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Abstract—Faster-than-Nyquist (FTN) signaling has been rec-
ognized as a promising technique for next-generation high
data rate communications. By intentionally reducing the symbol
interval, FTN signaling is capable of transmitting more symbols
than classic Nyquist signaling within the same time period
and bandwidth. However, the intentional non-orthogonality of
the bandlimited signaling pulses imposes severe inter-symbol
interference (ISI), which requires powerful equalization at the
receiver. Hence, we embark on the comparison of time- and
frequency-domain equalization for FTN signaling both by the-
oretical analysis and numerical simulations. It is shown that
frequency-domain equalization fails to reliably detect the FTN
signal with a low FTN packing factor, while the time-domain
equalization still performs well.

Index Terms—FTN signaling,
frequency-domain equalization.

time-domain equalization,

I. INTRODUCTION

Faster-than-Nyquist (FTN) signaling has attracted substan-
tial attention since its discovery in 1970s [1]. In particular,
FTN signaling is capable of increasing the spectral efficiency
by transmitting data symbols faster than the Nyquist rate. In
his pioneering paper [1], Mazo showed that when signaling
transmits 25% faster than Nyquist rate, the minimum Eu-
clidean distance between binary phase shift keying (BPSK)
modulated sinc pulses remains the same, which indicates
that FTN signaling can boost the data rate by 25% without
performance degradation or bandwidth expansion. More im-
portantly, it has been proved that FTN signaling can achieve
a higher Shannon capacity than classic Nyquist signaling
with a non-sinc signaling pulse [2], [3]. Therefore FTN
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signaling has been recognized as bandwidth-efficient signaling
scheme, which has a great potential for supporting high speed
data transmissions in next generation wireless communication
systems [4], [5].

Recent advances of FTN signaling include the signal de-
tection, code design, and related applications. For instance,
in [6], a deep learning assisted FTN detector was presented,
where a deep neural network (DNN) is concatenated to the
factor graph of FTN signaling. By applying a revised message
updating rule, this DNN-based detector is able to obtain supe-
rior error performance compared to that of conventional FTN
detectors with almost the same detection complexity. Besides,
a code based channel shortening scheme was presented in
[7], where a special type of convolutional codes was applied
to absorb the channel memory. Based on these convolutional
codes, strong concatenated codes can be designed straightfor-
wardly. Numerical results show that, incorporating with FTN
signaling, the designed concatenated code not only reduces
the detection complexity but also significantly enhances the
error performance. More importantly, FTN signaling has been
recently applied as an effective paradigm to enhance the
spectral efficiency for various communication applications,
such as multi-carrier transmission [8] and non-orthogonal
multiple access (NOMA) [9].

Although FTN signaling has shown attractive features, it
intentionally introduces intersymbol interference (ISI) at the
transmitter side, which potentially imposes a high detection
complexity. In particular, numerous reduced-complexity time-
domain equalization (TDE) methods have been proposed,
such as the M-algorithm-based Bahl-Cocke-Jelinek-Raviv (M-
BCJR) algorithm of [10], [11]. However, the complexity
of TDE increases exponentially with the ISI-duration. By
contrast, frequency-domain equalization (FDE) relies on a
single-tap multiplication, at the additional fixed complexity
imposed by transforming the time-domain (TD) signal to
the frequency-domain (FD) using the fast Fourier transform
(FFT) [12]. More explicitly, given the circulant nature of
the channel matrix, we can rely on single-tap sub-carrier
equalization in the FD. To exploit the potential performance
gain of FTN signaling, minimum mean square error (MMSE)
based FDE was proposed in [13]. Furthermore, various vari-
ations of FDE have been proposed for FTN detection, such
as the variational inference based method [14], [15], overlap
FDE method [16]. In general, FDE relies on the Gaussian
approximation of data symbols, which however inevitably
results in performance loss. In a nutshell, both the TDE
and the FDE have been widely applied for FTN detection.
However, it has not been concluded in the open literature
which one is more efficient at a given FTN packing factor 7.
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Fig. 1. System model of the FTN signaling system.

In this paper, we resolve this open dilemma for FTN trans-
missions over additive white Gaussian noise (AWGN) chan-
nels. Specifically, both the TD maximum-likelihood sequence
estimation (MLSE) based on Ungerboeck observation model
and the classic MMSE based single-tap FDE are investigated
with special emphasis on their bit error rate (BER) upper
bounds. We show that the detection complexity of the FDE is
much lower than that of the TDE. However, the performance
of the FDE is inferior to that of TDE due to: 1) the Gaussian
approximation of the transmitted symbols; 2) the near-zero
eigenvalues when 7 is small. The simulation results verify the
accuracy of our analysis and show that the TDE outperforms
the FDE both in uncoded and coded systems, albeit at the
cost of higher complexity.

Notations: Boldface capitals and lower-case letters are used
to define a matrix and a vector, respectively; the superscripts
()T, ()*, ()™ and (-)~! denote the transpose, the conjugate,
the Hermitian, and the inverse operations, respectively; Re(-)
denotes the real part of a complex number; Pr{-} denotes the
probability; Iy denotes an identity matrix of dimension N;
E,[], max,[-] and min,[-] denote the expectation, maximum
and minimum operators with respect to the random variable x,
respectively; Q(+) denotes the tail distribution of the standard
normal distribution; o represents both sides of the equation
are multiplicatively connected to a constant; tr[-] denotes
the trace operator; notation (-); denotes the lower triangular
portion of a matrix without the main diagonal.

II. SYSTEM MODEL

Without loss of generality, we consider a point-to-point
FTN system model as shown in Fig. 1. Assume that a
binary phase shift keying (BPSK) modulated symbol vector
x = [z, 21, ...,xN_l]T of length N is transmitted with the
FTN form of

N-1
s(t) = Z xnh (t —n7T), (1)
n=0

where h(t) is the T-orthogonal shaping pulse and 7 is the FTN
packing factor [1]. The received signal is r (t) = s (t) +w (t),
where w(t) is the AWGN process with one-sided power
spectral density (PSD) of Ny. After matched filtering and
sampling at the FTN rate, the received symbol vector y =
[Y0, Y1, .-, yn—1] T is obtained as

y =Gx+mn, 2

where G is a Toeplitz matrix consisting of the ISI taps g; =
JZ5 h(t)h* (t —i7T) dt, such as

90 g-1 g1—-N
g1 90 o g2—-N
G = ) ) ) ) . (3)
gN-1 gN-2 - go

In (2), i denotes the vector of colored noise samples with
covariance matrix E,[nn'] =(Ny/2)G. In principle, FTN
signaling can result in infinite ISI responses [17]. However,
considering all IST taps for equalization is impractical. As a
compromise approach, the authors of [13], [17], consider a
truncated version of G associated with the most recent L ISI
taps, given by

go 9g-1 g-r O 0 0 0
91 9o 9-1 g—r. O 0 0
H-|: . ) )
g - g1 9o g-1 g-r O
g—1 o g-L

0 g9 - 91 9

“)

On the other hand, FDE is performed by inserting a length-

2L cyclic prefix (CP) before applying the shaping filter

and removing the CP (the first and last L samples) after

the matched filter [13]. Specifically, we arrive at H, the

circulant version of matrix H whose first row is given by
{907gla - 9L 07 ceey 07 9grL,9L-1, ~--7gl}-

III. TIME-DOMAIN EQUALIZATION FOR FTN SIGNALING

The optimal TDE for uncoded FTN signals is based on the
MLSE rule of

% = argmax Pr{r (t) |x}. Q)

For general ISI channels, two different observation models
are commonly considered to perform MLSE, namely, the For-
ney observation model [18] and the Ungerboeck observation
model [19], respectively. These two observation models are
equivalent in terms of their detection performance. However,
the Forney observation model can only handle the case where
the noise samples are uncorrelated, i.e., white noise samples,
while the Ungerboeck observation model is also applicable
to colored noise samples. Notice that the FTN signaling
has spectral zeros, when the symbol rate is higher than the
signal bandwidth, i.e., 7 < 1/(1 + ) [20]. In this case, the
Forney observation model cannot be directly derived [21].
Therefore, we consider the MLSE based on the Ungerboeck
observation model to derive a general performance bound.
Note that, Ungerboeck derived a performance bound for the
Ungerboeck observation model of ISI channels in [19], where
the corresponding ISI response is finite. However, when the
channel has an infinite number of ISI components due to
spectral zeros, the MLSE-based detector has to treat part of
the ISI as additional noise. In other words, the detection is
based on H instead of G. According to [19], the metric of
sequence x is defined as

1
J (x) 2 Re {xHy — §go|\x|\2 — xHHLx} , (6)



where

0 O 0 O
g 0 0 - 0
R ™

Conventionally, (6) can be calculated by employing classic
trellis-based algorithms having a complexity exponentially in-
creasing with L. According to (6), the metric of the erroneous
sequence (path) x + e is then given by

J(x+e)
=Re {(x—i—e)Hy— %gOHX + e|*~(x+e)"Hy(x + e)H} .
)

With respect to the trellis structure, a portion of an erro-
neous path that diverges/remerges from/to the correct path
is termed as an error event £ [22]. An error event will be
declared, when the metric J (x + e) is higher than J (x).
To proceed we define the normalized Euclidean distance as
a2 (e) 2 35 ¢ Ge and the normalized effective Euclidean
distance as d2 (e) 2 5 €' He, respectively, where Ej is
the average energy per information bit. Then we have,

J(x+e)—J(x)
=Re {eHy — gox'le — %go||e||2 —2eM"Hx — eHHLe}
=Re {eHy -
Substituting (2) into (9) yields

J(x+e)—J(x)=Re {e"'n+e" (G—H)x—EydZ; (e) }.
(10)

e"Hx — EydZ; (e)} . )

It can be observed in (10) that the term e!! (G — H) x repre-
sents the influence of the residual ISI. Based on (10), the per-
formance analysis can be carried out under the Gaussian as-
sumption of el (G — H) x. Let us define the equivalent noise
as ¢ 2 Re {ef'n + e (G — H) x} whose mean and variance
are E[] = 0 and E [¢c"] = NoEyd? (e) + 2Ey0%;, respec-
tively, where o £ Q—ng]Ex [x? (G — H) ee (G — H)"]
denotes the normalized variance of the residual ISI. Based
on the Gaussian assumption, the occurrence probability
Pr{€le} of an error event is equivalent to the probability
Pr{< > Eyd%; (e)}. By invoking the Gaussian Q-function,
Pr{€le} is given by

By o @ (©)

r{€le} < —
Priie} sQ (| yodie(e) it
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Based on (11), the BER bound can be derived by applying
the union bound. Let us consider a set of error events
U(€) £ {€|Ng =i, Le (i) = Le, we = d%; (e)}, where Ng
is the number of erroneous bits due to the error event &,
Lg (i) = Lg is the error event length, and wg = d2; (e)

denotes the corresponding normalized effective Euclidean
distance. Furthermore, let us denote the size of U (£) as
Ny (€), and let wyax and wy;, denote the maximum and
minimum value of wg, respectively. We obtain the cumulative
information-weight enumerator (CI-WE) of [22]-[24] as

Z B1 ,WE st = Zl Z 2Lg ng
o (12)

where the term 1 / 2Le(1)=1 ig the normalization factor assum-
ing that each legitimate transmitted sequence x is produced
with equal probability [25]. Thus, we can apply the simplified
union bound to find the estimated BER based on (12). By
assuming that only a single error event can happen for each
FTN transmission, the BER can be estimated as [26]

Eb weg

N .
2
PysY BiweQ| [ o (13)
£ N Ny

0.2
d2 (e) + ZTIOSI
where d% (e) denotes the normalized Euclidean distance
corresponding to the error event £. It should be noted
that (13) is not strictly an upper bound of the BER due
to the simplifications of using the union bound and the
Gaussian assumption of the residual ISI. An asymptotical
approximation can be obtained by considering the expec-
tation the residual ISI variance, i.e., by setting o =
By (3 (G — H)ee"(G — H)"x). It can be observed
from (13) that the residual ISI will affect the exponential
behaviour of the BER for TDE, leading to an error floor in
the high-SNR region. If the value of o is negligible, at
the asymptotically high SNR, the BER for TDE will decay
exponentially with the minimum effective Euclidean distance
of error events. To calculate (13), we have to know the
effective Euclidean distance corresponding to each error event.
However, finding the distance spectrum is not straightforward
and conventional methods cannot be directly applied for
obtaining the distance spectrum due to the fact that the
constellation mapping can be nonlinear. Therefore, we apply
the method in [26] to find the spectrum, which is designed to
compare all possible legitimate codewords using an efficient
trellis search. Please refer to [26] for more details.

When the FTN signal is channel-coded, the optimal de-
tection rule is the maximum a posteriori (MAP) rule. The
MAP rule based on Ungerboeck observation model was firstly
derived in the appendix of Ungerboeck’s original paper [19].
However, a feasible implantation, i.e., BCJR algorithm based
on the Ungerboeck observation model, was only introduced
as late as in 2005 [27]. It should be noted that the a priori
information gleaned from the channel decoder can be directly
fed back to the TD equalizers relying on the BCJR algorithm,
which is an important difference with respect to the FD
equalizers of the following section.

IV. FREQUENCY-DOMAIN EQUALIZATION FOR FTN
SIGNALING

Mathematically, the eigenvalue decomposition of a circu-

lant matrix is expressed as H = FHAF, where F is the



discrete Fourier transform (DFT) matrix with the element on
. . j2mik
the ith row and kth colum.n being F” = ﬁ exp(—%)
and A = diag{)\1, ..., Ay} is the matrix of sorted eigenvalues
of H. To employ FDE, the received samples are transformed

to the FD as
Fy=y;=FHx+Fn= FFYAFx + ns

= Axy +ny, (14)

where 1y has an autocorrelation function given by NoG and
G = FGFH",

Taking the identical symbol probabilities of x into consid-
eration, we have the FD mean and covariance matrix for xy,
given by 0 and F,Iy, respectively. Consequently, the MMSE
estimator can be used as',

Xy :argmxianf(f—fo2 = Wyy. (15)
Following some straightforward manipulations, the weight
matrix W is given by

W =V, A¥ (AV, AF + NyG) (16)

where V ;= EIy. In general, the computational complex-
ity of a matrix inverse operation is of a cubic order with re-
spect to its dimension. To reduce the computational complex-
ity, we approximate the matrix G by a diagonal matrix ® =
diag{®, ..., oy} comprised of G’s main diagonal entries as
proposed in [16], [28]. Consequently, W is constructed as a
diagonal matrix and the MMSE estimator can be operated on
a symbol-by-symbol basis, yielding &7, = W, ,y¢n, where
Z g, is the nth element in X ;. By adopting this approximation,
the FD symbols are transmitted independently on N sub-
carriers (sub-channels) with the channel power gain for the
nth sub-carrier {\,,}. The equivalent SNR corresponding to
the nth sub-carrier is A, Fs/Ny, where E is the average
symbol energy. Due to the Gaussian approximation of the data
symbols, equations (9)-(13) are not applicable to analyze the
performance of FDE. Instead, we apply the BER upper bound
derived by Adachi [29],

BER < Q (VA(E./No) ) .

where y(F,/Np) is regarded as the equivalent SNR for BPSK
modulation, given by

A7)

=N AP
N

2FE
No

Y(Es/No)=

Zf:’:l [Wh,nl? +2Es . Zf:’:l ‘5‘n|2 o Zf}’:l An
N No N N

with 5\n = Wy nAn. This upper bound offers an accurate
prediction for the actual BER of the FDE.

It should be noted that the eigenvalues of H are of great
importance for FDE. However, it can be shown that the
eigenvalues of H exhibit similar behaviour to that of H
and G, which are bandlimited, complying with the shape
of the folded spectrum [20]. As H is a truncated version

IThe MMSE estimator is equivalent to the ML (MAP) estimator under the
Gaussian approximation of data symbols. Directly transforming the a priori
TD message with discrete values to the FD is possible but it has a complexity
even higher than the TDE, which defeats the purposes of employing FDE.

¥

of G, the eigenvalues of H and G are almost the same if
the truncation length L is sufficiently high to collect most
of the ISI energy. On the other hand, it has been shown in
[30] that there is an asymptotic equivalence of the Toeplitz
matrix and its corresponding circulant approximation, where
the difference between their eigenvalues tends to zero as the
matrix size tends to infinity. Hence, it is natural to expect
that the eigenvalues of the Toeplitz matrix H and its circulant
approximation H are of similar values to that of G. Note that
this conclusion can be directly obtained by applying Theorem
2 in [30]. To verify this assumption, we also calculate the
eigenvalues of G, H, and H both for 7 = 0.8 as well as
for 7 = 0.35 and plot them in the descending order in Fig.
2. Specifically, we consider the use of a root raised cosine
(RRC) signaling pulse with a roll-off factor 5 = 0.3 and
we truncate the corresponding matrix G by using L = 8§
and L = 20 for 7 = 0.8 and 7 = 0.35, respectively, which
are sufficiently large to collect the most of the ISI energy
[10]. Here we observe that the eigenvalues of G recorded
both for 7 = 0.8 and for 7 = 0.35 correspond to the
N uniformly spaced samples of the folded-spectrum over
the frequency range f € (0,1/7T), while the eigenvalues
of H and H have a similar distribution to that of H. To
be more specific, the inset in Fig. 2 demonstrates that the
eigenvalues of H are almost the same as that of G, while
the eigenvalues of H exhibit only insignificant fluctuations
around the corresponding eigenvalues of H, limited to around
102 to 10~*. More importantly, note that some of the
eigenvalues of G, H, and H for 7 = 0.35 theoretically
approach zero and the number of those eigenvalues is closely
related both to the bandwidth of the signaling pulse and to
the symbol rate [20]. However, those near-zero eigenvalues
would impose performance loss for FDE due to the reduction
of the equivalent SNR of the corresponding sub-carriers. For
example, at E; /Ny = 10 dB, we can obtain y(FE;/Ny) = 2.38
for 7 = 0.8 and y(F4/Ny) = 0.28 for 7 = 0.35, which
indicates that the significant performance loss due to the near-
zero eigenvalues.

Let us now consider channel-coded systems, where the
Gaussian priors of the transmitted symbols are transformed to
the FD by the FFT. To reduce the complexity of calculations,
the TD covariance matrix V, is approximated by aly using
o= %, with v, being the nth diagonal element of V
[13]. Consequently, based on the FD a priori mean m,, and
the covariance matrix V,, the MMSE estimator is formulated
as

fcf:W[yffAmxf}erxf. (18)

Again, W is diagonal, facilitating the symbol-by-symbol
detection. Finally, we obtain the log likelihood ratios (LLRs)
that are fed back to the channel-decoder, expressed as [31]

_ m,tu[WA]/N + Fix;
 1+a-u[WA]/N

19)

Remark: The overall complexity of the FDE consists of
the detection complexity and the complexity of FFT, which is
at the order of N + N log N. On the other hand, the TDE has
a complexity order of N -2 for BPSK modulation. Generally
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Fig. 2. Eigenvalues A\ with different values of 7 for the RRC pulse using
B8 =0.3.

speaking, we can conclude that FDE has a significantly lower
complexity than that of the TDE for FTN transmissions.

V. RESULTS AND DISCUSSIONS

In this section, we evaluate the error performance of TDE
and FDE by means of numerical simulations. In particular,
we focus on both coded and uncoded FTN systems with
BPSK modulation for 7 = 0.8 and 7 = 0.35. Without loss
of generality, we consider the RRC with a roll-off factor of
B = 0.3 as the signaling pulse and the number of transmitted
symbols is set to N = 1000. We apply an 8-states BCIR
detector for 7 = 0.8 and a 256-states BCJR detector for
7 = 0.35. On the other hand, the FDE considers L = 8§
ISI taps for 7 = 0.8 and L = 20 ISI taps for 7 = 0.35.

The BER performance of uncoded FTN systems for 7 =
0.8 are given in Fig. 3. It can be observed that the TDE-based
detector for 7 = 0.8 has a similar BER to that of uncoded
BPSK using ISI-free Nyquist signaling, which also shows a
close match to the derived performance bound. On the other
hand, the FDE-based detector has a performance gap of almost
5 dB with respect to the ISI-free case at BER =~ 10~* for
7 = 0.8, which also matches our performance bound. The
performance degradation of FDE compared to that of the TDE
is mainly due to the Gaussian approximation of transmitted
symbols.

Fig. 4 shows the BER performance of uncoded FTN
systems for 7 = 0.35. As illustrated in the figure, the
performance of the TDE-based detector for 7 = 0.35 shows
an error floor at BER ~ 10~ due to having insufficient trellis
states for the BCJR detector. Furthermore, the corresponding
performance bound matches well with the actual performance
in the high-SNR region, but slightly diverges in the moderate-
to-high SNR region since we only consider the expectation
of the residual ISI variance. On the other hand, the FDE-
based detector fails to detect the FTN signal associated with
7 = 0.35. Note that this substantial performance degradation
is not only due to the adopted Gaussian approximation,
but also owing to the small eigenvalues, as discussed in

BPSK (ISI-free)
—A— TDE 7=0.8

— A — TDE bound 7=0.8

FDE 7=0.8

— © — FDE bound 7=0.8
10 L L L
0 2 4 6 8 10 12
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Fig. 3. BER performance comparison of the TDE and the FDE for uncoded
FTN signaling systems with 7 = 0.8.
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E /N, (dB)

Fig. 4. BER performance comparison of the TDE and the FDE for uncoded
FTN signaling systems with 7 = 0.35.

Section IV. Overall, the TDE shows substantially superior
performance to the FDE for uncoded FTN systems at the cost
of a higher computational complexity, which is consistent with
our analysis.

The BER performance of convolutionally coded (CC) FTN
systems for both 7 = 0.8 and 7 = 0.35 are given in
Fig. 5, where turbo equalization using 20 iterations is per-
formed between the equalizer and decoder. Without loss of
generality, we consider a rate-1/2 convolutional code, whose
generator polynomial is given by G=[1+ D?,1+ D + D?].
The length of the information sequence is 1000 bits and the
resultant codeword is of length N = 2004, where 4 bits are
used to terminate the code trellis. All the parameters used for
equalization are the same as those in Fig. 3 and 4. Observe
that the TDE is eminently suitable for convolutionally coded
FTN systems, since its BER performance approaches that of
the ISI-free case for both 7 = 0.8 and 7 = 0.35 if the SNR
is sufficiently high. On the other hand, the BER performance
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Fig. 5. BER performance comparison of the TDE and the FDE for
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of the FDE falls behind the ISI-free case around 3.2 dB at
BER = 107° for 7 = 0.8. However, similar to the uncoded
system, the FDE fails to perform well for 7 = 0.35. This
essential performance loss is due to the spectral zeros and the
Gaussian approximation.

VI. CONCLUSION

We have compared the TDE and the FDE for FTN sig-
naling. The FDE imposes a lower complexity based on the
circulant structure of the TD channel matrix, even upon
taking into account the complexity of the FFT. We found
that the Gaussian approximation of data symbols and the
near-zero eigenvalues lead to a performance degradation for
the FDE, especially for a low packing factor. Our simulation
results showed that the FDE fails to reliably detect the data
symbols even for coded systems when 7 = (.35, while the
TDE is still efficient. For the convolutionally coded FTN
transmission with 7 = 0.8, the TDE approaches the ISI-free
performance bound, while the FDE suffers from a 3.2 dB
SNR loss. In summary, the TDE outperforms the FDE for
FTN signaling. However, the FDE may be attractive in low-
complexity scenarios.
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