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Abstract—In this paper, we consider an unmanned aerial
vehicle (UAV) assisted communications system, including two
cooperative UAVs, a wireless-powered ground destination node
leveraging simultaneous wireless information and power transfer
(SWIPT) technique, and a terrestrial passive eavesdropper. One
UAV delivers confidential information to destination and the other
sends jamming signals to against eavesdropping and assist desti-
nation with energy harvesting. Assuming UAVs have partial infor-
mation about eavesdropper’s location, we propose two transmis-
sion schemes: friendly UAV jamming (FUJ) and Gaussian jam-
ming transmission (GJT) for the cases when jamming signals are
known and unknown a priori at destination, respectively. Then,
we formulate an average secrecy rate maximization problem to
jointly optimize the transmission power and trajectory of UAVs,
and the power splitting ratio of destination. Being non-convex
and hence difficult to solve the formulated problem, we propose
a computationally efficient iterative algorithm based on block
coordinate descent and successive convex approximation to obtain
a suboptimal solution. Finally, numerical results are provided
to substantiate the effectiveness of our proposed multiple-UAV
schemes, compared to other existing benchmarks. Specifically, we
find that the FUJ demonstrates significant secrecy performance
improvement in terms of the optimal instantaneous and average
secrecy rate compared to the GJT and the conventional single-
UAV counterpart.

Index Terms—UAV communications, PHY-security, SWIPT,
trajectory design, power control, cooperative mobile jammer,
convex optimization.

I INTRODUCTION

R
ECENTLY, unmanned aerial vehicle (UAV) has been

deemed as a promising wireless service provider along-

side with plethora of other civilian applications (see [1]–

[4] and references therein). This is driven by advances in

wireless equipment miniaturization as well as the economic

ease of deployment and flexibility of UAVs inasmuch as

various Tech giants (e.g. Facebook and Google) [5] have been

focusing on establishing massive UAV-assisted networks for

ubiquitous connectivity. As a matter of fact, the upsurge of

UAV applications in wireless communications is double-edged

sword; in that bringing new opportunities and facilitating novel

technologies, while accompanying with undeniable critical

challenges when employed in the real world.

“This research was supported by the Australian Research Council under
Grant DP160100528.”

On the one hand, with an increasing demand of Internet-of-

things (IoT) applications, UAVs equipped with various types

of sensors, cameras, GPS, and so on, can be regarded as good

candidates to serve as aerial base stations/legitimate termi-

nals/mobile relaying and even power beacons for prolonging

energy-constraint IoT devices [6]–[10]. In such applications,

a challenging issue is that how to prolong device lifetime

due to limited access to power resources and/or infrequent

battery replacements [7]. To tackle this problem, apart from

conventional energy harvesting techniques, simultaneous wire-

less information and power transfer (SWIPT) has recently

emerged [11]. To be specific, SWIPT captures both data and

energy from the same radio frequency (RF) signal and con-

verts into direct current for battery recharging, which enables

energy harvesting in a controllable manner. This characteristic

is particularly important for UAV applications to guarantee

replenishable-energy ground nodes considering their dynamic

adjustment capability [8], [10], [12], [13]. Specifically, a

SWIPT-based UAV-aided relaying scenario to transmit power

and confidential information to an energy-constrained ground

user has been analyzed in terms of average achievable secrecy

rate and energy coverage probability in [12], while the secrecy

rate lower bound optimization problem of such setup has

been conducted in [10]. Aiming at minimization of the UAV’s

total power consumption, the authors in [13] also explored a

non-security UAV-based wireless communications system with

energy harvesting to enable data transmission of ground users

in both half duplex and full duplex modes using the harvested

energy.

On the other hand, safeguarding such wireless communi-

cations system is of the most paramount challenges due to

the broadcast nature of transmission and mobility of UAVs.

To guarantee security of UAV communications, physical-

layer (PHY) security [1], [14]–[22] have, providentially, been

ascertained as a promising and computationally-efficient in-

formation secrecy approach. For example, the resource al-

location problem for a UAV-assisted secure SWIPT system

is investigated in [15]. The authors in [18] also considered

the PLS of a four-node setup with UAV-enabled relaying

where the eavesdroppers are distributed in a certain area with

partially known location information and then studied the

power allocation problem of the source and relay. Amongst

various PHY-security techniques, cooperative jamming is one

http://arxiv.org/abs/1911.06516v2
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viable anti-eavesdropping strategy via collaboratively trans-

mitting jamming signals to degrade wiretap channel quality.

In [19], the authors have considered a mobile UAV serving

as a flying base station delivering data to a ground node

in the presence of a passive eavesdropper. In [20], lever-

aging the mobility of a UAV, the authors have studied the

achievable secrecy rate via trajectory design and power control

optimization, and showed its improvement over conventional

static jammers. This is due to the fact that the mobility of

UAV-jammer allows an opportunistically jamming at a closer

distance to the eavesdropper. In [21], the authors have tackled

maximizing the minimum secrecy rate of jammer-incorporated

UAV communications via a joint optimization of trajectory and

transmit power of UAVs. In [22], the authors have studied

the problem when a UAV is employed as friendly jammer

to assist secure communication in the presence of unknown

eavesdropper location, and they have examined the UAV-

jammer displacement and power control to guarantee good

reliability and security.

Motivated by above research, in this paper, we consider

two flying cooperative UAVs as well as a ground destination

node equipped with wireless RF energy harvester, in the

presence of a passive ground eavesdropper. One UAV acts

as source transmitting confidential information to destination

while the other UAV broadcasts jamming signals to assist anti-

eavesdropping and energy harvesting of the destination node.

Note that, different from [19], [23], [24], we here consider a

SWIPT-enabled receiver at destination for security and energy

scavenging. Also, different from [24], [25] wherein UAVs

know the exact location of eavesdropper, we here assume

that UAVs have only partial information of eavesdropper’s

location. Following our setting, we make the following con-

tributions in the paper.

• We propose two cooperative UAV-jamming PHY-security

schemes: friendly UAV jamming (FUJ) and Gaussian

jamming transmission (GJT). In particular, in FUJ, UAV

transmits jamming signals that are known a priori at

destination, while in GJT, destination node has no prior

information of the jamming signals from UAV.

• Via trajectory discretization approach, we formulate an

average secrecy rate (ASR) optimization problem, which

is challenging to solve due to non-smooth and non-

concave objective function and non-convex feasible set.

• To make the optimization problem tractable, we propose

an efficient iterative algorithm based on block coordinate

descent (BCD) and successive convex approximation

(SCA) methods in order to find a unique sub-optimal

solution to the problem with guaranteed convergence.

• Via the proposed iterative algorithm, we conduct opti-

mization of the following sub-problems: transmit power

of UAVs, power splitting ratio in SWIPT, as well as UAVs

trajectory.

• We compare by simulations secrecy and energy harvest-

ing performance, transmit power of UAVs of our pro-

posed schemes under various scenarios, demonstrating its

significant performance improvement over conventional

without-jamming (WoJ) scheme, wherein there exists no

Fig. 1: System model of UAV-enabled secure information and

power transfer.

UAV-jammer.

The rest of the paper is organized as follows. Section II

introduces system model. Section III presents two 2-UAV

transmission schemes via cooperative UAV jamming. In Sec-

tion IV, we formulate ASR optimization problem via trajectory

discretization approach and provide solutions in Section V.

Simulation results are given in Section VI, followed by con-

clusions in Section VII.

II SYSTEM MODEL

We consider a UAV-enabled wireless communications sys-

tem (see Fig. 1), where a UAV-source (S) flies from ini-

tial to final locations to deliver confidential information to

a legitimate ground destination (D) in the presence of a

ground eavesdropper (E) with unknown location. Here, we

consider D to be an energy-limited IoT device that is capable

of harvesting energy from ambient radio resources and its

receiver adopts power splitting architecture for simultaneous

energy scavenging and data decoding with a power splitting

ratio (PSR) ζ (0 ≤ ζ ≤ 1) [7], [26]. Finally, a UAV-jammer (J )

is employed to transmit noise-like jamming signals coopera-

tively to improve security and power the energy-constraint D.

We consider that all nodes have single omnidirectional

antenna that operate in half-duplex mode. We define main

link (S-D), wiretap link (S-E), jamming link (J -D, J -E),

as shown in Fig. 1.

II-A System Parameters

Without loss of generality, we assume that all the nodes

are located in a three-dimensional Cartesian coordinate system

with the following parameters:

• D has the horizontal coordinate WD ∈ R2×1 with zero

altitude,

• S and J ’s initial and final locations corresponding to the

prespecified launching and landing sites of the UAVs are
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QSI ∈ R2×1, QJI ∈ R2×1, QSF ∈ R2×1, and QJF ∈
R2×1, with constant flying altitude1 H .

• S and J have the same mission time T , and their horizon-

tal location at time instant t ∈ [0, T ] are QS(t) ∈ R2×1

and QJ(t) ∈ R2×1,

• S and J have a safety distance D̃ to avoid collision2,

• S and J have total transmission power P tot
S and jamming

power P tot
J , respectively, whereas at t ∈ [0, T ], their

associate instantaneous powers are PS(t) and PJ(t),
• PSR, denoted by ζ ∈ (0, 1), is the fraction of received

power for information processing, while (1-ζ) is the

fraction of which to be harvested and stored for future

use. The instantaneous PSR is, therefore, denoted by ζ(t).

Further, we have the following assumptions on D and E’s

locations:

• D’s location is known to both UAVs (e.g. [28], [19]),

• E’s location (WE ∈ R2×1) is unknown, but both UAVs

can approximately estimate it [29] in a collaborative

manner. As such, we assume that E’s circular estimated

region centered at ŴE ∈ R2×1 (namely most-likely

location of E) with radius RE ≥ ‖WE − ŴE‖ (namely

maximum estimation error) are known to the UAVs,

where ‖ · ‖ represents the L2-norm (Euclidean norm).

Remark: Note that according to [16], the availability of the

eavesdroppersâĂŹ location information can be classified into

three cases: I) full position information, II) partial position

information, and III) absence of position information. Case

I becomes possible, when the eavesdroppers stay stationary,

and UAV is equipped with an optical camera or a synthetic

aperture radar to detect the eavesdropper’s location, or it

might be the case when the ground nodes are part of the

same network with different roles; e.g., unscheduled users to

receive particular information compared to the intended ones.

Other method is presented in [28] to obtain eavesdropper’s

location information from the local oscillator power which

is inadvertently leaked from its RF front-end, given coherent

detection is used. Case II occurs when the above detection

is non-accurate, or when eavesdroppers have moved slightly

so that the camera/aperture radar in UAV cannot perfectly

obtain their location information. Case III occurs when all

the above detection methods are failed and eavesdroppers

hide themselves physically very well. In this paper, we have

considered Case II.

II-B Channel Model

Motivated by literature (see [25], [27], [30]–[33]), in this

work, we adopt a probabilistic line-of-sight (LOS) channel

model that models both LoS and Non-LoS propagations by

taking into account their occurrence probabilities [30]. Av-

eraging over surrounding environment and small-scale fading,

1Indeed, one justification from a practical viewpoint behind this constant
UAVs’ flying altitude assumption is to guarantee the safety consideration like
collision avoidance with buildings or terrain, and also more importantly, for
energy consumption reduction when ascending or descending of UAVs, e.g.,
[23], [27].

2This is different from the traditional approach in [21], where different
flying altitudes are allocated to each UAV to avoid possible collision.

the expected channel power of UAV-ground (UG) links at time

instant t is [30]

ĥag(t) = β̂(θag(t))dag(t)
−α, (1)

with the regularized attenuation factor given by

β̂(θag(t)) , β0 [PLoS(θag(t)) + κ(1 − PLoS(θag(t)))] , (2)

where dag(t) =
√
‖Qa(t)−Wg‖2 +H2 represents the time

varying distance between the aerial node a and the ground

node g. Moreover, θag(t) = tan−1
(

H
dag(t)

)
denotes the time-

varing elevation-angle between those two, wherein a ∈{S, J }

and g ∈{D, E}, α denotes the path-loss exponent (2 ≤ α ≤ 4)

[34], β0 is the path loss at reference distance d0 meter for

omnidirectional antennas under LoS, i.e.,

β0 , 20 log10

(
C

4πd0fc

)
, (in dB)

where C = 3 × 108 m/s is the speed of light and fc is

the carrier frequency [34]. The parameter κ is the additional

attenuation factor characterizing Non-LoS propagation (in

practice it is a random variable with log-normal distribution

denoting the shadowing effect); however, in (2), this parameter

is regarded to be constant following homogeneous assumption

for Non-LoS environment. Here, In consistent with [30], [35],

we assume that for the area of interest the elevation angle

dependent probabilistic LoS function

PLoS(θ(t)) =
1

1 + k1 exp(−k2(θ(t) − k1))
,

with environmental constants k1, k2 > 0 follow homogeneity,

leading ultimately to β̂(θ(t)) ≈ β̄ for the sake of simplicity

of trajectory and resource allocation design3.

III PROPOSED PHY-SECURITY SCHEMES AND

INSTANTANEOUS/AVERAGE SECRECY CAPACITY

In this work, we present two PHY-security schemes in-

volving two UAVs. Major difference between our schemes

and other known two-UAV schemes (e.g. [21], [24], [25])

lies in that the additional cooperative UAV conducts not only

jamming transmission but also powering D in a more practical

channel modelling:

• A FUJ scheme, wherein FUJ transmits jamming signals

that are known a priori at D
• A GJT scheme, wherein D has no prior knowledge4 of

the noise-like jamming signal.

3It is worth pointing out that this approximated and simplified model is
too fruitful in some applications such as post-disaster area wherein it is non-
trivial to categorize the environment based on which the probabilistic model
has been developed. However, the minimum and maximum values of path-loss
component α can be used for upper and lower bound performance [2].

4Note that while the FUJ scheme requires a priori to generate jamming
signals at J and also costs a higher computational complexity at D to
operate jamming cancellation, it can be implemented via various approaches
such as key-assisted coding; i.e., an intelligent combination of conventional
cryptography with PHY-security [36]. Specially, when the location of the
eavesdropper E is unknown to the legitimate nodes and the wiretap link
quality might experience a better channel condition compared to the main
link, the former scheme is capable of PHY-security enhancement, while the
latter lacks such an undeniable performance advantage nonetheless provides
a low complex implementation approach.
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To evaluate performance of above schemes (particularly in

later simulations), we consider a benchmark scheme:

• No additional UAV-jammer (WoJ) scheme with SWIPT at

destination. Note that this setup is similar to [19], except

[19] has no SWIPT.

III-A Instantaneous Secrecy Rate (ISR)

Recall system parameters in subsection II-A and assume

normalized bandwidth in all links.

GJT has the achievable average rate over the random

channel realizations at time instant t as

IM (t)=log2

(
1+

γS(t)ζ(t)
(
‖QS(t)−WD‖

2+H2
)−α

2

γJ(t)ζ(t) (‖QJ(t)−WD‖2+H2)
−α

2+1

)
, (3)

where γS(t)
∆
= PS(t)β̄

N0

and γJ(t)
∆
= PJ (t)β̄

N0

with N0 being the

noise power at the receiver of D. Since the UAV jamming

signal is known a priori by D as well as the channel state

information (CSI) is available, it can be removed from the

received signals. Therefore, FUJ has the achievable instanta-

neous ensumble rate from S to D as

IM (t)=log2

(
1+γS(t)ζ(t)

(
‖QS(t)−WD‖

2+H2
)−α

2

)
. (4)

Additionally, for both GJT and FUJ, the exact instantaneous

wiretap channel capacity ÎE(t) at eavesdropper can be ob-

tained as

ÎE(t)=log2

(
1+

γS(t)
(
‖QS(t)−WE‖

2 +H2
)−α

2

γJ(t) (‖QJ(t)−WE‖2 +H2)
−α

2+1

)
, (5)

where the AWGN noise power at E is considered identical to

that at D for the simplicity of exposition.

The maximum achievable data rate by E , denoted by

Imax
E (t), within the uncertainty region RE , which serves as

an upper-bound for the case of exact location of E , can be

calculated, by considering the worst-case estimation scenario

by two UAVs, as

Imax
E (t)=log2


1+

γS(t)

((
‖QS(t)−ŴE‖−RE

)2
+H2

)−α
2

γJ(t)

((
‖QJ(t)−ŴE‖+RE

)2
+H2

)−α
2

+1


 .

(6)

Proof. Please see Appendix A. �

III-B Average Secrecy Capacity

The achievable ASR from S to D with normalized trans-

mission bandwidth is defined in bits/s/Hz as [37]

R̄sec =
1

T

∫ T

0

[IM (t)− Imax
E (t)]+ dt, (7)

where [x]+ = max{x, 0} and IM (t) for GJT and FUJ schemes

are given in (3) and (4), respectively, Imax
E (t) is in (6) for

cooperative jamming. Note that Imax
E (t) for WoJ is identical

to (6) but with setting γJ (t) = 0.

IV PROBLEM FORMULATION FOR MAXIMIZING ASR

To maximize (7), we need a joint design of UAV trajectory,

transmission power allocations, and power splitting ratio. To

make our design practically feasible, we consider the trajec-

tory discretization approach dividing the mission time T into

N equally-spaced time slots

δt
∆
=

T

N
,

Given δt, assuming distance variation between any UAV and

the ground terminals is adequately small, we adopt constant

average channel gains per slot. Other system design param-

eters and definitions are quantized accordingly and being

constant within each time slot. Hence, our problem of inter-

est with variables PS
∆
= {PS [n]}

N
n=1, PJ

∆
= {PJ [n]}

N
n=1,

ζζζ
∆
= {ζ[n]}Nn=1, QS

∆
= {QS[n]}

N
n=1, and QJ

∆
= {QJ [n]}

N
n=1

is formulated as

R̄opt
sec (P

⋆
S,P

⋆
J, ζζζ

⋆,Q⋆
S,Q

⋆
J) = maximize

1

N

N∑

n=1

[
R̃sec[n]

]
+

s.t. C1− C15, (8)

with R̃sec[n] given by (9) (shown on top of the next page)

wherein H̃2 ∆
= R2

E +H2. The constraints C1-C4 are

C1 :
1

N

N∑

n=1

PS [n] ≤ P̄S , C2 : 0 ≤ PS [n] ≤ P̂S , (10)

C3 :
1

N

N∑

n=1

PJ [n] ≤ P̄J , C4 : 0 ≤ PJ [n] ≤ P̂J , (11)

where (C1,C3) and (C2,C4) are constraints of average

and maximum transmission/jamming powers per time slot

at S and J , i.e., (P̄S , P̄J ) and (P̂S , P̂J ), respectively, where

P̄S
∆
= P tot

S /N, P̄J
∆
= P tot

J /N.

Additionally, these fixed powers are chosen subject to the peak

to average power ratio (PAPR) constraint, i.e., P̂K

P̄K
is restricted

due to hardware limitations, where K ∈ {S, J}, and maximum

network transmission power per time slot as

P̂R = P̂S + P̂J . (12)

To ensure a sufficient discretization as well as valid assump-

tions of invariant channel condition and unchanged distance

between any UAV and ground nodes, we have mobility con-

straints as

C5 : QS[1] = QSI ,

C6 : ‖QS[n+ 1]−QS [n]‖
∆
= VS [n]δt ≤ d̃δ, n = 1 · · ·N−1

C7 : ‖QSF−QS[N ]‖
∆
= VS [N ]δt ≤ d̃δ, (13)

and

C8 : QJ [1] = QJI ,

C9 : ‖QJ [n+ 1]−QJ [n]‖
∆
= VJ [n]δt ≤ d̃δ, n = 1 · · ·N−1

C10 : ‖QJF −QJ [N ]‖
∆
= VJ [N ]δt ≤ d̃δ, (14)
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R̃sec[n] = log2

(
1 +

ζ[n]PS [n]β̄
(
‖QS[n]−WD‖

2 +H2
)−α

2

ζ[n]PJ [n]β̄ (‖QJ [n]−WD‖2 +H2)
−α

2 +N0

)

− log2


1 +

PS [n]β̄
(
‖QS[n]− ŴE‖

2 − 2RE‖QS[n]− ŴE‖+ H̃2
)−α

2

PJ [n]β̄
(
‖QJ [n]− ŴE‖2 + 2RE‖QJ [n]− ŴE‖+ H̃2

)−α
2

+N0


 , (9)

where VS [n] and VJ [n] are constant speeds of S and J in time

slot n, but the velocities may vary from one slot to next. In par-

ticular, the maximum horizontal displacement of S and J per

slot is bounded by threshold maximum distance d̃δ ≪ H .

For the considered two-UAV system, collision avoidance is

represented by

C11 : ‖QS[n]−QJ [n]‖ ≥ D̃, (15)

where D̃ is the safety distance between the two UAVs. Then,

the permitted flying zone for UAVs is assumed to be a circular

region with radius R̃, i.e.,

C12 : ‖QS [n]−WD‖ ≤ R̃,

C13 : ‖QJ [n]−WD‖ ≤ R̃, (16)

where

R̃ ≤

√√√√
(
P̂Rβ̄

ΨH

) 2

α

−H2, (17)

must be satisfied to avoid power outage and guarantee the

viability of energy harvesting. In (17), ΨH is the minimum

required input power for energy harvesting, and P̂R is given

in (12). Finally, energy harvesting constraints are

C14 : 0 ≤ ζ[n] < 1,

C15 : ẼH [n] ≥ ΨH , ∀n (18)

with harvested power in time slot n given by (19) (see top of

the next page) where η is power conversion efficiency factor,

ζ[n] represents the discretized PSR for information processing

at D, and (1− ζ[n]) for energy harvesting.

V PROBLEM SOLUTION TO MAXIMIZE ASR

Note that (8) is non-convex and challenging to solve due to

non-convex objective function, non-smooth operator, [·]+, and

some non-convex constraints. However, at the optimal point,

R̃sec[n] in (9) should be non-negative; otherwise, by setting

PS [n] = 0 yields R̃sec[n] = 0 (It should be pointed out

that due to inequality max{x, 0} ≥ x, the resultant smooth

objective function given by (9) always serves a lower-bound

for the objective function of the problem (8)). Thus, our

optimization problem can be turned into a non-convex yet

smooth (differentiable) problem as

(P1) : maximize
PS, PJ, ζζζ, QS, QJ

1

N

N∑

n=1

R̃sec[n]

s.t. C1− C15. (20)

The facts that, (P1) is non-convex and the optimization

parameters are tightly coupled due to C15, make the prob-

lem intractable and motivates us to propose an alternating

optimization approach: an efficient iterative algorithm based

on block coordinate descent (BCD) and successive convex

approximation (SCA) methods, where at each iteration a

single block of variables is optimized by convex optimization

approach, while the remaining variables remain unchanged.

By doing so, the convergence of the proposed approach to at

least a sub-optimal solution is guaranteed under a feasible set

[38]. The remaining analysis are given as follows.

V-A Optimal Transmit Power of UAV-source

In the following, we optimize the power allocation of S for

GJT, FUJ, and WoJ, under the given feasible trajectories and

PSRs. Thus, the sub-problem for optimal transmission of S for

the most general case (GJT) can be obtained by reformulating

(P1) equivalently as

(P2) : maximize
PS

N∑

n=1

[log (1+AnPS [n])−log (1+BnPS [n])]

s.t. C1 and C2,

C̃15 : CnPS [n] +Dn ≥ ΨH , ∀n (21)

where log(·) represents natural logarithm, the auxiliary con-

stants {An}
N
n=1, {Bn}

N
n=1, {Cn}

N
n=1, and {Dn}

N
n=1, are given

by

An =
γ0ζ[n]

(
‖QS[n]−WD‖

2 +H2
)−α

2

ζ[n]γJ [n] (‖QJ [n]−WD‖2 +H2)
−α

2 + 1
, (22)

Bn=
γ0

(
‖QS[n]−ŴE‖

2−2RE‖QS[n]−ŴE‖+H̃
2
)−α

2

γJ [n]
(
‖QJ [n]−ŴE‖2+ 2RE‖QJ [n]−ŴE‖+H̃2

)−α
2

+1

,

(23)

Cn = ηβ̄ (1− ζ[n])
(
‖QS[n]−WD‖

2 +H2
)−α

2 , (24)

Dn=η (1−ζ[n])
[
PJ [n]β̄

(
‖QJ [n]−WD‖

2+H2
)−α

2+N0

]
, (25)

where γ0
∆
= β̄

N0

, γJ [n]
∆
= PJ [n]β̄

N0

, and H̃ =
√
R2

E +H2.

The sub-problem (P2) is still non-convex with respect to PS

due to non-convex objective function. Since one can readily

verify that problem (P2) satisfies the Slater’s condition, strong

duality attains which enables us to obtain the optimal solution

by solving the corresponding Lagrange dual problem using
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ẼH [n]
∆
= η (1− ζ[n])

[
PS [n]β̄

(
‖QS[n]−WD‖

2 +H2
)−α

2 + PJ [n]β̄
(
‖QJ [n]−WD‖

2 +H2
)−α

2 +N0

]
, (19)

Karush-Kuhn-Tucker (KKT) conditions. As such, by temporar-

ily dropping C2 and C̃15, and also letting P̃S and (P̃S , λ) be

any primal and dual optimal points with zero duality gap, the

Lagrangian function can be computed as

L (PS, λ) =
N∑

n=1

[
log(1+BnPS [n])−log(1+AnPS [n])+λ

(
PS [n]−P̄S

)]
, (26)

where λ ≥ 0 is the Lagrange factor. Then, maximizing the

Lagrangian dual function defined as

g (λ)
∆
= inf

PS

{L (PS, λ)},

one can reach the optimality condition as [37]

An

1 +AnPS [n]
−

Bn

1 +BnPS [n]
− λ = 0, ∀n (27)

Solving the above equation with respect to PS [n] and also tak-

ing into account constraints C2 and C̃15, leads to the closed-

form analytical solution for optimal UAV-source’s power allo-

cation as

P ⋆
S [n]=





min

{
max

{[
ΨH−Dn

Cn

]
+
, P̃S [n]

}
, P̂S

}
, An≥Bn

[
ΨH−Dn

Cn

]
+
, An<Bn

(28)

where

P̃S [n]=
1

2



√(

1

Bn
−

1

An

)2

+
4

λ

(
1

Bn
−

1

An

)
−

(
1

Bn
+

1

An

)
 , (29)

wherein the non-negative Lagrange factor λ can be obtained

by applying a simple bisection search such that the UAV’s

source power budget constraint; i.e.,

N∑

n=1

P ⋆
S [n] ≤ P tot

S ,

is satisfied.

We note that, for FUJ, the optimal S power allocation P⋆
S ,

following the similar approach to GJT, can be obtained as (28)

by removing the term ζ[n]γJ [n]
(
‖QJ [n]−WD‖

2 +H2
)−α

2

from denominator of (22). Likewise, the optimal S power

allocation for the WoJ is given by (28) by letting PJ [n] equals

to zero in (22), (23), and (25).

V-B Optimal Transmit Power of UAV-jammer

Under keeping other variables unchanged, we aim at op-

timizing the jamming transmit power for GJT and FUJ. As

such, the sub-problem for optimization of the transmit power

of J for GJT can be obtained by rewriting (P1) as

(P3) : maximize
PJ

N∑

n=1

log

(
1+

An

BnPJ [n]+1

)
−log

(
1+

Cn

DnPJ [n]+1

)

s.t. C3, C̃4 :

[
ΨH−En

Fn

]

+

≤PJ [n]≤ P̂J , ∀n (30)

where the auxiliary constants {An}
N
n=1, {Bn}

N
n=1, {Cn}

N
n=1,

{Dn}
N
n=1, {En}

N
n=1, {Fn}

N
n=1 are taken as

An=ζ[n]γS [n]
(
‖QS[n]−WD‖

2 +H2
)−α

2 , (31)

Bn=γ0ζ[n]
(
‖QJ [n]−WD‖

2 +H2
)−α

2 , (32)

Cn=γS [n]
(
‖QS [n]−ŴE‖

2−2RE‖QS[n]−ŴE‖+H̃
2
)−α

2

, (33)

Dn=γ0

(
‖QJ [n]−ŴE‖

2+ 2RE‖QJ [n]−ŴE‖+H̃
2
)−α

2

, (34)

En=η (1−ζ[n])
[
PS [n]β̄

(
‖QS [n]−WD‖

2+H2
)−α

2+N0

]
, (35)

Fn=ηβ̄ (1− ζ[n])
(
‖QJ [n]−WD‖

2 +H2
)−α

2 . (36)

The sub-problem (P3) is still non-convex5 with respect to PJ

due to non-convex objective function being in the form of

convex-minus-convex based on Lemma 1 given below.

Lemma 1. Let x ∈ RN×1 be a vector of variables, {an}
N
n=1

and {bn}
N
n=1 be all non-negative constants. Then, the vector

function defined as

f(x) =

N∑

n=1

log

(
1 +

an
bnx[n] + 1

)
, (37)

is convex.

Proof. By calculating the gradient vector and also obtaining

the Hessian matrix of f(x) we have

∇f(x) =

{
−

anbn
(1 + an + bnx[n])(1 + bnx[n])

}N

n=1

, (38)

Hf = diag

(
anb

2
n(an + 2bnx[n] + 2)

(bnx[n] + 1)2(an + bnx[n] + 1)2

)
, (39)

where ∇(·) and H represent gradient and Hessian operators,

respectively. The convexity of f(x) follows from the fact that

the Hessian matrix given by (39) is positive semi-definite.

Since it is in a diagonal form with all non-negative elements,

which further implies that all the eigenvalues corresponding

to the Hessian matrix are non-negative. This completes the

proof. �

5Note that compared to S’s optimal power allocation (P2), which we could
solve the non-convex but differentiable problem analytically via its Lagrange
dual approach, the objective function of (P4) is quite sophisticated inasmuch
as the Lagrange method leads to a harder problem to solve analytically.
Therefore, here we employ another technique.
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Since the first term of the objective function to be maxi-

mized is convex, our approach is two-fold: approximating this

convex term with its corresponding concave lower bound, and

applying SCA in an iterative manner. By doing so, we are able

to reach an approximate solution with guaranteed convergence.

Specifically, we replace the first convex term (P3) with its first

order Taylor expansion at {P k
J [n]}

N
n=1, which is defined as the

given transmit power of J at iteration k. It is worth mentioning

that based on first-order condition [39], the first order Taylor

approximation at the local point x0 ∈ RN×1 provides a global

under-estimator of a convex function f(x), i.e.,

f(x) ≥ f(x0) +∇f(x)
T (x − x0), (40)

where (·)† represents transpose operator. Thus, for any given

local point at iteration k; i.e., Pk
J = {pkJ [n]}

N
n=1, (P3) turns

into an approximated convex problem as

(P4) : maximize
PJ

N∑

n=1

B̂n + ÂnPJ [n]− log

(
1+

Cn

DnPJ [n]+1

)

s.t. C3 and C̃4, ∀n (41)

where

Ân = −
AnBn

(1+An+BnP k
J [n])(1 +BnP k

J [n])
, (42)

B̂n = log

(
1 +

An

BnP k
J [n] + 1

)
, (43)

Note that (P4) is a convex problem for which the Slater’s

conditions can be readily verified, any points P⋆
J and (P⋆

J, λ
⋆)

satisfying the KKT conditions are primal and dual optimal

with zero duality gap, which implies that the dual optimum is

attained. Although problem (P4) can be numerically solved

by any standard convex optimization techniques such as the

interior-point method [39], we are going to step further and

apply Lagrangian method to gain more insight into structure

of the sub-optimal solution and also effectively reduce the

complexity of the algorithm. As such, temporarily dropping

the constraint C̃4, the Lagrange dual function is written as

g (PJ, ν) =

inf
PJ

{
N∑

n=1

[
−ÂnPJ [n]−B̂n+log

(
1+

Cn

DnPJ [n]+1

)
+ν
(
PJ [n]−P̄J

)]
}
,

(44)

where the non-negative scalar ν is the Lagrange multiplier

corresponding to C̃3 in (P5). Then, solving ∇g (PJ, ν) = 0
results in the optimality condition as

1

PJ [n] +
1+Cn

Dn

−
1

PJ [n] +
1

Dn

+ ν − Ân = 0, (45)

which can be rewritten as

PJ
2[n]+

(
2 + Cn

Dn

)
PJ [n]+

[
1 + Cn

D2
n

−
Cn

Dn(ν − Ân)

]
=0, (46)

Finally, solving the equation above while considering con-

straint C̃4; we reach the optimal solution of P⋆
J = {P ⋆

J [n]}
N
n=1

as

P ⋆
J [n] =

min



max








√
4CnDn

ν−Ân

+C2
n−(Cn+2)

2Dn


,
[
ΨH−En

Fn

]

+



,P̂J



 .

(47)

where ν ≥ 0 is the Lagrange multiplier at optimal point, satis-

fying
∑N

n=1 P
⋆
J [n] ≤ P tot

J , which can be attained by a simple

bisection search. We note that (P4) is a lower-bound to (P3)
but with the same constraints, so the solution to (P4), i.e., P⋆

J ,

is no less than that of (P3) at the given point
(
B̂n, Ân,P

k
J

)
.

Similarly, for the FUJ scheme the optimal J power allocation

P⋆
J is obtained as (47) but with setting Ân = 0.

V-C Optimal power splitting ratio

We aim at designing an efficient power splitter at desti-

nation D. For fixed PK and QK, where K ∈{S, J }, the

equivalent sub-problem for optimizing PSR {ζ[n]}Nn=1 of both

GJT and FUJ, is recasted as

(P6) : maximize
ζζζ

N∑

n=1

[
log

(
1 +

Anζ[n]

Bnζ[n] + 1

)]

s.t. C̃14 : 0 ≤ ζ[n] ≤

[
1−

ΨH

ηCn

]

+

, ∀n (48)

where the auxiliary constants for n ∈ {1, 2, · · · , N} are

defined as

An = γS [n]
(
‖QS[n]−WD‖

2 +H2
)−α

2 , (49)

Bn = γJ [n]
(
‖QJ [n]−WD‖

2 +H2
)−α

2 , (50)

Cn = PS [n]β̄
(
‖QS[n]−WD‖

2 +H2
)−α

2

+ PJ [n]β̄
(
‖QJ [n]−WD‖

2 +H2
)−α

2 +N0, (51)

It can be verified from Lemma 2 that the problem (P6) is

concave and its objective function is monotonically increasing.

Lemma 2. Let x > 0 be a scalar variable and a and b
be positive constants. Define f(x) = log

(
ax

bx+1 + 1
)

. Taking

the first and the second derivative of f(x) with respect

to x results in Df(x) = a
(bx+1)(ax+bx+1) and D2f(x) =

−a(2abx+a+2b(bx+1))
(bx+1)2(ax+bx+1)2 respectively, where D is the differenti-

ation operator. Since for any value of x in the domain of f
we have Df(x) > 0 and D2f(x) < 0, this illustrates that

the function is strictly concave being monotonic increasing.

Besides, we know that the log-product function or equivalently

h =
∑

log(x) where x = {xi}
N
i=1 is concave and non-

increasing with respect to each argument xi. Therefore, from

the vector composition law [39] one can readily conclude that

g(x) = hof(x) = h(f(x1), f(x2), · · · , f(xN )) is concave.

Therefore, the analytical solution for ζ⋆ for GJT scenario

can be readily obtained as

ζ⋆[n] =

[
1−

ΨH

ηC[n]

]

+

, (52)
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For FUJ and WoJ, replacing the constants Bn = 0 and Cn =

PS [n]β̄
(
‖QS[n]−WD‖

2 +H2
)−α

2 +N0 with (50) and (51),

respectively, one can apply similar approach in (52) to obtain

the optimal solution ζζζ⋆.

V-D Optimal UAV-source trajectory design

We now aim at optimizing the approximated path of S of-

fline for the three schemes in terms of ASR under given

the other variables. The corresponding sub-problem of S-

trajectory design for GJT is reformulated as

(P7) : maximize
QS

N∑

n=1

logΦ1(QS [n])

s.t. C5− C7, C11− C13,

C̃15 : Cn

(
‖QS[n]−WD‖

2+H2
)−α

2+Dn≥ΨH , (53)

where

Φ1(QS [n]) =

1+An

(
‖QS[n]−WD‖

2+H2
)−α

2

1+Bn

(
‖QS[n]−ŴE‖2− 2RE‖QS[n]−ŴE‖+H̃2

)−α
2

, (54)

An=
ζ[n]γS [n]

ζ[n]γJ [n] (‖QJ [n]−WD‖2 +H2)
−α

2 + 1
, (55)

Bn=
γS [n]

γJ [n]
(
‖QJ [n]−ŴE‖2+2RE‖QJ [n]−ŴE‖+H̃2

)−α
2

+1

, (56)

Cn=ηβ̄ (1− ζ[n])PS [n], (57)

Dn=η (1−ζ[n])
[
PJ [n]β̄

(
‖QJ [n]−WD‖

2+H2
)−α

2+N0

]
, (58)

The optimization problem (P7) is non-convex due to the fact

that the objective function is not concave with respect to QS[n]
and the constraints C11 and C̃15 are not convex, therefore, it is

hard to solve optimally. To simplify it, we reformulate (P7) by

introducing the slack variables T = {T [1], T [2], · · · , T [N ]}
and U = {U [1], U [2], · · · , U [N ]} and obtain

(P8) : maximize
QS,T,U

N∑

n=1

log
1 +AnT

−α
2 [n]

1 +BnU−α
2 [n]

s.t. C5− C7, C11− C13,

C̃15 : CnT
−α

2 [n]+Dn ≥ ΨH ,

C16 : ‖QS[n]−WD‖
2+H2−T [n] ≤ 0,

C17 : ‖QS[n]−ŴE‖
2−2RE‖QJ [n]−ŴE‖+H̃

2−U [n]≥0,
(59)

Note that C16 must hold with equality at the optimal point,

otherwise by decreasing T [n] one can increase the value of

objective function without violating any constraints, similarly

for C17. Then (P7) and (P8) are equivalent and have the

same optimal points. Next, based on Lemma 3, we observe

that the objective function of (P8) is in the form of convex-

minus-convex.

Lemma 3. Let define the function f(x; a, b) = log(1+ ax−b)
with non-negative parameters a and b. Taking the first and

second derivatives of the function with respect to x yields

Df = −
ab

x (a+ xb)
, D2f =

ab
(
a+ (b+ 1)xb

)

x2 (a+ xb)
2 , (60)

where f(x) is convex as D2f ≥ 0. Note that we implicitly

take the extended-value extension of f(x), i.e., f̃(x), which

is defined ∞ outside the domain of f(x) for the latter result.

Thus, the summation of convex functions results in a convex

function. This completes the proof.

Lemma 4. Let x be a vector of variables {xi}
N
i=1 and

a ∈ RN×1 be a constant vector . The function of negative

norm-squared of this two vectors; f(x) = −‖x− a‖2, which

obviously is a concave function with respect to the vector x,

has a convex upper-bound given by

−‖x− a‖2 ≤ ‖x0‖
2 − 2 (x0 − a)

†
x− ‖a‖2, (61)

Proof. See appendix B. �

Using Lemmas 3 and 4, we reformulate (P8) in an approxi-

mated convex form by having concave objective function with

convex feasible set as

(P9) : maximize
QS,T,U

N∑

n=1

ÂnT [n]− log
(
1+B[n]U−α

2 [n]
)

s.t. C5− C7,

C̃11 : D̃2+‖Qk
S‖

2−2
(
Qk

S−Q
k
J

)†
QS [n]−‖Q

k
J‖

2 ≤ 0

C12− C13, C̃15 :

[
ΨH−Dn

Cn

]

+

T
α
2 [n]≤1, C16,

C̃17 : 2RE‖QS [n]−ŴE‖−2
(
Qk

S−ŴE

)†
QS[n]−U [n]+H̃≤0,

(62)

where H̃
∆
= ‖Qk

S[n]‖
2 − ‖ŴE‖

2 − H̃2. Besides,

Ân = −
αAn

2Tn

(
An + T

α
2

n

) , (63)

Note that C̃11 and C̃17 follow from Lemma 4. Additionally,

using C16 implies that T is non-negative such that T [n] ≥ H .

Therefore, for H ≥ 1, C̃15 is regarded as a convex constraint,

and therefore, (P9) being a convex problem can be optimally

solved by any known solvers, here, we use CVX [40]. Further,

for FUJ, the corresponding sub-problem of S-trajectory design

is similar to (P7) by replacing (55) with A[n] = ζ[n]γS [n],
and following similar approach taken above, the solution of

that problem can be obtained.

Finally, for the conventional case WoJ, the sub-problem

of S path planning with SWIPT at destination and partially

known E location is reformulated as

(P10) : maximize
QS

N∑

n=1

logΦ1(QS [n])

s.t. C5− C7,C12,

C̃15 : Cn

(
‖QS[n]−WD‖

2+H2
)−α

2+Dn ≥ ΨH , (64)
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where

An = ζ[n]γS [n], Bn = γS [n],

Cn = ηβ̄ (1−ζ[n])PS [n], Dn=η (1−ζ[n])N0. (65)

which is non-convex because of Lemma 3 or non-convex con-

straint C̃15, and therefore we obtain a convex approximated

problem of (P10) as

(P11) : maximize
QS,T,U

N∑

n=1

[
−ÂnT [n]−log

(
1+BnU

−α
2 [n]

)]

s.t. C5− C7,C12,

C̃15 :

[
ΨH −Dn

Cn

]

+

T
α
2 [n] ≤ 1,

C16 : ‖QS[n]−WD‖
2 +H2 − T [n] ≤ 0,

C̃17 : 2RE‖QS [n]−ŴE‖−2
(
Qk

S [n]−ŴE

)†
QS [n]−U [n]+H̃≤0,

(66)

Now (P11) is convex. With an initial point
(
Qk

S,T
k,Uk

)
,

we can solve it optimally with CVX.

V-E Optimal UAV-jammer trajectory design

We are finally after designing an optimal trajectory of J ,

provided that (PS,PJ, ζζζ,QS) are given. For GJT, we formu-

late the sub-problem of J -trajectory design as

(P12) : maximize
QJ

N∑

n=1

log2 Φ2(QJ [n])

s.t. C8− C11, C13,

C̃15 : En + Fn

(
‖QJ [n]−WD‖

2 +H2
)−α

2 ≥ ΨH , (67)

where for ∀n ∈ {1, 2, · · · , N}, we have

Φ2(QJ [n])=
1+ An

Bn(‖QJ [n]−WD‖2+H2)−
α
2 +1

1+ Cn

Dn(‖QJ [n]−ŴE‖2+2RE‖QJ [n]−ŴE‖+H̃2)
−

α
2 +1

,

(68)

An=ζ[n]γS [n]
(
‖QS[n]−WD‖

2+H2
)−α

2, Bn=ζ[n]γJ [n], (69)

Cn=γS [n]
(
‖QS[n]−ŴE‖

2−2RE‖QS[n]−ŴE‖+H̃
2
)−α

2

, (70)

En=η (1−ζ[n])
[
PS [n]β̄

(
‖QS [n]−WD‖

2+H2
)−α

2+N0

]
, (71)

Dn=γJ [n], Fn = ηβ̄ (1− ζ[n])PJ [n]. (72)

Reformulating problem (P12) by introducing the

slack variables S = {S[1], S[2], · · · , S[N ]} and

V = {V [1], V [2], · · · , V [N ]} yields

(P13) : maximize
QJ,S,V

N∑

n=1

log




1 + An

BnS
−

α
2 [n]+1

(1 + Cn

DnV
−

α
2 [n]+1




s.t. C8− C11, C13,

C̃15 : [ΨH − En]+ S[n]
α
2 ≤ Fn,

C16 : ‖QJ [n]−WD‖
2+H2−S[n]≥0, C17 : S[n]≥0,

C18 : ‖QJ [n]−ŴE‖
2+2RE‖QJ [n]−ŴE‖+H̃

2−V [n]≤0,
(73)

Lemma 5. Define the bivariate function f(x, y) =
log (1+a1 exp(x))+log (1+a2 exp(y)) , x, y > 0 with the non-

negative parameters a1 and a2 and the constraint a ≥ 1.

By taking the first and second derivative of the function with

respect to the variable x and obtaining the corresponding

gradient and Hessian of f , one can reach at

∇(f) = Df =

[
a1e

x

1 + a1 exp(x)
,

a2e
y

1 + a2 exp(y)

]†
, (74)

H(f) = D2f =

[
a1e

x

[1+a1 exp(x)]2
0

0 a1e
y

[1+a1 exp(y)]2

]
, (75)

Since matrix H is positive semidefinite for t > 0, the

function f(x, y) is convex. Therefore, its first Taylor expansion

providing a global under-estimator of f(x, y) at point (x0, y0)
is given by

f(x, y) ≥

f(x0, y0)+

[
a1e

x0

1+a1 exp(x0)
,

a2e
y0

1+a2 exp(y0)

]
(x−x0, y−y0)

†.

(76)

Based on Lemma 5, the objective function of (P13) is

in the form of convex-minus-convex with respect to Ṽ [n] =
α
2 logV [n] and S̃[n] = α

2 logS[n], i.e., it is still non-convex.

Hence, the approximated convex problem corresponding to

(P13) can be obtained as

(P14) : maximize
QJ,S̃,Ṽ

N∑

n=1

fLB[n]−log
(
1+b1e

S̃[n]
)
−log

(
1+b2e

Ṽ [n]
)

s.t. C8− C10, C13,

C̃11 : D̃2+‖Qk
J‖

2−2
(
Qk

J−Q
k
S

)†
QJ [n]−‖Q

k
S‖

2≤0,

C̃15 : [ΨH−En]+ exp(S̃[n])≤Fn,

C̃16 : 2
(
Qk

J [n]−WD

)†
QJ [n]−exp

(
2

α
S̃[n]

)
+H1≥0,

C̃18 : ‖QJ [n]−ŴE‖
2+2RE‖QJ [n]−ŴE‖+H̃

2≤In+JnṼ [n],
(77)

where H1 = −‖Qk
J [n]‖

2 + ‖ŴD‖
2 + H2 and the concave

lower-bound function fLB is given by

fLB[n]
∆
=

a1 exp
(
S̃k[n]

)

1 + a1 exp
(
S̃k[n]

) S̃[n]+
a2 exp

(
Ṽ k[n]

)

1 + a2 exp
(
Ṽ k[n]

) Ṽ [n],

(78)

where a1 = 1+An

Bn
, a2 = 1

Dn
, b1 = 1

Bn
, b2 = 1+Cn

Dn
, In =(

1− 2
α Ṽk[n]

)
exp

(
2
α Ṽk[n]

)
, and Jn = 2

α exp
(

2
α Ṽk[n]

)
.

Note that constraints C̃11, C̃16, and C̃18 are obtained by

substituting the non-convex terms of the left hand side con-

straints C11, C16, and C18 of (P13) with their approximated

convex expressions using Lemma 4. Since (P14) is now

convex, we use CVX and [41] to solve it, given an initial point

(Qk
J, S̃

k, Ṽk), where the superscript k denotes iteration index.

Further, to optimize J -trajectory for FUJ, we solve (P13) by

removing the terms involving S̃[n] from its objective function.
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Algorithm 1: Proposed iterative algorithm

1: Initialize: Set initial feasible points P
(0)
S , P

(0)
J , ζζζ(0),

Q
(0)
S , and Q

(0)
J , as well as put the initial values of slack

variables T(0) and U(0), S̃(0) and Ṽ(0), and let k = 0;

2: Repeat:

3: k ← k + 1;
4: Given P

(k−1)
J , ζζζ(k−1), Q

(k−1)
S , and Q

(k−1)
J solve (P2)

using (28) updating P
(k)
S ;

5: Given P
(k)
S , P

(k−1)
J , ζζζ(k−1), Q

(k−1)
S , and Q

(k−1)
J ,

solve (P4) via updating P
(k)
J using (47);

6: Given P
(k)
S , P

(k)
J , Q

(k−1)
S , and Q

(k−1)
J , update ζζζ(k)

using (52);

7: Given P
(k)
S , P

(k)
J , ζζζ(k), Q

(k−1)
S , Q

(k−1)
J , T(k−1), and

U(k−1) solve (P9) for GJT/FUJ and (P11) for WoJ,

updating Q
(k)
S , T(k), and U(k);

8: Given P
(k)
S , P

(k)
J , ζζζ(k), Q

(k)
S , Q

(k−1)
J , S̃(k−1), and

Ṽ(k−1) solve (P14) updating Q
(k)
J , S̃(k), and Ṽ(k);

9: Until the absolute increase of the objective function is

below the threshold ǫ;
10: Return:

P⋆
S ← P

(k)
S , P⋆

J ← P
(k)
J , ζζζ⋆ ← ζζζ(k), Q⋆

S ← Q
(k)
S ,

Q⋆
J ← Q

(k)
J ;

V-F Overall algorithm

In order to solve problem (P1) by using BCD method for

the jammer-included scenarios, we jointly optimize UAVs’

transmit power PS and PJ, destination’s PSR factor ζζζ, as well

as UAV-source and UAV-jammer’s trajectories QS and QJ

alternatively via solving sub-problems (P2), (P3), (P6), (P7),

and (P12), respectively. We summarize the detail of overall

iterative solution in Algorithm 1.

Now, aiming at convergence analysis of Algorithm 1

let define the objective value of original problem; i.e.,

(P1), at iteration k as R̄
(
Pk

S,P
k
J, ζζζ

k,Qk
S,Q

k
J

)
. Similar def-

initions are taken for the objective values of problems

(P4), (P9), and (P14) defined as Θlb

(
Pk

S,P
k
J, ζζζ

k,Qk
S,Q

k
J

)
,

Ξlb

(
Pk

S,P
k
J, ζζζ

k,Qk
S,Q

k
J

)
, Ωlb

(
Pk

S,P
k
J, ζζζ

k,Qk
S,Q

k
J

)
, respec-

tively. Now, we prove the convergence of Algorithm 1 in what

follows.

R̄
(
Pk

S,P
k
J, ζζζ

k,Qk
S,Q

k
J

) (a)

≤ R̄
(
P

(k+1)
S ,Pk

J, ζζζ
k,Qk

S,Q
k
J

)

(b)
= Θlb

(
P

(k+1)
S ,Pk

J, ζζζ
k,Qk

S,Q
k
J

)

(c)

≤ Θlb

(
P

(k+1)
S ,P

(k+1)
J , ζζζk,Qk

S,Q
k
J

)

(d)

≤ R̄
(
P

(k+1)
S ,P

(k+1)
J , ζζζk,Qk

S,Q
k
J

)

(e)

≤ R̄
(
P

(k+1)
S ,P

(k+1)
J , ζζζ(k+1),Qk

S,Q
k
J

)

(f)
= Ξlb

(
P

(k+1)
S ,P

(k+1)
J , ζζζ(k+1),Qk

S,Q
k
J

)

(g)

≤ Ξlb

(
P

(k+1)
S ,P

(k+1)
J , ζζζ(k+1),Q

(k+1)
S ,Qk

J

)

(h)

≤ R̄
(
P

(k+1)
S ,P

(k+1)
J , ζζζ(k+1),Q

(k+1)
S ,Qk

J

)

(i)
= Ωlb

(
P

(k+1)
S ,P

(k+1)
J , ζζζ(k+1),Q

(k+1)
S ,Qk

J

)

(j)

≤ Ωlb

(
P

(k+1)
S ,P

(k+1)
J , ζζζ(k+1),Q

(k+1)
S ,Q

(k+1)
J

)

(k)

≤ R̄
(
P

(k+1)
S ,P

(k+1)
J , ζζζ(k+1),Q

(k+1)
S ,Q

(k+1)
J

)
, (79)

where the inequalities (a), (c), (e), (g), and (j) all follow

from the definition of the optimal solution to the problems

(P2), (P4), (P6), (P9), and (P14), respectively. Besides, the

equality (b) holds since the first order Taylor approximation

is adopted and that the objective function of problems (P3)

and (P4) share the same value at Pk
J. Similar justifications

can be explained for the equalities (f) and (i) at points Qk
S

and Qk
J, respectively. Further, (d), h, and (k) follow from

the fact that the objective functions of problems (P4), (P9),

and (P14) are tight lower-bounds to that of (P3), (P7), and

(P12), respectively. The last inequality in (79) indicates that

the objective value of (P1) is non-decreasing over the iteration

index. As well as that, the optimal value of (P1) is finite,

i.e., the optimal ASR is upper bounded by a finite value,

which means the proposed iterative Algorithm 1 is guaranteed

to converge. Due to the convexity of the approximated sub-

problems (P4), (P9), and (P14), the proposed algorithm is

appropriate for UAV applications as it can be efficiently

implemented in practice as having a complexity of O(kNm),
where m is the number of variable blocks, which means the

solution can be obtained at worst-case in polynomial time.

VI NUMERICAL RESULTS

In simulations, unless otherwise stated, we adopt the fol-

lowing parameters. The mission time duration, in consistency

with [42] is chosen T = 2s which is discretized into N = 100
equal time slots to balance the accuracy and computational

complexity, the total power budget divided equally between

UAVs is P tot
S + P tot

J = 20 dBm with the maximum instanta-

neous transmit power of 2mW and PAPR ratio of 4, leading to

average transmission power 0.5mW of each. Considering the

normalized transmission bandwidth, we set N0 = −40 dBm,

ΨH = −20 dBm with power conversion efficiency factor

η = 0.7 in (19). We set γ0 = 40dB and path-loss exponent

α = 2.5. We set H = 1.5 with R = 2.5H (radius of permitted

flying circular region centered at D), WD = (0, 0), L = R
2

(distance between ground destination and geometric center of

the eavesdropper), ŴE = (L, 0), where the exact location

of E is a random point within the circular region centered

at ŴE with radius RE = H
5 , and safety distance between

UAVs D̃ = H
10 . β̄ is obtained by averaging over 105 channel

realizations over the area of interest. In all plots, we compare

FUJ, GJT, and WoJ in terms of the following aspects:

• convergence of the proposed iterative algorithm, demon-

strated by variation of average secrecy rate with respect to

iteration index wherein we utilized absolute error function

ferr(k)= ‖R̄
opt,k
sec − R̄opt,k−1

sec ‖ as the termination criteria

similar to [10],
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Fig. 2: Average secrecy rate against iteration.

• optimal UAVs’ trajectory,

• instantaneous secrecy rate,

• ASR and average harvested energy (AHE) at D,

• instantaneous secrecy energy efficiency (ISEE) defined as

the ratio between R̄opt
sec[n] and PS [n] + PJ [n],

• UAVs’ transmit power over flying horizon,

• impact of estimated location of E on the ASR and AHE

• harvested power efficiency defined as
P̃H [n]

PS [n]+PJ [n]
.

In particular, in optimal trajectory comparisons, we adopt the

so-called baseline scheme for UAVs initial trajectory; i.e.,

both S and J fly with their maximum speeds towards as close

as D and the geometric center of estimated location of E ,

respectively. Then, both UAVs hover above the corresponding

points as long as possible in order to send the data and conduct

jamming transmission, respectively, followed by heading with

their maximum speeds towards final location, provided that the

mission time is sufficient. Otherwise, they turn from a midway

heading towards the final locations.

Fig. 2 illustrates the convergence plot of the proposed

iterative algorithms for FUJ, GJT, and WoJ. We plot the

ASR as the number of iteration k varies. We see all schemes

converge with terminating threshold ǫ = 10−2, validating

our analysis in terms of convexity of the approximated sub-

problems. It should be mentioned that Algorithm 1 for all the

scenarios converges quite quickly in few iterations making it

an efficient solution for the considered UAV application.

Fig. 3 illustrates the optimal UAVs’ trajectory for FUJ,

GJT, and WoJ using the proposed sequential algorithm. Note

the green-edge and black-edge circles denote the exact lo-

cation of D and E , respectively. We observe that, for FUJ

scheme, S gets the closest to D among all, with substantially

improved ASR. For FUJ, the operation time and energy

constraints can make J head directly to the best possible

position for jamming, which is much shorter than GJT.

Fig. 4 compares ISR of FUJ, GJT, and WoJ using the pro-

posed optimization methods and the aforementioned baseline

scheme, and demonstrates our method leads to a significant

performance improvement. We also observe that FUJ brings

always positive secrecy rate; nonetheless, WoJ provides zero

ISR at the beginning and end of the mission. Note that

since our objective function formulated to be optimized was
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Fig. 3: Optimal trajectory of UAVs for GJT, FUJ, and WoJ

scenarios.
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Fig. 4: Instantaneous secrecy rate verses time

the average secrecy rate over the mission time, so the ISR

performance is not necessarily expected to be improved at

all the mission time, though, we observe significant out-

performance compared to the base-line curves on the whole.

Particularly, it can be seen from the optimal curves belong

to the FUJ, GJT, and WoJ schemes in Fig. 4 that by jointly

optimizing transmit power of UAVs as well as their trajectories

alongside with the PSR factor we could obtain approximately

2, 1, and 0.5 bits/S/Hz ISR improvements during middle of

the mission, respectively.

Fig. 5 illustrates ASR and AHE at D vs RE (estimation

error of E’s location) in FUJ, GJT, WoJ, and demonstrates the

resultant ASRs decrease as RE increases. We observe AHE

of WoJ decreases, AHE of FUJ remains approximately un-

changed, AHE of GJT increases. This can be interpreted that,

as the uncertainty of eavesdropper’s location increases (corre-

sponding to a larger RE), for FUJ and WoJ, UAV S flies fur-

ther and has longer distance to D, resulting in decreased main

link capacity and AHE. However, for GJT, since UAV J has

quite less impact on secrecy as the wiretap link might be better

than the main link due to estimation erroneous, UAV S tries to

get as close as possible to D in a straight way for improving

ASR which, of course, makes AHE increased.

Fig. 6 is presented to draw insight into the impact of
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Fig. 6: Average Secrecy Rate vs. destination-eavesdropper

distance. y-coordinate of the eavesdropper is set to zero.

the location of the eavesdropper. As it can be clearly seen

from the figure, the farther the eavesdropper’s location from

the destination becomes, the higher the ASR performance is

obtained, as expected, for all the scenarios. Notably, having

the highest slop the curve belong to the GJT scheme is more

sensitive to this parameter in comparison with the others,

which means eavesdropper’s location has more impact on the

ASR performance of the GJT which should be considered in

system design. Further, when E gets closer to D the proposed

jamming-included scenarios could obtain positive secrecy rate

though the WoJ scheme lacks. Particularly, the FUJ scheme

regardless of the eve’s location provides the best secrecy

performance.

Fig. 7 shows ISEE vs. mission time for FUJ, GJT, and WoJ

and demonstrates the significant performance improvement of

FUJ. This ISEE plot provides a trade-off between ASR and the

cost of energy level for communications. We observe, for all

cases, decreasing the distances between (S, J ) and intended

ground nodes (D, E) leads to higher ISEE.

Fig. 8 shows UAVs’ transmit power over time horizon. For

FUJ, at the beginning S decreases its power to against infor-

mation leakage while J increases power to satisfy the required

minimum energy constraint at destination. When S and J fly
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Fig. 7: Secrecy energy efficiency vs. mission time.
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Fig. 8: Transmit power vs. time.

to proper positions for data transmission and jamming, trans-

mit power varies accordingly. For GJT, jamming power re-

mains lowest to avoid degradation of ASR. Finally, WoJ keeps

its power resource for the best use when having a better main

channel quality with keeping S trajectory to be as far as possi-

ble from the estimated location of E . Interestingly, we observe

that even with a significantly lower transmission power of

UAV-jammer for the GJT compared to the UAV-source, the

secrecy performance of the jammer-included scenarios could

be enhanced.

Fig. 9 is provided to demonstrate how the PSR factor varies

to make the adequate energy to be harvested by the EH

component of the destination for all the three scenarios. We

observe that for the GJT the more fraction of the received

signals should be dedicated for energy scavenging to satisfy

the energy requirement of the destination node over the time

horizon.

Fig. 10 illustrates instantaneous harvested power efficiency

for FUJ, GJT, and WoJ, with respective fraction of total power

budget PS [n] + PJ [n] and the ratio of total harvested power

to the transmit network power obtained as 6.8%, 1.8% and

7.8%, respectively. We see that, for all cases, energy harvesting

constraint is satisfied and the harvested power is well above the

minimum requirement ΨH , particularly WoJ. This indicates

that how we can design secure as well as energy efficient UAV-
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based communications protocols which is a good direction for

our future work.

VII CONCLUSION

We have considered a 2-UAV based wireless communi-

cation system. It consists of two flying cooperative UAVs,

a ground destination node equipped with SWIPT technique,

and a passive ground eavesdropper. One UAV acts as source

transmitting confidential information to destination, while the

other UAV propagates jamming to assist destination with anti-

eavesdropping and energy harvesting. Assuming that UAVs

have imperfect channel estimation eavesdropper, we have pro-

posed two transmission schemes: FUJ and GJT, transmitting

jamming signals that are a priori known and unknown at des-

tination, respectively. Under such setting, we have formulated

an average secrecy rate (ASR) maximization problem in terms

of trajectory design and power controlling, and proposed an

iterative algorithm based on the block coordinated descent and

successive convex approximation. Via this algorithm, we have

found the best transmit power and trajectory of both UAVs, as

well as the best power splitting ratio of destination. Finally, we

have evaluated the proposed schemes by simulations in terms

of ASR, ISR, AHE, and demonstrated their effectiveness. In

particular, FUJ provides by far the highest ASR improvement

compared to GJT and WoJ (the benchmark schemes).

APPENDIX A

APPENDIX A: DERIVATION OF MAXIMUM IE

First let mention a useful lemma below.

Lemma 6. Let define the bivariate function as

f(x, y) = log

(
1 +

(
x2 + h

)−a

(y2 + h)
−a

+ b

)
, (A.1)

where x, y ≥ 0 and a, b, and h are positive constants. Its

gradient can be calculated as

∇x,yf(x, y) =

[
− a

2c1(c1+c2+n)
ac1

2c2(c2+n)(c1+c2+n)

]
, (A.2)

where auxiliary variables defined as c1
∆
= (H + x)−a/2 and

c2
∆
= (H + y)−a/2 are always positive. From (A.2) it follows

that the inequalities f(x, y) > f(x + ǫ, y) and f(x, y) <
f(x, y + ǫ) hold for any positive-valued ǫ.

Following from Lemma 6 we conclude that the expression

given by (5) is a monotonically decreasing function with

respect to the term ‖QS(t) − WE‖ and a monotonically

increasing function with respect to the term ‖QJ(t) −WE‖.
Then, from linear algebra and applying the regular and the

reverse triangular inequality, one can obtain as

‖QJ(t)−WE‖ ≤ ‖QJ(t)− ŴE‖+ ‖ŴE −WE‖

≤ ‖QJ(t)− ŴE‖+RE . (A.3)

and

‖QS(t)−WE‖ ≥ |‖QS(t)− ŴE‖ − ‖ŴE −WE‖|

≥ |‖QS(t)− ŴE‖ −RE |. (A.4)

Then, plugging the lower and upper deterministic expressions

respectively given in (A.3) and (A.4) into (5), leads to the final

expression of Imax
E (t) as given in (6).

APPENDIX B

APPENDIX B: PROOF OF LEMMA 4

We commence from the concavity of the function f(x) =
−‖x− a‖2 with the gradient equal to ∇f(x) = −2(x− a) as

f(x)
(a)

≤ −‖xk − a‖2 − 2(xk − a)(x− xk)

= −‖xk‖2 + 2a†xk − ‖a‖2 − 2(xk − a)†(x− xk)

= ‖xk‖2 − ‖a‖2 − 2(xk − a)†x (B.1)

where (a) follows after the fact that the first order Taylor

approximation of a concave function is a global affine over-

estimator of the function f(x) at the point x0.

REFERENCES

[1] S. Hayat, E. Yanmaz, and R. Muzaffar, “Survey on unmanned aerial
vehicle networks for civil applications: A communications viewpoint,”
IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp. 2624–2661, 2016.

[2] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with
unmanned aerial vehicles: opportunities and challenges,” IEEE Commun.
Magazine, vol. 54, no. 5, pp. 36–42, 2016.

[3] M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, “A
tutorial on uavs for wireless networks: Applications, challenges, and
open problems,” IEEE Commun. Surveys Tuts., 2019.



14

[4] B. Li, Z. Fei, and Y. Zhang, “Uav communications for 5g and beyond:
Recent advances and future trends,” IEEE Internet of Things J., vol. 6,
no. 2, pp. 2241–2263, 2018.

[5] Facebook, “Connecting the world from the sky,” Facebook Technical
Report, 2014.

[6] H.-M. Wang, X. Zhang, and J.-C. Jiang, “Uav-involved wireless
physical-layer secure communications: Overview and research direc-
tions,” IEEE Wireless Commun., vol. 26, no. 5, pp. 32–39, 2019.

[7] T. D. Ponnimbaduge Perera, D. N. K. Jayakody, S. K. Sharma,
S. Chatzinotas, and J. Li, “Simultaneous wireless information and power
transfer (swipt): Recent advances and future challenges,” IEEE Commun.
Surveys Tuts., vol. 20, no. 1, pp. 264–302, 2018.

[8] Y. Wang, W. Yang, X. Shang, and Y. Cai, “Energy-efficient secure
transmission for uav-enabled wireless powered communication,” in 2018

10th International Conference on Wireless Communications and Signal

Processing (WCSP), 2018, pp. 1–5.

[9] L. Zhang, H. Zhao, S. Hou, Z. Zhao, H. Xu, X. Wu, Q. Wu, and
R. Zhang, “A survey on 5g millimeter wave communications for uav-
assisted wireless networks,” IEEE Access, vol. 7, pp. 117 460–117 504,
2019.

[10] X. Sun, W. Yang, Y. Cai, Z. Xiang, and X. Tang, “Secure transmissions
in millimeter wave swipt uav-based relay networks,” IEEE Wireless

Commun. Lett., vol. 8, no. 3, pp. 785–788, 2019.

[11] P. Grover and A. Sahai, “Shannon meets tesla: Wireless information and
power transfer,” in 2010 IEEE international symposium on information
theory, 2010, pp. 2363–2367.

[12] X. Sun, W. Yang, Y. Cai, R. Ma, and L. Tao, “Physical layer security in
millimeter wave swipt uav-based relay networks,” IEEE Access, vol. 7,
pp. 35 851–35 862, 2019.

[13] Z. Yang, W. Xu, and M. Shikh-Bahaei, “Energy efficient uav commu-
nication with energy harvesting,” IEEE Trans. Veh. Technol., vol. 69,
no. 2, pp. 1913–1927, 2020.

[14] A. Yener and S. Ulukus, “Wireless physical-layer security: Lessons
learned from information theory,” Proc. IEEE, vol. 103, no. 10, pp.
1814–1825, 2015.

[15] X. Hong, P. Liu, F. Zhou, S. Guo, and Z. Chu, “Resource allocation for
secure uav-assisted swipt systems,” IEEE Access, vol. 7, pp. 24 248–
24 257, 2019.

[16] X. Sun, D. W. K. Ng, Z. Ding, Y. Xu, and Z. Zhong, “Physical layer
security in uav systems: Challenges and opportunities,” IEEE Wireless

Commun., vol. 26, no. 5, pp. 40–47, 2019.

[17] B. Li, Z. Fei, C. Zhou, and Y. Zhang, “Physical-layer security in space
information networks: A survey,” IEEE Internet Things J., vol. 7, no. 1,
pp. 33–52, Jan 2020.

[18] G. Sun, N. Li, X. Tao, and H. Wu, “Power allocation in uav-enabled
relaying systems for secure communications,” IEEE Access, vol. 7, pp.
119 009–119 017, 2019.

[19] G. Zhang, Q. Wu, M. Cui, and R. Zhang, “Securing uav communications
via trajectory optimization,” in 2017 IEEE Global Communications

Conference, 2017, pp. 1–6.

[20] A. Li, Q. Wu, and R. Zhang, “Uav-enabled cooperative jamming for
improving secrecy of ground wiretap channel,” IEEE Wireless Commun.
Lett., vol. 8, no. 1, pp. 181–184, 2018.

[21] H. Lee, S. Eom, J. Park, and I. Lee, “Uav-aided secure communications
with cooperative jamming,” IEEE Trans. Veh. Technol., vol. 67, no. 10,
pp. 9385–9392, 2018.

[22] Y. Zhou, P. L. Yeoh, H. Chen, Y. Li, R. Schober, L. Zhuo, and
B. Vucetic, “Improving physical layer security via a uav friendly jammer
for unknown eavesdropper location,” IEEE Trans. Veh. Technol., vol. 67,
no. 11, pp. 11 280–11 284, 2018.

[23] Y. Li, R. Zhang, J. Zhang, S. Gao, and L. Yang, “Cooperative jamming
for secure uav communications with partial eavesdropper information,”
IEEE Access, vol. 7, pp. 94 593–94 603, 2019.

[24] A. Li and W. Zhang, “Mobile jammer-aided secure uav communications
via trajectory design and power control,” China Commun., vol. 15, no. 8,
pp. 141–151, 2018.

[25] C. Zhong, J. Yao, and J. Xu, “Secure uav communication with coop-
erative jamming and trajectory control,” IEEE Commun. Lett., vol. 23,
no. 2, pp. 286–289, 2018.

[26] M. Tatar Mamaghani and Y. Hong, “On the performance of low-altitude
uav-enabled secure af relaying with cooperative jamming and swipt,”
IEEE Access, vol. 7, pp. 153 060–153 073, 2019.

[27] G. Zhang, Q. Wu, M. Cui, and R. Zhang, “Securing uav communications
via joint trajectory and power control,” IEEE Trans. Wireless Commun.,
vol. 18, no. 2, pp. 1376–1389, 2019.

[28] A. Mukherjee and A. L. Swindlehurst, “Detecting passive eavesdroppers
in the mimo wiretap channel,” in 2012 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2012, pp. 2809–
2812.

[29] M. Cui, G. Zhang, Q. Wu, and D. W. K. Ng, “Robust trajectory and
transmit power design for secure uav communications,” IEEE Trans.
Veh. Technol., vol. 67, no. 9, pp. 9042–9046, 2018.

[30] I. Q. W. M. I. Yong Zeng, Member and I. Rui Zhang, Fellow, “Accessing
from the sky: A tutorial on uav communications for 5g and beyond,”
arXiv preprint arXiv:1903.05289, 2019.

[31] F. Zhou, Y. Wu, H. Sun, and Z. Chu, “Uav-enabled mobile edge
computing: Offloading optimization and trajectory design,” in 2018

IEEE International Conference on Communications (ICC), 2018, pp.
1–6.

[32] Y. Zeng, R. Zhang, and T. J. Lim, “Throughput maximization for
uav-enabled mobile relaying systems,” IEEE Trans. Commun., vol. 64,
no. 12, pp. 4983–4996, 2016.

[33] S. Zeng, H. Zhang, K. Bian, and L. Song, “Uav relaying: Power allo-
cation and trajectory optimization using decode-and-forward protocol,”
in 2018 IEEE International Conference on Communications Workshops
(ICC Workshops), 2018, pp. 1–6.

[34] A. Goldsmith, Wireless communications. Cambridge university press,
2005.

[35] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless
communication with rotary-wing uav,” IEEE Trans. Wireless Commun.,
vol. 18, no. 4, pp. 2329–2345, 2019.

[36] W. K. Harrison, J. Almeida, S. W. McLaughlin, and J. Barros, “Coding
for cryptographic security enhancement using stopping sets,” IEEE

Trans. Inf. Forensics Security, vol. 6, no. 3, pp. 575–584, 2011.
[37] P. K. Gopala, L. Lai, and H. El Gamal, “On the secrecy capacity of

fading channels,” IEEE Trans. Inf. Theory, vol. 54, no. 10, pp. 4687–
4698, 2008.

[38] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A Unified Convergence
Analysis of Block Successive Minimization Methods for Nonsmooth
Optimization,” arXiv e-prints, p. arXiv:1209.2385, Sep 2012.

[39] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
university press, 2004.

[40] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[41] H. Fawzi, J. Saunderson, and P. A. Parrilo, “Semidefinite approximations
of the matrix logarithm,” Foundations of Computational Mathematics,
2018, package cvxquad at https://github.com/hfawzi/cvxquad.

[42] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation rate maximiza-
tion in uav-enabled wireless-powered mobile-edge computing systems,”
IEEE J. Sel. Areas Commun., vol. 36, no. 9, pp. 1927–1941, Sep. 2018.

http://cvxr.com/cvx
https://github.com/hfawzi/cvxquad

	I Introduction
	II System Model
	II-A System Parameters
	II-B Channel Model

	III Proposed PHY-security Schemes and Instantaneous/Average Secrecy Capacity
	III-A Instantaneous Secrecy Rate (ISR)
	III-B Average Secrecy Capacity

	IV Problem Formulation for Maximizing ASR
	V Problem solution to Maximize ASR
	V-A Optimal Transmit Power of UAV-source
	V-B Optimal Transmit Power of UAV-jammer
	V-C Optimal power splitting ratio
	V-D Optimal UAV-source trajectory design
	V-E Optimal UAV-jammer trajectory design
	V-F Overall algorithm

	VI Numerical Results
	VII Conclusion
	Appendix A: Appendix A: Derivation of maximum  
	Appendix B: Appendix B: proof of Lemma ??
	References

