ahead
prediction, respectively. In fact, its significant performance
advantages are mainly ascribed to the prepositive smoothing
mechanism controlled by time window, which can effectively
alleviate the high variability of video frames, i.e, burstiness.
Taking an example of 50-step ahead prediction, the relation
between time window and prediction performance is shown
in Fig 3. Obviously, our model is relatively sensitive to the
choice of time window. The bigger time window can lead to
the better prediction performance. However, the time window
is not infinitely increased, because it can make the smoothed
video streams lose the essential characteristics.

D. Statistical Validation

In the following part, from the perspective of statistical
analysis, we verify the nonlinear approximation capacity of
our SSVM in the video traffic prediction tasks. The methods,
such as histogram fitting, QQ plot and box-plot, are used in
the case.

Fig. 4 provides graphical representations of histogram plots
on the shapes and distributions of the actual and predicted
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Fig. 5: QQ plots of our proposed SSVM model with optimal smoothing on the prediction tasks of NBC News video traffic
traces (QP=10 and QP=34) over different prediction steps.

outputs for SSVM in our video traffic prediction scenario.
It is seen that for one-step ahead prediction, our model can
achieve good fittings of vertical bars and data distribution for
the two actual video trace. Whereas, as the prediction step is
up to 200, this fitting gets worse, meaning the performance
degradation of SSVM. Fig. 5 shows the QQ plots of the
actual and predicted video traffic, yielded by plotting the
quantiles of video data distribution versus the ones of normal
distribution. Obviously, the well-fittings in Fig. 5(a) and Fig.
5(d) indicate that SSVM behaves well in the scenario of one-
step ahead prediction. However, in Fig. 5(b)-(c) and Fig. 5(e)-
(f), the divergences between distributions mean relatively poor
multiple-steps ahead prediction performance. This case can be
further demonstrated in Fig. 6 based on the popular box-plot
visualization, where we gives an insight on the superiority
of our model through these comparisons of the upper and
lower quartiles, the upper and lower bound, the median and
the outliers. Besides, we can also observe that the smoothed
video streams have few outlier, meaning the decrease of bursty
points. Above all, these results correspond to the findings in
Fig. 2. It demonstrates the efficacy of the SSVM model in our
nonstationary VBR video traffic prediction tasks.

IV. CONCLUSION

In this paper, we explore the application of smoothed sup-
port vector machines for nonstationary video traffic prediction

in the B5G network environment. It is actually a hybrid
data processing model, where multiple smoothing methods
are considered for video stream preprocessing. The preceding
smoother can effectively alleviate burstiness in video data,
providing excellent initialization points for the following
SVM-based approximation. Experimental results verify the
utility of our SSVM model in terms of prediction accuracy and
statistical comparison. Further research will concentrate on the
adaptive determinations of smoothing methods for given VBR
video stream, as well as the selection of the corresponding
time windows.
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