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Abstract—While capacities of discrete memoryless channels are
well studied, it is still not possible to obtain a closed form expres-
sion for the capacity of an arbitrary discrete memoryless channel.
This paper describes an elementary technique based on Karush-
Kuhn-Tucker (KKT) conditions to obtain (1) a good upper bound
of a discrete memoryless channel having an invertible positive
channel matrix and (2) a closed form expression for the capacity
if the channel matrix satisfies certain conditions related to its
singular value and its Gershgorin’s disk.
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I. INTRODUCTION

Discrete memoryless channels (DMC) play a critical role
in the early development of information theory and its ap-
plications. DMCs are especially useful for studying many
well-known modulation/demodulation schemes (e.g., PSK and
QAM ) in which the continuous inputs and outputs of a
channel are quantized into discrete symbols. Thus, there exists
a rich literature on the capacities of DMCs [1]], [2], [3], [4],
[Sl, [6], [7]. In particular, capacities of many well-known
channels such as (weakly) symmetric channels can be written
in elementary formulas [1]. However, it is often not possible
to express the capacity of an arbitrary DMC in a closed form
expression [1l]. Recently, several papers have been able to
obtain closed form expressions for a small class of DMCs
with small alphabets. For example, Martin et al. established
closed form expression for a general binary channel [§]]. Liang
showed that the capacity of channels with two inputs and three
outputs can be expressed as an infinite series [9]. Paul Cotae
et al. found the capacity of two input and two output channels
in term of the eigenvalues of the channel matrices [10]]. On the
other hand, the problem of finding the capacity of a discrete
memoryless channel can be formulated as a convex optimiza-
tion problem [[11], [12]]. Thus, efficient algorithmic solutions
exist. There is also others algorithms such as Arimoto-Blahut
algorithm [2], [3] which can be accelerated in [13], [14], [[15].
In [16], [17], another iterative method which can yield both
upper and lower bounds for the channel capacity.
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That said, it is still beneficial to find the channel capacity
in closed form expression for a number of reasons. These
include (1) formulas can often provide a good intuition about
the relationship between the capacity and different channel
parameters, (2) formulas offer a faster way to determine the
capacity than that of algorithms, and (3) formulas are useful
for analytical derivations where closed form expression of the
capacity is needed in the intermediate steps. To that end, our
paper describes an elementary technique based on the theory
of convex optimization, to find closed form expressions for
(1) a new upper bound on capacities of discrete memoryless
channels with positive invertible channel matrix and (2) the
optimality conditions of the channel matrix such that the upper
bound is precisely the capacity. In particular, the optimality
conditions establish a relationship between the singular value
and the Gershgorin’s disk of the channel matrix.

II. PRELIMINARIES
A. Convex Optimization and KKT Conditions

A DMC is characterized by a random variable X €
{x1,29,...,2,m} for the inputs, a random variable Y €
{y1,y2,...,yn} for the outputs, and a channel matrix A €
R™*"™ 1In this paper, we consider DMCs with equal number
of inputs and outputs n, thus A € R™*". The matrix entry
A;; represents the conditional probability that given x; is
transmitted, y; is received. Let p = (p1,pa,...,pn)’ be the
input probability mass vector (pmf) of X, where p; denotes
the probability of z; to be transmitted, then the pmf of YV

is ¢ = (q1,¢2,...,q,)7 = ATp. The mutual information
between X and Y is:
I(X;Y)=H(Y) - H(Y[X), (1)
where
HY) = =) glogg, @)
j=1
H(Y|X) = —ZzpiAij 10gAij. (3)

i=1 j=1
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The mutual information function can be written as:

I(X;Y) ==Y (A"p);log (ATp); + Y Y pidijlog Aij,
J=1

i=1 j=1
“
where (ATp); denotes the 4" component of the vector ¢ =
(ATp). The capacity C associated with a channel matrix A
is the theoretical maximum rate at which information can be
transmitted over the channel without the error [5]], [18]], [19].
It is obtained using the optimal pmf p* such that I(X;Y)
is maximized. For a given channel matrix A, I(X;Y) is a
concave function of p [1]. Therefore, maximizing I(X;Y) is
equivalent to minimizing —I(X;Y’), and finding the capacity
can be cast as the following convex problem:
Minimize:
Z (ATp);log (ATp)
j=1

Z Z piAijlog Ayj.
=1

pz0
17p=1.

The optimal p* can be found efficiently using various
algorithms such as gradient methods [20], but in a few cases,
p* can be found directly using the Karush-Kuhn-Tucker (KKT)
conditions [20]. To explain the KKT conditions, we first state
the canonical convex optimization problem below:

Problem P1:  Minimize: f(x)

Subject to:

Subject to:

gi(r) <0,i=1,2,...n
hj(z) =0, =1,2,...,m,

where f(z),
function.
Define the Lagrangian function as:

)+ Z Nigi(x) + Y vihy(x), ()
j=1

then the KKT conditions [20] states that, the optimal point
¥ must satisfy:

g;(x) are convex functions and h;(z) is a linear

L(z,\v) =

gz(x*)éov

hj(z*) =0,

dL(m)\V)LE ot A=At

A:gz( )_07

A > 0.
fori=1,2,...,

= =0, (6)

n,j=12,...,m

B. Elementary Linear Algebra Results

Definition 1. Let A € R"*"™ be an invertible channel matrix
and H(A;) = — "1 _, Aixlog Aiy, be the entropy of it" row,
define

_ i Aj_il i A log Ay = i Aj_ilH(A
i=1 k=1 i=1

where Aj_l-1 denotes the entry (j,1) of the inverse matrix A~".
Kiax = max; K and K iy = min; K are called the max-
imum and minimum inverse row entropies of A, respectively.

Definition 2. Letr A € R"™* "™ be a square matrix. The
Gershgorin radius of i*" row of A [21] is defined as:

= 14;1. ™
J#i

The Gershgorin ratio of it row of A is defined as:

A
and the minimum Gershgorin ratio of A is defined as:
Cmin(A) = min Aii 9)

We note that since the channel matrix is a stochastic matrix,
therefore
(A = mi i i
Cmin(A4) = min Ri(A) - T4
Definition 3. Let A € R™*"™ be a square matrix.
(a) A is called a positive matrix if A;; > 0 for ¥V 4, j.
(b) A is called a strictly diagonally dominant positive matrix
[22]] if A is a positive matrix and

Aii > ZAZJ,VZ,j
J#i

(10)

(1)

Lemma 1. Let A € R"*"™ be a strictly diagonally dominant
positive channel matrix then (a) it is invertible; (b) the
eigenvalues of A~' are Ai V i where \; are eigenvalues of
A (c) A L'~ 0 and the largest absolute element in the i"

column of A=V is A}, ie, Al > |Aj_1-1|f0rv 7.
Proof. The proof is shown in Appendix [Al O

Lemma 2. Let A € R" "™ be a strictly diagonally dominant
positive matrix, then:

_ Cmin(A) -1 .

(AT > Yy 12
(A7) > R i (12)

Moreover, for any rows k and I,

im(A)

A At < Aot Cmn(A) o 13
| kz|+| l1| = 1 Cmin(A)_l, 1 ( )
Proof. The proof is shown in Appendix o

Lemma 3. Let A € R"*"™ be a strictly diagonally dominant
positive matrix, then:

1
a A < —,
Nt = G A

where max;_; A-_- is the largest entry in A= and oyin(A) is
the minimum smgular value of A.

(14)

Proof. The proof is shown in Appendix [0 O



Lemma 4. Let A € R"*"™ be an invertible channel matrix,
then

A1 =1,
i.e., the sum of any row of A~ equals to 1. Furthermore, for
any probability mass vector x, sum of the vector y = A~ Tz
equal to 1.

Proof. The proof is shown in Appendix O

III. MAIN RESULTS

Our first main result is an upper bound on the capacity
of discrete memoryless channels having invertible positive
channel matrices.

Proposition 1 (Main Result 1). Let A € R™ "™ be an
invertible positive channel matrix and

\ 275
G =S o (15)
pt=A"Tq", (16)

then the capacity C associated with the channel matrix A is
upper bounded by:

C<— qu log ¢} +ZZPZA” log A;;.

=1 j=1

a7)

Proof. Let ¢ be the pmf of the output Y, then ¢ = A= Tp.
Thus,

I(X;Y) = H(Y)-HY|X) (18)
= - qu log q; + Z (A Tq); ZA“c log Ak
Jj=1 i k

We construct the Lagrangian in () using —I(X;Y") as the
objective function and optimization variable g;:

ZqJ/\ +v qu

where the constraints g(z) and h(x) in problem P1 are
translated into —¢g; < 0 and Z 1 q; = 1, respectively.

Using the KKT conditions in (IE]) the optimal points g7, A},
v* for all 7, must satisfy:

L(gj, Aj,vi) = , (19)

q; >0, (20)
Yog =1, 1)
=1
V*_M_M:O, 22)
! da;
Al >0, (23)
Xig; = 0. (24)

Since 0 < p; < 1 and Z?:l p; = 1, there exists at least
one p; > 0 . Since A;; > 0 Vi, j, we have:

=3 b Ay > 0.

i=1

(25)

Based on 24) and 23), we must have A} = 0, Vj. Therefore,
all five KKT condmons 024 are reduced to the following
two conditions:

> g =1, (26)
j=1
dI(X;Y
C_MGY) @7
dg;
Next,
dI(X:Y L e
dI(X;Y) = ZAjil ZA“C log A;r — (1 + logq;)
dg; i=1 k=1
= —Kj — (1 + logqj). (28)
Using and (28), we have:
g =271 (29)
Plugging to (26), we have:
i2—Kj—V*—l — 1,
j=1
= 1og22*Kﬂ'*1.
j=1
From (29),
- 2~ % 277
* —-K,—v*—1 .
g =2 =T S aw V (30)
J U1 ijl - K,
If ¢* is such that p* = A=T¢* = 0 and (A~ T¢")T1 =

>ipf = 1, then p* is a valid p.m.f and Proposition [I]
will hold with equality by the KKT conditions. However
these two constraints might not hold in general. On the other
hand, maximizing 7(X;Y’) in terms of ¢ and ignoring these
constraints is equivalent to enlarging the feasible region, will
necessarily yield a value that is at least equal to the capacity
C. Thus, by plugging ¢* into (I8), we obtain the proof for the
upper bound. o

Next, we present some sufficient conditions on the channel
matrix A such that its capacity can be written in closed
form expression. We note that the channel capacity closed
form expression is also discovered in [4]] and [6] using the
input distribution variables. However in both [4] and [6], the
sufficient conditions for closed form expression are not fully
characterized.

Proposition 2 (Main Result 2). Let A € R™*" be a strictly
diagonally dominant positive matrix, if Vi,
C; (A7

T) > (n _ 1)2Krr.mrl<min7

(3D
then the capacity of channel matrix A admits a closed form
expression which is exactly the upper bound in Proposition [l

Proof. Based on the discussion of the KKT conditions, it is
sufficient to show that if p* = A~ T¢* = 0 and Y p; =
(A=Tg*)T1 = 1 then C has a closed form expression. The



condition (A~T¢*)T1 = 1 is always true as shown in Lemma
M in the Appendix Thus, we only need to show that if
ci(A™T) > 2Kmax—Kmin then p* = A= T¢* = 0.

Let ¢p,;, = min; ¢; and ¢y, = max; q;, we have:

Zq*A 1
RS ST

p; =

#z—
> ghindn = O a)O] 145N (32)
J#i J#i
> Ghindy' — (0= Vg O 1AL, 33)
J#i

with (32)) due to Ai_i1 > 0 which follows by Lemma [T}c, (33)
is due to g, > ¢; V j. Now if we want p; > 0, V i, from
(@3, it is sufficient to require that, V7,

C‘(A_T) — A71 > (n — 1)Q;knax
Zj;éz |AJ1 | q;;lin
92— Kmin
= (n—-1) éf}ﬂm (34)

Z] 12K

= (n-— 1)2Kmdx Kmin7

with (34) due to B0) and ¢ .. ¢’;, are corresponding to
Kinin, Kmax, respectively. Thus, Proposition [2] is proven.
O

We are now ready to state and prove the third main result
that characterizes the sufficient conditions on a channel matrix
so that the upper bound in Proposition [0 is precisely the
capacity.

Proposition 3 (Main Result 3). Ler A € R™*" be a strictly
diagonally dominant positive channel matrix and Hy,ax(A) be
the maximum row entropy of A. The capacity C is the upper
bound in Proposition [l i.e., hold with equality if

nHmax (A)
2 2 o min(4) ,

7(71 — 1y (35)

where omin(A) is the minimum singular value of channel
matrix A, and
Cmin(A)
Cmin (A) - 1

Proof. From (I2) in Lemma 2] and Proposition 2 if we can
show that

V= (36)

Cmin (A) -

- > _1 2Kmax_Kmin
m-1 =Y ’

(37

then Proposition[3lis proven. Suppose that K., and K, are
obtained at rows j = L and j = 5, respectively. We note that
from 30D, ¢max = max;¢; and gmin = min; g; correspond

to K pnin and Ky ,x, respectively. Thus, from the Definition 1,
we have:

Kmax— Kmin = ZALjﬂ ZASjH

< |ZA£2H(AZ-)|+|ZA§3H(A1-)| (38)
i=1 i=1

< |an AL H (A + |an Al H (A:)|39)
i=1 i=1

< Hmax(A)i(lAZSHIA;}l) (40)

i=1

< Huax ZAulcm‘z“‘")zl @1)

< nHima(A) (max A7 )% 42)
% 43)

where (38) due to the property of absolute value function,
@B9) due to Schwarz inequality, @0) due to Hy,ax(A) is the
maximum row entropy of A, (1) due to (13), @2) due to

max;_j Ai_.1 is the largest entry in A~! and (@3) is due to
Lemma [3| Thus,
nHmax(A)V
(n — 1)2 min(A) > (n _ 1)2Kmax_Kmin' (44)
From (37) and (@4, if
min(A) — 1 nHmax(A)V
& >(n—1)2 omn™® (45)

(n—1)

then the capacity C' is the upper bound in Proposition 1l (@3]
is equivalent to (33). Thus Proposition 3] is proven. O

An easy to use version of Proposition[3lis stated in Corollary

m

Corollary 1. The capacity C' is the upper bound in Proposi-
tion Il if

Coin(A) =1 p2mersy (46)
(n—1)?
Proof. Similar to Proposition 3
Kmax—Kmin = ZALJH ZAS}H

< |Z AL H (A7) + |Z ASiH(A)| @)
i=1 i=1

< DD ALHA) 4 Y AsiIIH(A:)[48)
i=1 i=1

< Hmax(4) Y (AL +|45]) (49)

=1
< Humax(A)n(2max A;}') (50)
4,7

2nlogn

<

S (A (51

with @7), @8), @) are similar to (B8), B9, @D), re-

spectively. (50) is due to max; ; Ai_j1 is the largest entry in



AL due to Hpax(A) < logn and Lemma 3 Thus, by
changing % in by %, the Corollary [I] is
proven. |

A direct result of Proposition 3] without using singular value

is shown in Corollary

Corollary 2. The capacity C is the upper bound in Proposi-
tion [l if

> ; (52)
where, (4)
Cmin

JRE T, >

« _ Cmin(A) —n/2
= —Cmin(A) T 54)
Hins () = 1og o (4)-+1) RE L) = Ol ) OB 2]
(55)

Proof. We will construct the lower bound for o, (A) and the
upper bound for Hy,ax(A). From Lemma [ in Appendix [E]

Cmin(A) —n/2

min A) > - ) 56
Tmin(A) = Cmin(A) +1 7 (56)
and
Hioweld) < Tog(coin(A)+1)-+ 2B =Cunl) 08 Conn )
= Hj.(A). (57
Therefore
Hoax(A)V H* (A
Omin(4) o*
Thus, by changing T#a’(‘%‘) in (33) by %, the

Corollary 2l is proven.

We note that, when c¢p,in(A) is relatively larger than the
size of matrix n, the lower bound of oyin(A) goes to 1. We
also note that (32) can be checked efficiency without requiring
both Hpax(A) and omin(A) at the expense of a looser upper
bound as compare to (33). O

IV. EXAMPLES AND NUMERICAL RESULTS

A. Example 1: Reliable Channels

We illustrate the optimality conditions in Proposition [3]
using a reliable channel having the channel matrix:

0.95 0.01 0.04
A= 1003 095 0.02].
0.02 0.02 0.96
Here, n = 3, omin(A) = 0.92424, ¢* = 0.875 and
Hiax(A) = 0.33494, H*_ (A) = 0.3364. From Definition

2 cmin(A) = 19. The closed form channel capacity can be
readily computed by Proposition [1| since the channel matrix

satisfies both conditions in Proposition[3land Corollary 21 The
optimal input and output probability mass vectors are:

" =[0.33087 0.32806 0.34107],
p" = [0.33067 0.33480 0.33453],

respectively and the capacity is 1.2715.

In general, for a good channel with n inputs and n outputs
whose symbol error probabilities are small, then it is likely
that the channel matrix will satisfy the optimality conditions
in Proposition [II This is because the diagonal entries A
(probability of receiving correct the i*" symbol) tend to be
larger than the sum of other entries in its row (probability of
errors), satisfying the property of diagonally dominant matrix.

B. Example 2: Cooperative Relay-MISO Channels

In this example, we investigate the channel capacity for a
class of channels named Relay-MISO (Relay - Multiple Input
Single Output). Relay-MISO channel [23] can be constructed
by the combination of a relay channel [24]] [25] and a Multiple
Input Single Output channel, as illustrated in Fig.

In a Relay-MISO channel, n senders want to transmit
data to a same receiver via n relay base station nodes. The
uplink of these senders using wireless links that are prone
to transmission errors. Each sender can transmit bit “0” or
“1” with the probability of bit flipping is o, 0 < a < 1.
For a simplicity, suppose that n relay channels have the same
error probability a. Next, all of the relay base station nodes
will relay the signal by a reliable channel such as optical fiber
cable to a same receiver. The receiver adds all the relay signals

(symbols) to produce a single output symbol.

It can be shown that the channel matrix of this Relay-MISO
channel [23] is an invertible matrix of size (n+ 1) x (n+1)
whose A;; can be computed as:

s=min(ntl—j,i—1) _] its s
Ai’: - Jj—i+2s 1— nf(jf'H»ZS).
g 2 <n+1—i> <i—1>0‘ (1=a)

s=max(i—3,0)

We note that this Relay-MISO channel matrix is invertible
and the inverse matrix has the closed form expression which
is characterized in [23]. For example, the channel matrix of a
Relay-MISO channel with n = 3 is given as follows:

(1-a)® 3(1—a)’a 3(1—a)a? a?

a(l—a)? 2a%(1—a)+ (1-a)? 2(1—a)a+a? (1—a)a?

(1—a)a? 2(1—a)?a+a? 202(1—a)+(1—a)® a(l—a)?|’
ol 3(1—a)a? 3(1—a)’a (1-a)®

where 0 < a < 1. We note that this channel matrix is
strictly diagonally dominant matrix when « is close to 0 or «
is close to 1. In addition, for « values that are close to O or 1,
it can be shown that channel matrix A satisfies the conditions
in Proposition Bl Thus, the channel capacity admits a closed
form expression in Proposition [1l For other values of «, e.g.
closer to 0.5, the optimality conditions in Proposition 3] no
longer holds. In this case, Proposition [l can still be used as a
good upper bound on the capacity.

We show that our upper bound is tighter than existing upper
bounds. In particular, Fig. 2] shows the actual capacity and the
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Figure 1. Relay-MISO channel

known upper bounds as functions of parameter o for Relay-
MISO channels having n = 3. The green curve depicts the ac-
tual capacity computed using convex optimization algorithm.
The red curve is constructed using our closed form expression
in Proposition [Tl and the blue dotted curve is the constructed
using the well-known upper bound result of channel capacity
in [26], [27]]. Specifically, this upper bound is:

C< log(z max A;;).

Jj=1

(59)

Finally, the red dotted curve shows another well-known

upper bound by Arimoto [3] which is:
C <log(n) + max A log(=+—2—)]. 60
< log(n) + max[3_ Alog(wr )l (60

We note that the second term is negative.

Fig. [2 shows that our closed form upper bound is precisely
the capacity (the red and green graphs are overlapped) when
o values are close to 0 or 1 as predicted by the optimality
conditions in Proposition Bl On the other hand, when « values
are closer to 0.5, our optimality conditions no longer hold. In
this case, we can only determine the upper bound. However,
it is interesting to note that our upper bound in this case is

tighter than both the Boy-Chiang [26] and Arimoto [3] upper
bounds.

C. Example 3: Symmetric and Weakly Symmetric Channels

Our results confirm the capacity of the well known sym-
metric and weakly symmetric channel matrices. In particular,
when the channel matrix is symmetric and positive definite,
all our results are applicable. Indeed, since the channel matrix
is symmetric and positive definite, the inverse channel matrix
exists and also is symmetric. From Definition [ all values of
K is the same since they are the same sum of permutation

------- Arimoto upper bound
=== Boyd-Chiang upper bound
Closed form upperbound
Real channel capacity

=
o
.

Channel Capacity

o
ol
<“

«

Figure 2. Channel capacity and various upper bounds as functions of «

entries. Therefore, from Proposition [l the optimal output
probability mass vector
27K
GESTTR
are equal each other for all j. As a result, the input probability

mass function p* = A~Tg* is the uniform distribution, and
the channel capacity is upper bounded by:

S qlogq + 3" piAylog Ay (62)
j=1 i=1 j=1

= logn — H(Arow)-

(61)

¢ <

(63)

Interestingly, our result also shows the capacities of many
channels that are not weakly symmetric, but admits the closed
form formula of weakly symmetric channels. In particular,
consider a channel matrix called semi-weakly symmetric
whose all rows are permutations of each other, but the sum of
entries in each column might not be the same. Furthermore,
if the optimal condition is satisfied (Proposition [3), then the
channel has closed-form capacity which is identical to the
capacity of a symmetric and weakly symmetric channel:

C=logn — H(Arow)- (64)

For example, the following channel matrix:

0.93 0.04 0.03
0.04 0.93 0.03
0.04 0.03 0.93

is not a weakly symmetric channel even though its rows
are permutations of each other since the column sums are
different. However, this channel matrix satisfies Proposition 3]
and CorollaryRlsince n = 3, opin(A) = 0.88916, o* = 0.825,
Hax(A) = 0.43489, HY, (A) = 0.43592 and cpin(A) =
13.286. Thus, it has closed form formula for capacity, and

A:
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Figure 3. Channel capacity of (semi) weakly symmetric channel as a function
of ~

can be easily shown to be C' =log3 — H(0.93,0.04,0.03) =
1.1501. The optimal output and input probability mass vectors
can be shown to be:

q" =1[0.33333 0.33333 0.33333],
p" =1[0.32959 0.33337 0.33704]

respectively.

The following channel matrix is another example of semi-
weakly symmetric matrix whose entries are controlled by a
parameter +y in the range of (0,1) and given by the following
form:

(1=7% 3(1—=9)?%y 31— o
31-7)%y  (1-9)° o 31—y
o 31—y (1-7)° 3(1-m*
7 3(1—91? 31-7?% (1-9)°

Fig. B shows the capacity upper bound of the semi-weakly
symmetric channel and the actual channel capacity as function
of 7. As seen, for most of v, the upper bound is identical to
the actual channel capacity which is numerically determined
using CVX [L1].

D. Example 4: Unreliable Channels

We now consider an unreliable channel whose channel
matrix is:

06 03 0.1
A=107 01 02
0.5 0.05 045

In this case, our optimality conditions do not satisfy, and
the Arimoto upper bound is tightest (0.17083) as compared
to our upper bound (0.19282) and Boyd-Chiang upper bound
(0.848).

Arimoto upper bound

Boyd-Chiang upper bound

Closed form upper bound

Real Channel Capacity

Channel Capacity
[

o
4

0 0.2 0.4 0.6 0.8 1

B

Figure 4. Channel capacity and various upper bounds functions of S

E. Example 5: Bounds as Function of Channel Reliability

Since we know that our proposed bounds are tight if the
channel is reliable, we want to examine quantitatively how
channel reliability affects various bounds. In this example, we
consider a special class of channel whose channel matrix en-
tries are controlled by a reliability parameter S for 0 < 3 <1
as shown below:

1-3 038 048 0.38

A_ | 048 1-8 038 038
1058 048 1-8 0.8
013 028 078 1-38

When £ is small, the channel tends to be reliable and when
B is large, the channel tends to be unreliable. Fig. M shows
various upper bounds as a function of S together with the
actual capacity. The actual channel capacities for various [ are
numerically computed using a convex optimization algorithm
[L1]. As seen, our closed form upper bound expression for
capacity (red curve) from Proposition [Il is much closer to
the actual capacity (black dash curve) than other bounds for
most values of 5. When § is small (8 < 0.6) or channel
is reliable, the closed form upper bound is precise the real
channel capacity, and we can verify that the optimal conditions
in Proposition 3 holds. When the channel becomes unreliable,
i.e., § > 0.6, our upper bound is no longer tight, however, it
is still the tightest among all the existing upper bounds. We
note that when the [ is small, the channel matrix becomes
a nearly diagonally dominant matrix, and our upper bound is
tightest.

V. CONCLUSION

In this paper, we describe an elementary technique based
on Karush-Kuhn-Tucker (KKT) conditions to obtain (1) a
good upper bound of a discrete memoryless channel having



an invertible positive channel matrix and (2) a closed form
expression for the capacity if the channel matrix satisfies
certain conditions related to its singular value and its Ger-
shgorin’s disk. We provide a number of channels where the
proposed upper bound becomes precisely the capacity. We also
demonstrate that our proposed bounds are tighter than other
existing bounds for these channels.
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APPENDIX
A. Proof of Lemma Il

For claim (a), since the channel matrix is strictly diagonally
dominant, using Gershgorin circle theorem [21] that for any
eigenvalues A1, A9, ..., \,, we must have:

i > Ay — Z|AU| > 0.
J#i

Thus, det(A) = M Az... A, > 0. Therefore, A is invertible.

Claim (b) is a well-known algebra result [28].

For claim (c), due to AA™ = I and A;; > 0V ¢,7,
therefore, for V j exists at least ¢ such that A;l # 0. Therefore
the largest absolute entry in each column # 0. Claim (c) can
be obtained by contradiction. Suppose that the largest absolute
entry in j'* column of A~ is A;jl in " row, that said
|A;j1| > |A,;j1| for V k. We suppose that A;jl < 0. Thus:

STAnAG < —AulAG+ D AwlAgt 65)
k=1 k=1,k#i
= (—Au-+ Z Aik)|A;j1|

k=1,k#i

< 0, (66)

which contradicts with Zzzl AikA,;jl = I;; > 0. Thus, the
largest absolute value in each column of A~ is positive. That
said in j™ column, if [A;;!| > |A, | for V k, then A;;! > 0.
Now, suppose that the largest absolute element in ;"
column of A~1, is Ai_j1 with 4 # j and Ai_j1 > 0. Then:

0 = > AupAy
k=1
> AulAG = DD AwlAG (67)
k=1,k#i
= (Adu— Y Aw)A;
k=1,k#i
> 0, (68)

with (€7) due to A;jl is the largest absolute element in j**
column and (68) due to A is strictly diagonally dominant
matrix. This is a contradiction. Therefore, the largest absolute
entry in 5" column of A~! should be Aj_j1 and Aj_j1 > 0.


http://ir.library.oregonstate.edu/concern/articles/tb09jb69h
http://www.math.toronto.edu/mnica/hermitian2014.pdf

B. Proof of Lemma

First, let’s show that the second largest absolute value in
each column of A~! is a negative entry by contradiction
method. Suppose that the second largest absolute value in j**
colurpn of A~1 is positive and in k" row (k # j), A;jl >0.
Consider,

0 = > AuAy
=1

> AAG HAmAG -1 Y AkAG (69)
1=1,i#£k;i#]

> AGAG A - > JAkAG (70)
1=1,i#£k;i#]

> AGAG +AnAg - > AmlAG (D
i=1,i#£k;i#j

> AgAj + ArAy — Z ARl A (72)
i=1,i#£k;i#j

= AGA +AG (A — D) Aw) (73)
i=1,i#£k;i#j

> 0, (74)

with (69) due to the fact that C' > —|C| for V C, {{0) due

to the triangle inequality, (ZI) due to Ay, is positive, (Z2) due
to A,:jl is the second largest absolute value in j** column of
A~!, @A) due to the assumption that A,;jl > 0 and ({74 due
to (II) such that Ay, > Z?:l,i;ék Api > Z?:l,i;ék;i;éj Api.
Thus, the second largest absolute value in column of A1 s
negative (A];j1 < 0). Due to Lemma[Tlpart c, A;jl is the largest
absolute value entry and A;jl > 0. Similarly,

0 = > AuAy
i=1

< AGAG H AuAG +] YD AkAGT (79)
i=1,i£k;i#j

< AAG H AuAG + DD AkAG (76)
i=1,i#k;i#]

< AGAG H AuAG + DD AwlAG a7
i=1,i£k;i#]

< AgAG - AlAG+ YD AklA (78)
i=1,i#£k;i#j

with ([Z3) due to the fact that C' < |C| for V C, ([8) due to
the triangle inequality, (ZZ) due to Ag; > 0, V ¢ and (Z8) due
to A,:jl < 0 and A,;jl is the second largest absolute value in

4t column. Hence,

n

Aij;jl 2 AkklAI;;' - Z Aki|A;:j1|
i=1,itks;it)
A7l |A]:j1|(Akk - Z?:17i¢k;i¢j Aki)
jii 2 AL
J
kk — Ak
-1 —1 Cmin (A)
Ajj 2 |Akj | Ak (79)
Cmin(A)
A 2 A lemin(A) — 1], (80)

for V 4, with (Z9) due to Definition 2] and (@) such that
kk n n
— 2 Zi:l,i;ﬁk Api 2 Zi:l,i;ﬁk,i;ﬁj Ap;. Thus, we

Cmin(A)
hgi;g:
ATL cmin(A) — 1
(AT = 27 > Zmin ) (81)
! Dkt |Akj1 n—1
Thus, (I2) is proven.
Next, we note that from (80)
—1
JJj > -1
Cmin(A) -1~ |Ak3 |7 (82)

for V k. Moreover, from Lemmal[ll Aj_j1 > 0 and is the largest
entry in jth row. Thus, for an arbitrary L and S,
AL
-1 JJ
Ajj + Cmin(A) -1

-1 Cmin(A)
Ajj Cmin(A) — 17

IN

|AZ; |+ A5,
(83)

for V j. Thus, (I3) is proven.

C. Proof of Lemma

Consider the matrix B = A='A~T, B is symmetric, all its
eigenvalues are real and satisfy the Rayleigh quotient [29]]. Let
AL%" be the maximum eigenvalue of B then from [29]

R(B,z) = sz; < yma=, (84)
Consider the unit vector e = [0,...,1,...,0]7 with entry
“1” is in the i** column. Let 2 = ¢ in (B4), we have:
B < . (85)
Thus,
AR > By

_ 1 4-1

= ;AU A
> (474" (86)
Now since B is a symmetric matrix AF* = omax(B)

[28]. However, from [28], omax(B) = Omax(A7tA™T) =

0'12naxA71 and UmaxA71 = m Thus:
1 > Al

Omin (A) (87)



From Lemma [Ilc, the largest entry in A~! must be a e Suppose that H,.x(A) achieves at k*" row, then
diagonal element, thus

Huax(A) = —>_ Agilog Ay;)
max A! < L =1
i, v Umin(A) n
= —(Agklog Agi + Z Apilog Ag;)
D. Proof of Lemma i=1,i#k
= —Akk log Akk
For the first claim, since A is a stochastic matrix, A A,
— (=Aw) Y 1o X j; +log(1—Axr))
g kk —Akk
Al=1.
= —Ailog Akr
Left multiply both sides by A~! results in 1 = A~'1. For the - (1— A) zn: Aws log Abs
second claim, left multiplying y = A~7x by 17, we have: i=Licth 1= Ak 1= Ak
— (1—Akk)10g(1—Akk)
T T 41— -
1 y:1 A T‘T:‘TTA 11:$T1:17 S —AkklogAkk—F(l—Akk)log(n—1)
. . . — (1—Aix)log(l1—A (94)
where we use A=!'1 =1 in the previous claim. ( ki) log( k) — A
Thus, we have > " pf = 1 since from (30), ¢* is a = —(Awklog Aur + (1 — Akr) 1Og( 1 )
probability mass vector. < Cmin(A) Cmin (A)
= Cmin(A) +1 & Cmin (A) +1
E. Proof of Corollary - Cmin(A)
1 Cmin (A) 1 Cmin(A) +1 95
Lemma 5. Lower bound of omin(A) and upper bound of + (1= Cmin(A) + 1) 08 1 ) ©3)
Hpax(A) are o* and H, (A), respectivel e .
(4) (A), resp y _ log(cmin(A)—i—l)—i—log(n 1) — cmin(4) log cmm(A)7
(A) /2 len(A)+1
Cmin —-n
Omin(A4) > 0" = —————, (88) Api A
) Cin(A) + 1 with @) is due to — S M Jog ——EL s the

ELER ] — A, 1 — Agg
entropy of n—1 elements which is bounded by log(n 1) For

and
(@3, first we show that f(z) = —(z log z+(1—x) log( :i))
HmaX(A) S H:;lax(A)7 (89) . . . . n
is monotonically decreasing function for >n— 1
— X
where Indeed,
d(f(x))
* log(n—1 _CminA lo CminA = I — 1 1— —1 -1
i (A) =108 (4) 1) 2= O 3 o o2 dwy  lesr stz tlostny
90) = —(log 1 —log(n —1)).
Proof. Due to the channel matrix is a strictly diagonally . d(f(2))
dominant positive matrix. Thus, we have Thus, if 1 >n —1 then T) < 0. However, from
—x x
Conin(A) ©1,
Apk 2 —— 5 D _Cmin(4)
len( ) Akk > Cmin(A) + 1 — (A) (96)
1- Akk o 1 Cmin(A) i ’
Re(A) =1— A <1— —Com@) 1 92) " Cmn(A) + 1
- Cmin(A) +1 Cmin(A) +1’
From (32)
j=n j=n 2 M
n—1 Cmin(4) > 1+ (n—1)°2 > 1+(n—1)2 > n—1, (97)
= 2 Aws D RSt 4
J=17k J=17k o due to Lﬂ“m) > 0 and n > 2. Thus, WL

(93) 1— Ag
for ¥ k with (OI) due to (0), @) due to ©T), ©3) due to From ©é) and @D, f(x) is decreasing function and (@3) is

the fact that ¥V j # k, Aju < Y0, A = R;(A) and each constructed by plugging the lower bound of Ay in (©T).
1 o J _ e Secondly, the lower bound of op,in(A) can be found in
R;(A) < o T1 which is proven in (@I). Now, we are [30] (Theorem 3)

ready to establish the upper bound of H,.x(A) and the lower

bound of omin(A), respectively. Omin(A) > 1“}32 | Ak | — _(Rk(A) + Ck(4)), (98)



or in [31]] (Theorem 0)

omin)> min = ({44 PHRLA-CL()} R ANCLA)),
o ‘ (99)
With Ry (A) = ;‘i?,j;&k |Ak]| and Ck(A) =

=1 j=k |Aji], respectively. Thus, if we use the lower bound

established in (99),
1 Cmin(A)
Omin(A) 5 [cmin(A)+1
1 n—1
_ [ +
Cmin (A) +1 Cmin(A) +1
Cmin(A) —n/2
(A +1
with (TO0) due to @), ©2), (©F) and the fact that { Ry (A) —
Ck(A)}Q > 0.
A similar lower bound can be constructed using (@8]
Cnﬁn(fi)
Cmin(A) +1
1 1 n n—1
2 Cmin(A) +1 Cmin(A) +1
Cmin(A) —n/2 .
cmm\) A,
Cmin(A) +1 ’
with (I0I) due to @I, @2) and (@3). As seen, both our

approaches yield a same lower bound of o, (A). However,

[@9) is tighter than ©@8) due to {Rx(A) — Cr(A)}%

]2}1/2

]) (100)

Omin (A) 2

) (101)

O
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