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Abstract—Aided by scalable video coding, multirate multicast
has become a promising technique of providing differentiated
quality of experience (QoE) for massive numbers of video
subscribers operating in heterogeneous channel conditions. Nev-
ertheless, due to the time-varying nature of wireless channels
and the subscribers’ diverse requirements, it is challenging to
dynamically control the video rate in the light of the available
radio resource to achieve the best QoE. To elaborate a little
further, the time scale of resource scheduling is of short-term
nature, which determines the short-term video quality variation,
but from a service provider’s perspective the design objective
is to optimize the long-term QoE for all subscribers. Despite
its importance, this problem has not been considered before. Ex-
plicitly, we formulated this problem as a time-averaged stochastic
optimization problem which avoids the impact of both the short-
term channel quality fluctuation and that of the video bitrates,
whilst maintaining both inter- and intra- group fairness. The
stratified structure of the problem inspires us to decompose it
into a two-phase optimization: coarse grained assignment for
each user group and fine grained assignment for each subgroup.
We propose an adaptive multicast algorithm based on Lyapunov’s
optimization theory for solving this problem, by striking a
compelling trade-off between the system’s utility and its queue
stability. We quantify the achievable performance of our proposed
solution based on realistic video traces.

Index Terms—multirate multicast, scalable video coding, re-
source assignment, wireless network.

I. INTRODUCTION

THE overwhelming growth of demands for mobile mul-
timedia services imposes enormous challenges on the

provision of reliable quality of experience (QoE), when sup-
porting a large number of users competing for the scarce radio
resources in cellular networks [1]. This situation is aggravated
by the demanding specifications of the emerging vehicle-to-
everything (V2X) communications [2], imposed by resource-
hungry applications [3] such as ultra-high-definition (UHD)
video, augmented/virtual reality, 3D/multi-view television,
which will put a heavy tele-traffic burden on today’s already
congested cellular networks. Video data is poised to dominate
the mobile network traffic, which will account for 79 percent
of the global mobile data by 2022 [4]. Furthermore, most
of the tele-traffic are generated by group-oriented services
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and applications. In this context, multicast has been identified
as a promising technique of addressing this challenge both
in the 4G Long Term Evolution (LTE) and LTE-Advance
(LTE-A) systems as well as in next generation systems [5].
By exploiting the properties of point-to-multipoint (PTMP)
communication [6], multicast delivers the same multimedia
content to an unlimited number of users over the same
frequency band. The significantly improved channel capacity
and energy efficiency will boost the potential of multicast
in V2X scenarios, where the vehicles can receive multicast
information from other vehicles, Internet and road-side in-
frastructure. Accordingly, the evolved multimedia broadcast
multicast services (eMBMS) will still be adopted [7] in 5G
networks for PTMP services.

However, high-quality multimedia multicast services suf-
fer from a lot of problems. Due to the stochastic nature
of user movement and channel fading, the channel quality
as well as the transmission rate is time-varying. Different
subscribers of a multicast group may experience different
channel qualities caused by their geographically separated
locations. Additionally, the source video rate may fluctuate
strongly when the video scene changes or the motion activity
occurs. It is challenging to dynamically control the video
rate in the light of the available radio resource to achieve
the best QoE for multicast services, while considering the
fairness. Conventional multicast is usually single-rate, where
the transmission rate is determined by the subscribers having
the lowest channel quality, typically located at the edge of a
cell. The single-rate multicast has a low complexity, but at the
cost of eroding the video quality of the cell-centre subscribers
having good channel conditions. As a result, the high potential
of multimedia multicast is only partially exploited.

Aided by scalable video coding (SVC) [8], multirate mul-
ticast become a promising technique of supporting flexible
video delivery for heterogeneous devices and time-varying
channel conditions. An SVC stream comprising a base layer
(BL) and several enhancement layers (ELs) provides a judi-
ciously differentiated video quality by appropriately scaling
the spatial resolution, the temporal frame rate and the recon-
structed video definition. Multirate multicast allows different
SVC layers to be delivered via different system resources. As a
result, the multimedia stream is split into multiple substreams,
each of which contains an SVC layer and serves a subgroup
of users having similar channel conditions. The users in a
multicast group can access the same content with differentiated
QoE by subscribing to appropriate SVC layers based on their
respective channel conditions. Specifically, the base layer has
to be received by all subscribers in order to ensure a minimal
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QoE. Afterwards, the subscribers having higher channel gains
are capable of decoding more SVC layers and acquiring a
higher QoE.

Nevertheless, combining SVC with multicast poses addi-
tional challenges. Explicitly, owing to the shared nature of
the multicast channel, it is difficult to optimally control the
video rate and radio resource for achieving the best QoE
for group members having heterogeneous channel conditions,
which is in stark contrast to the unicast transmissions [9]
[10]. Furthermore, the co-existence of several multicast sub-
group/group increases the difficulty of system design, since
the rate balance among both the intra- and inter- group users
must be considered. Giving preference to large groups with
more subscribers would improve the system’s overall utility,
but at the expense of undermining the QoE perceived by small
groups. The potential dynamics of group size is determined by
the unknown time-variant requirements of cellular users. This
situation makes it more difficult to find the optimal multicast
scheduling and resource allocation (MSRA) solution in real
time, which has been proved to be an NP-hard problem [11].
In fact, the complexity of MSRA increases exponentially with
the number of users, multicast groups and SVC layers.

To overcome these issues, most MSRA schemes proposed
rely on heuristic algorithms [12]–[14]. They tend to have low-
complexity implementation, but provide sub-optimal solutions.
As a result, they are either too conservative for attaining
optimal video quality or too aggressive for guaranteeing fair-
ness among different subscribers. Therefore, the model-based
optimization methods are introduced to address this problem.
All the legitimate solutions [15]–[18] are determined with
the objective of finding the optimal resource assignment. The
existing schemes aim for optimizing an instantaneous utility
in each scheduling slot, such as the throughput, spectral effi-
ciency or video quality, based on the near-instantaneous chan-
nel state information (CSI) and the individual requirements of
the subscribers. Furthermore, most of them are based on the
idealistic assumptions of a fixed channel model or an over-
simplified subscriber distribution model. The time scale of
near-instantaneous channel-quality-driven resource scheduling
is of short-term, which also directly controls the video quality
variation. However, from a service provider’s perspective, the
long-term video quality ought to be optimized. This problem
has not yet been considered in the literature. Motivated by
this open problem, we maximize the time-averaged QoE for
all subscribers, while taking the dynamics of video bitrates
and channel conditions into account. The new contributions
of this paper are summarized as follows:
• We formulate the problem of adaptive resource assign-

ment for scalable video multicast as a stochastic optimiza-
tion problem, which maximizes the long-term QoE of all
subscribers weighted by the group size and constrained
by the time-averaged transmission rate. This formulation
avoids the influence of the short-term fluctuation of both
the channel conditions and the video bitrates, while
maintaining proportional fairness among the groups by
ensuring the long-term stability of the transmission queue
for each SVC layer.

• Inspired by the layered structure of the initial time-

averaged problem, we decompose it into a twin-phase
optimization: coarse-grained assignment for each group
and fine-grained assignment for each subgroup. Based on
the classic Lyapunov’s optimization theory, we develop an
online algorithm for solving the problem, which strikes
a trade-off between the system’s utility and the queue
stability. An efficient algorithm is proposed for finding
the optimum strategy, which mitigates the computational
burden imposed. Furthermore, we derive an analytical
performance bound for the proposed solution.

• We quantify the achievable performance of our proposed
scheme based on realistic video traces. The experimental
results demonstrate that the proposed scheme achieves
a higher long-term QoE than the benchmarks, while
maintaining the most appropriate queue length, even in
the face of dynamically fluctuating channel quality and
non-uniformly distributed subscribers.

The remainder of this paper is organized as follows. Section
II summarizes the related contributions on multicast. After
presenting the models of wireless channel, video multicast
and system utility, Section III formulates a time-averaged
constrained optimization problem. In Section IV, we propose
a layered solution derived from Lyapunov optimization the-
ory for overcoming the aforementioned problem. Finally, we
illustrate the performance of our proposed scheme in Section
V, whilst a conclusive discussion is offered in Section VI.

II. RELATED WORK

Multicast is an efficient technique of providing group-
oriented services by feeding all the subscribers by a sin-
gle transmission. Extensive studies have been conducted to
address the adaptive resource allocation problem of video
multicast over wireless networks [19]–[23]. The conventional
multicast scheme [19] conservatively selected a common mod-
ulation and coding scheme (MCS) for each group based on
the lowest channel quality indicator (CQI) of all subscribers.
Although this scheme is easy to implement, it is obviously
inefficient, because all cell-centre subscribers having good
channel qualities have to endure a bad video quality. To over-
come this drawback, opportunistic multicast schemes [20]–
[22] were developed for providing more aggressive MCS se-
lection. Specifically, a threshold-based solution was proposed
in [20] that dynamically selected a subset of subscribers to
be served within each scheduling slot. The authors of [21]
have made a step forward by striking a trade-off between
error resilience and transmission rate. In [22], rate selection
was optimized by maximizing the minimum throughput in a
multicast group, even when the channel qualities were non-
identically distributed. In general, maximizing the spectral
efficiency by relying on opportunistic strategies fails to provide
any fairness guarantee among subscribers [23], since some
of the subscribers experiencing low channel quality may be
denied service. This is unacceptable for delay-constrained
flawless lip-synchronized video services.

Due to the inefficiency of single-rate multicast, substantial
research efforts have been invested in designing multirate
multicast. By delivering the same video content at different
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Fig. 1. SVC Multicast system

coding rates, multirate multicast becomes capable of serving
subscribers having diverse channel conditions at different
video qualities [24]. In [12], the opportunistic schemes were
improved for supporting multirate multicast by exploiting mul-
tiple description coding (MDC) [25]. The original video was
coded into multiple representations having various rates so that
the subscribers could adaptively select the most appropriate
representation according to their near-instantaneous channel
conditions. This work was further discussed in [13] where
the radio resources were assigned for maximizing the system
throughput, while taking the fairness between groups into
account. Since the different video representations are inde-
pendent, redundant video delivery may substantially reduce the
spectral efficiency. Fortunately, SVC circumvents this in video
multicast by using the efficient layer-dependent coding struc-
ture. Based on SVC a conservative multicasting scheme (CMS)
was proposed in [14]. Explicitly, the CMS first split the group
members into multiple subgroups experiencing similar channel
conditions and then adopted a greedy algorithm for allocating
the resource among the subgroups for maintaining proportional
fairness. The opportunistic layered multicast scheme (OLM)
proposed in [13] minimized resource usage for basic video
layer delivery, while maximizing the utility for the optional
enhancement video layers delivery. In [15], the multicast
subgrouping for multilayer video applications (MSML) was
proposed, which adopted aggressive MCS assignments for
improving the spectral efficiency. By maximizing a heuristic
cost function formulated in terms of spectral efficiency, the
MSML guaranteed the basic video quality for all subscribers
while choosing the best subset of subscribers to receive the
ELs. These heuristic solutions are simple to use in practice, but
they tend to be suboptimal, which motivates the employment
of formal optimization models. Using convex and dynamic
programming, the authors of [16] struck a trade-off between
fairness and spectral efficiency. In [17], the resource allocation
of SVC multicast services was formulated as an optimization
problem under resource constraints, which was also proved

TABLE I
NOTATION USED IN THE PAPER

l index of subgroup and/or number of video layers
g index of multicast group or index of video contents
S set of multicast subscribers
Sg,l ⊂ S set of subscribers in the lth subgroup of group g
k index of subscribers
uk utility of the subscriber k
rk reception rate of the subscriber k
ag,l video arrival rate of subgroup Sg,l
bg,l channel transmission rate of subgroup Sg,l
mg,l index of MCS for subgroup Sg,l
ng,l number of RBs for subgroup Sg,l
N available RB for multicast service
Ūg,l time-averaged utility for subgroup Sg,l
Rg,l the average video rate for the g-th video with l layers

to be NP-hard. Then a two-step dynamic programming solu-
tion was proposed, but its excessive complexity hindered its
actual deployment. To bridge the gap between the theoreti-
cal optimality and implementation concerns, the authors of
[18] provided a closed-form solution for finding the optimal
resource allocation based on a convex optimization model.
This model relied on the idealistic simplifying assumption
that the subscribers were uniformly distributed in the cell
area and the user’s perceived signal-to-noise (SNR) was only
related to the distance from the base station (BS). However,
the aforementioned contributions tend to focus on the short-
term system utility without giving cognizance to the time-
varying fluctuation of video frame size and the available radio
resources.

III. SYSTEM MODEL

Against this backdrop, we consider the OFDM-based single-
cell PTMP scenario of Fig. 1, where the BS provides mul-
timedia services to multiple user groups via multicast. The
multimedia contents are encoded into multiple layers by SVC,
providing an ever-improving video quality upon increasing the
number of video layers. Thereby, an SVC layer is treated
as a separate substream that may serve a subgroup of users
experiencing similar channel quality. Given the time-varying
and error-prone nature of wireless channels, the BS is expected
to dynamically assign the physical resource blocks (RBs) and
the MCSs for each SVC layer based on the CSI feedback,
in order to achieve the best possible QoE. We note that no
retransmission can be used for multicast services, since a
single user’s channel condition cannot represent that of all
users sharing the multicast channel. In fact, the multicast
channel uses the unacknowledged mode of Radio Link Control
(RLC) to deliver the eMBMS payload [26]. Therefore, we can
focus our attention on the problem of finding an efficient RB
allocation and MCS assignment for the BS. Let us now discuss
our mathematical models and problem formulation.

A. Wireless Channel Model

Let S represent the set of multicast service subscribers.
The users subscribing to the same video content compose
a multicast group, which is indexed by g (1 6 g 6 G).
Accordingly, all the subscribers are split into G groups. Let Sg
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denote the subscribers in the group g, which share the same
spectrum resources of the BS. For simplicity, assume that each
SVC video content consists of L layers, including a BL and
L − 1 ELs. The subscribers that are able to decode the l-th
(1 6 l 6 L) video layer in the group Sg compose a subgroup
Sg,l. Due to the stochastic nature of both the user requests
and the wireless channel, the number of subscribers in each
subgroup, i.e. |Sg,l|, would dynamically change over time.

The BS operates in a time-slotted manner. The size of time
slot is dependent on the specific communication system. For
instance, in the context of LTE networks, a wireless time slot
has a duration of 0.5 milliseconds (ms), which is exactly the
time interval of 6 or 7 OFDM symbols, depending on whether
an extended cyclic prefix is used or not. The minimal radio
resource unit of an OFDM system is a single RB, which
consists of 12 consecutive sub-carriers. Due to the fact that
the two transmission modes of multicast and unicast share
the physical (PHY) layer resources, LTE/LTE-A employs time
division multiplexing (TDM) to divide the radio resources
between multicast and unicast services and the eMBMS is
restricted to occupy no more than 60% time [27]. We assume
that the radio resource is scheduled at an interval of a radio
frame which is indexed by t. Let N(t) denote the total number
of RBs available for multicast services during the slot t.

Each subgroup is assigned for an independent channel. The
transmission rate over a certain channel is determined by the
MCS. Let m ∈ {0, 1, . . . ,M} denote the index of MCS, where
m = 0 represents no data transmission. For instance, there
are 16 MCSs in the state-of-the-art LTE system. Naturally, a
greater MCS exhibits a higher transmission rate as well as a
higher block error rate (BLER) [28]. If the BLER is too high,
some subscribers having bad channel quality cannot receive
the video layer successfully. Actually, each user evaluates the
channel SNR and feeds it back to the BS through the CQI. A
mapping between the channel quality and the MCS is defined
by 3GPP [29] for attaining an acceptable BLER, which can
be expressed as:

m̃ = f(q), f : CQI →MCS, (1)

where q is the user’s perceived CQI and m̃ is the corresponding
MCS index. A higher CQI q corresponds to a higher MCS m̃.
Given a modulation scheme m, the coding rate of a modulated
symbol is denoted by c(m). Then, the data rate carried by a
single RB under the MCS m is represented by:

d(m) = Nsubcarriers ×Nsymbols × c(m). (2)

where Nsubcarriers is the number of subcarriers per RB and
Nsymbols is the number of symbols over a subcarrier per slot.
The essential problem is to assign the optimal MCS for
each subgroup, while considering the heterogeneous channel
quality.

Assume the MCS and RB assigned for the subgroup Sg,l in
the time slot t are denoted by mg,l(t) and ng,l(t), respectively.
Naturally, the total number of RBs assigned for the subscribers

is restricted by the radio resource available for multicast
services, which is formulated as:

G∑
g=1

L∑
l=1

ng,l(t) 6 N. (3)

Here, we assume that the channel is block fading, where
the channel gain remains constant during each time slot, but
potentially changes from one slot to another. Based on the
users’ channel CQIs, the BS has to assign an appropriate
number of RBs and a suitable MCS for each subgroup at the
aim of optimizing users’ QoE and ensuring fairness.

B. Video Multicast Model

Due to the interdependent structure of the SVC, a higher
layer is only decodable if all the lower layers are available. In
other words, before delivering the l-th video layer to a specific
subscriber, we have to ensure that the layers {0, . . . , l−1} are
successfully received. To achieve this, the lower SVC layer
ought to have a lower MCS so that the subscribers having
better channel conditions are able to decode higher layers and
thus obtain a better video quality. Therefore, the MCSs should
meet the following constraint:

mg,1(t) 6 mg,2(t) 6 · · · 6 mg,L(t). (4)

Notably, the MCS of the BL (i.e., mg,1) depends on the
specific group members having the worst channel quality, so
that as a basic video service at least, the BL is adequately
demodulated by all the subscribers in the group.

For a certain subscriber k (k ∈ Sg) in the group Sg , let qk(t)
denote its CQI in the slot t. According to (1), the expected
MCS is m̃k(t) = f [qk(t)]. The subscriber k in the group Sg
can only demodulate the l-th layer if m̃k ≥ mg,l. Here, we
define an indicator function as:

I(m̃k,mg,l) =

{
1, if mg,l 6 m̃k

0, otherwise.
(5)

Then, the number of video layers that user k could successfully
demodulate is calculated as lk =

∑L
l=1 I(m̃k,mg,l). If lk = l,

we have k ∈ Sg,l and vice versa. The actual reception rate rk
of user k is:

rk(t) =

L∑
l=1

I[m̃k(t),mg,l(t)]d[mg,l(t)]ng,l(t). (6)

Naturally, the reception rate is determined by the channel
quality, the RB allocation and the MCS assignment.

C. System Utility Model

Traditional metrics [30], such as the throughput, delay,
outage or BLER, are not adequate for characterizing the actual
QoE, when human perception is involved. Most of the mean
opinion score (MOS) [31] tests demonstrate that the perceived
QoE of scalable video service saturates at higher video rates.
Here, we adopt the widely used logarithmic QoE model of
[32] to assess the users’ utility. Let uk(t) denote the utility of
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user k in the time slot t, which is defined as a function of the
received video rate [33],

uk(t) = a log b
rk(t)

Rg
, (7)

where rk is the reception rate and Rg is the average video
rate associated with the highest video layer; a and b are the
coefficients to normalize uk(t) to stay in the range of 0 to 1,
which could be empirically defined in practice.

In contrast to the unicast service, it is essential for the pro-
posed scalable video multicast service to provide the best QoE
for all the subscribers. The utility for an individual subgroup
Sg,l is denoted by Ug,l(t) =

∑
k∈Sg,l uk(t). Similarly, the

utility for the group Sg is Ug(t) =
∑L
l=1 ug,l(t), where L is

the number of subgroups. Furthermore, the overall utility U(t)
for all multicast subscribers can be defined as

U(t) =
1

|S|

G∑
g=1

Ug(t) =
1

|S|

G∑
g=1

L∑
l=1

Ug,l(t), (8)

where |S| is the total numbers of multicast subscribers. Since
|S| would change over time, 1

|S| is used for normalizing the
system utility. Notably, this definition ensures proportional
fairness among different groups, because it prefers to guar-
antee the QoE of groups containing more subscribers.

Additionally, the instantaneous system utility U(t) cannot
reflect the impact of channel dynamics on the long-term video
quality. Hence, we define a time-averaged system utility U as:

U , lim
t→∞

1

t

t−1∑
τ=0

E[U(τ)]. (9)

Notably, according to (8), U can also be represented as

U =

G∑
g=1

1

|S|
Ug =

G∑
g=1

1

|S|

L∑
l=1

Ug,l, (10)

where Ug and Ug,l denote the time-averaged Ug(t) and
Ug,l(t), respectively.

D. Problem Formulation

In practice, the BS would cache the video received from
remote servers before scheduling it for transmission over the
wireless channel, whilst protecting it against the dynamics of
video rate and channel conditions. If the video packet arrival
rate exceeds the available transmission rate, the resultant
cache overflow would cause packet loss. Hence, the channel
transmission rate should be appropriately matched to the video
arrival rate at a long time scale. In our system, each video layer
can be treated as a separate substream serving a subgroup
of users. Let ag,l(t) represent the arrival rate of the l-th
layer in the group g. Indeed, affected by the fluctuations
of video bitrate, ag,l(t) would change over time. The time-
averaged video arrival rate is ag,l = lim

t→∞
1
t

∑t−1
τ=0 E[ag,l(τ)].

Given the MCS mg,l(t) and the RB ng,l(t), the transmis-
sion bitrate of the l-th layer in the group g is denoted by
bg,l(t) = d[mg,l(t)]ng,l(t) and the time-averaged transmission
rate is denoted by bg,l = lim

t→∞
1
t

∑t−1
τ=0 E[bg,l(τ)]. Regarding

each video layer substream, the following constraint should be
satisfied:

ag,l 6 bg,l. (11)

This constraint imposes restrictions on the average trans-
mission rate for each subgroup. Although the constraint does
not explicitly impose strict restrictions on the average queuing
delay in the BS, they ensure the long-term stability of the
transmission queues for each subgroup. That is, the average
queuing delay is bounded. Hence, applying this constraint
implicitly offers delay guarantee as a QoE metric.

By contrast, if the transmission rate stays above the video
rate, the resultant buffer underflow would cause video jerking.
Actually, the transmission rate of each subgroup is determined
by the assigned MCS and RB. For a multicast channel relying
on a limited number of RBs, an excessively high transmission
rate means an excessively high MCS order. As a result, some
subscribers having poor channel conditions cannot demodulate
the OFDM signal, which would exclude a part of subscribers
from successfully receiving the video stream. However, our
objective is to maximize the system’s utility, which is defined
as a function of the video rate received by all subscribers.
Naturally, this situation would lead to the reduction of sys-
tem’s utility, which is contrary to our objective. In order to
obtain an improved utility, a lower-than-affordable MCS order
is preferred for avoiding buffer underflow in case of high
near-instantaneous channel qualities, because an excessively
high transmission rate would deplete the buffer. Therefore,
maximizing the system utility can mitigate the problem of
buffer underflow.

Our objective is to maximize the time-averaged system
utility (9) via appropriate MCS selection and RB assignment,
while satisfying the RB constraint (3), the MCS constraint (4)
and the transmission rate constraint (11). The problem can be
formulated as:

max
mg,l,ng,l

U

Subject to (3), (4), (11).
(12)

Generally, addressing such a time-averaged constrained opti-
mization problem hinges on the dynamics of users’ requests
and channel quality, but there is no priori knowledge about
them. To overcome this difficulty, we will develop an online
algorithm based on Lyapunov optimization theory.

IV. A LAYERED SOLUTION FOR MCS AND RB
ASSIGNMENT IN MULTIRATE MULTICAST

The problem (12) seeks to maximize the time-averaged
utility subject to an additional time-averaged constraint. This
motivates us to employ the Lyapunov optimization framework
derived from [34] for addressing this problem. Meanwhile,
finding the optimal RB and MCS assignment for each sub-
group directly would have an excessive decision space, in-
cluding

∑G
g=1 L subgroups and N ×M possible assignment

choices for each group. Hence, it is unfeasible to make online
decisions when both the user distributions and the channel
conditions change frequently over time. To address this issue,
we decompose the initial problem into a pair of sub-problems.
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Then, we propose a layered solution for group and subgroup
resource assignment.

A. Problem decomposition

According to (10), the system utility is the sum of group
utility, while the group utility is the sum of the subgroup utility.
The layered structure enables us to decompose the initial
problem (12) into a two-phase optimization: coarse-grained
assignment for each group and fine-grained assignment for
each subgroup.

In the first phase, the subscribers belonging to the same
group are considered as a whole, and the channel condition of
the whole group can be characterized by mean or median CQI
of the group members, which is denoted by qg . Actually, the
BS can readily acquire the channel CQI qk for any subscriber
k (k ∈ Sg). The corresponding MCS is mg = f(qg). The only
problem is how to assign the appropriate RBs for each group.
Then, the initial problem is reformulated as:

max
ng

U =
1

|S|
∑G

g=1
Ug

Subject to ag 6 bg and
∑G

g=1
ng 6 N,

(13)

where ng is the allocated RBs, ag is the time-averaged video
rate and bg is the time-averaged channel transmission rate for
the g-th group. Similar to (3) and (11), each group has to meet
both the RBs constraint and the transmission rate constraint.

In the second phase, given the available RBs for each
group, the problem is how to find the optimal MCS and RB
assignment for each subgroup, which is represented by

max
ng,l,mg,l

Ug =
∑L

l=1
Ug,l

Subject to (4), (11), and
∑L

l=1
ng,l 6 n

∗
g,

(14)

where n∗g represents the optimally assigned RBs for the g-th
group in the first phase. Additionally, each subgroup has to
follow the MCS constraint in (4).

B. Coarse-grained assignment for each group

To tackle the problem (13), we model the video transmission
process by a queue. Then, the time-averaged transmission rate
constraint could be converted into the queue stability constraint
through the Lyapunov method. In the time slot t, the dynamics
of the transmission queue for the g-th group are described as:

Hg(t+ 1) =
[
Hg(t) + ãg(t)− b̃g(t)

]+
. (15)

Given the different rates of the different video contents, we
use the average video rate Rg of the group g to normalize
the video arrival rate ag(t) and the transmission rate bg(t),
namely ãg(t) =

ag(t)
Rg

, b̃g(t) =
bg(t)
Rg

. Here, we define (x)+ ,
max(x, 0). Indeed, ag(t) may be measured online, whereas
bg(t) depends on how many resources are assigned for the g-
th group. Since each group is treated as a whole using a unified
MCS mg , the corresponding transmission rate is estimated by
bg(t) = d(mg)ng . All the subscribers in a group are supposed

to have the same reception rate, which is equal to bg(t). Hence,
according to (7), the group utility is estimated by

Ûg(t) = |Sg|a log b
bg(t)

Rg
, |Sg|a log b

d(mg)ng
Rg

, (16)

where |Sg| is the group size. Observe that Ûg(t) is only related
to the RB assignment ng(t).

From the theorem in [34], the time-averaged constraint in
(13) is only satisfied if the queue Hg(t) is mean-rate-stable,
namely limt→∞

E[H(t)]
t = 0. Here, we define a quadratic

Lyapunov function as

L(t) =
1

2

∑G

g=1
H2
g (t). (17)

Let H(t) , {Hg(t), 1 6 g 6 G} denote a vector concatenating
Hg(t). The conditional Lyapunov drift is then defined as the
expected variation of the Lyapunov function:

∆(t) , E[L(t+ 1)− L(t)|H(t)]. (18)

According to the classic theory of Lyapunov drift, minimizing
the Lyapunov drift ∆(t) achieves the stability of the queue
Hg(t), and thus asymptotically meeting the time-averaged
transmission rate constraint. Here, we define a “drift-plus-
penalty” function by combining the Lyapunov drift and the
instantaneous system utility U(t), which is as follows:

∆(t)− V E[U(t)|H(t)], (19)

where the parameter V is a non-negative value invoked for
striking a trade-off between the system utility and the queue
stability in our control strategy. A large V is beneficial
for improving the system utility, while a small V means
focusing more on the stability of the queue. In Section V
we have conducted an experiment to analyze the performance
sensitivity to the trade-off factor V . Minimizing the “draft-
plus-penalty” of (19) implies maximizing the system utility
and minimizing the Lyapunov drift. This is consistent with our
objective of maximizing the system utility while complying
with the time-averaged constraint. Hence, the optimization
problem (13) is further reformulated as making a decision on
the RB assignment for each group in order to minimize the
“draft-plus-penalty” of (19).

Squaring the two sides of the queue dynamics (15) yields

H2
g (t+ 1) 6 H2

g (t) + a2g(t) + b2g(t) + 2Hg(t)[ag(t)− bg(t)].
(20)

Since dg 6 d(M) and
∑G
g=1 ng(t) 6 N , we have∑G

g=1
b2g(t) 6 d

2(M)
∑G

g=1
ng(t)

2 6 N2d2(M). (21)

Then, after substituting (18), (20) and (21) into (19), we
can derive a “loose” upper bound of the drift-plus-penalty as
follows

∆(t)− V E[U(t)|H(t)]

6 C0 + C1 −
∑G

g=1
[Hg(t)bg(t) +

V

|S|
Ug(t)],

(22)

where C0 = 1
2

∑G
g=1 a

2
g(t) + E[

∑G
g=1Hg(t)ag(t)|H(t)] and

C1 = 1
2N

2d2(M). Notably, C1 is a constant. At the beginning
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of slot t, it is viable for the BS to measure the current queue
state Hg(t) as well as the video arrival rate ag(t), and thus C0

is also a constant. As mentioned, Ug(t) can be estimated by
Ûg(t). Hence, the second item at the right side of (22) only
depends on the decision variables ng .

According to the Lyapunov optimization framework [34],
instead of directly minimizing the “drift-plus-penalty” (19),
we can solve the time-averaged optimization problem by
minimizing the “loose” bound (22), which is as follows:

max
ng

∑G

g=1
[Hg(t)bg(t) +

V

|S|
Ug(t)]

Subject to
∑G

g=1
ng 6 N.

(23)

In (23), Hg(t)bg(t) is interpreted as the queue-length-weighted
transmission rate. A higher Hg(t) implies a long backlog of
video data in the queue of group g. In this situation, it prefers
to improve the transmission rate by assigning more RBs for
this group, in order to maintain queue stability. Similarly, a
higher mean CQI m̄g(t) implies a better channel condition for
the group g, hence more RBs will be allocated to the group g
for maximizing the objective function in (23). Consequently,
the subscribers in the group g perceive a better QoE. At every
slot, by substituting all possible ng values into (16) and (23),
we can find the optimal RB assignment n∗g for each group.

Due to the fact that we seek to minimize the “loose”
bound (22), the solution of (23) is a sub-optimal solution of
the original problem (13). Thus, we present Lemma 1 for
theoretically quantifying the performance bound of our sub-
optimal solution.

Lemma 1: Assume that the queue length is initially zero. For
any position value V , the average system utility U∗ obtained
by solving the problem (23) satisfies

U∗ > Uopt − C0 + C1

V
, (24)

where Uopt is the optimal utility of the problem (13).

Proof: Please see Appendix A. �

Lemma 1 implies that the suboptimal utility U∗ asymptot-
ically approaches the optimal value Uopt as V increases.

C. Fine-grained assignment for each subgroup

After assigning appropriate RBs for each multicast group in
the first phase, the remaining problem is to find the optimal
fine grained assignment of RBs and MCS for each subgroup,
as seen in (14). The transmission process for each subgroup
is also modeled by a queue. The dynamics of the queue for
the subgroup Sg,l are characterized by

Qg,l(t+ 1) =
[
Qg,l(t) + ãg,l(t)− b̃g,l(t)

]+
, (25)

where Qg,l is the queue length, ãg,l(t) =
ag,l(t)
Rg,l

is the

normalized arrival rate and b̃g,l(t) =
bg,l(t)
Rg,l

is the normalized
transmission rate. Here, we define a quadratic Lyapunov’s
function as

Fg(t) =
1

2

∑G

g=1
Q2
g,l(t). (26)

Let Qg(t) , {Qg,l(t), 1 6 l 6 L} denote the vector of
concatenated Qg,l(t) values. The conditional Lyapunov’s drift
is defined as:

∆g(t) , E[Fg(t+ 1)− Fg(t)|Qg(t)]. (27)

Similar to (19), a “drift-plus-penalty” function is given by

∆g(t)−WgE[Ug(t)|Qg(t)], (28)

where the non-negative parameter Wg facilitates a trade-off
between the group utility and the queue stability. In practice,
Wg may be set to the same value as V for different groups.
If the queue Qg,l(t) is mean-rate-stable, the time-averaged
transmission rate constraint in (14) may be satisfied. Then,
minimizing the “draft-plus-penalty” of (19) implies maximiz-
ing the group utility and minimizing the Lyapunov’s drift,
which is consistent with the problem (14).

Since the RBs available for each group are decided by n∗g
in the first phase, the RBs for each subgroup ought to satisfy∑L
l=1 ng,l(t) 6 n

∗
g , and then we have∑L

l=1
b2g,l(t) 6 d

2(M)
∑L

l=1
n2g,l(t) 6 (n∗g)

2d2(M). (29)

Using a similar derivation as (22), we can derive a loose upper
bound of (28), which is as follows:

∆g(t)−WgE[Ug(t)|Qg(t)]

6 C2 + C3 −
∑L

l=1
[Qg,l(t)bg,l(t) +WgUg,l(t)],

(30)

where C2 = 1
2

∑L
l=1 a

2
g,l(t) + E[

∑L
l=1Qg,l(t)ag,l(t)] and

C3 = 1
2 (n∗g)

2d2(M). Since the queue state Qg,l and the video
arrival rate ag,l for each subgroup is explicitly known, both
C2 and C3 are constants. By the definition in Section III-C,
we have Ug,l(t) =

∑
k∈Sg,l uk(t), which is a function of our

decision variables mg,l and ng,l. By minimizing the “loose”
bound of (30), the optimization problem (14) is interpreted as

max
ng,l,mg,l

∑L

l=1
[Qg,l(t)bg(t) +WgUg,l(t)]

Subject to (4) and
∑L

l=1
ng,l(t) 6 n

∗
g.

(31)

This formulation prefers to assign more resources to the
subgroup having a larger Qg,l. Since a large Qg,l implies
a long backlog of data for the l-th video layer, improving
the transmission rate for the subgroup Sg,l is capable of
maintaining the queue’s stability. Similar to Lemma 1, it may
be proved that the time-averaged utility acquired by solving
the problem (31) asymptotically approaches the optimal value.

In general, this problem can be solved by exhaustively
searching through all the feasible values to find the op-
timum. Although the decision space is narrowed down
to a single group, for a given RB assignment Ng ,
(ng,1, · · · , ng,l, · · · , ng,L) for each subgroup, the number of
MCS options would still be O(LM ). For instance in LTE we
have M = 16 , which yields an excessive search space. Here,
we design a MCS assignment algorithm based on the block
coordinate descent (BCD) method [35] to accelerate the search
for the optimum MCS.

The basic principle of the BCD algorithm is to decom-
pose the decision vector into multiple coordinate blocks.
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Algorithm 1 The Optimum MCS Search Based on BCD
Input: Given a feasible subgroup RB assignment Ng , the

queue length Qg,l, the subscribers’ channel quality qk(k ∈
Sg), the max iterations Z.

Output: Mg

1: Initialization M0
g , (mg,1,M, · · · ,M)

2: m1 ← min f(qk) according to (4)
3: for k = 1, 2, . . . , Z do
4: for l = 2, . . . , L do
5: update mi

g,l according to (32)
6: end for
7: if stopping criterion is satisfied then
8: return Mi

g

9: end if
10: end for

BCD minimizes the objective function cyclically over each
coordinate block, while fixing the remaining blocks at their
most recent updated values. Here, the decision vector is
defined as Mi

g , (mg,1, · · · ,mg,l, · · · ,mg,L). The objective
function is “drift-plus-penalty”, denoted by ϕ(Ng,Mg) ,∑

16l6L[−Qg,l(t)bg(t) −WgUg,l(t)], and the MCS of the l-
th layer is regarded as the l-th coordinate block. Let mi

g,l

denote the value of mg,l after i iterations. The MCS of the
BL, i.e. mg,1, is determined by the subscriber having the worst
channel quality. mg,l(1 < l 6 L) is initialized by M so that
the constraint of (4) can be satisfied, and it is updated by

mi
g,l = arg min

mg,l
[
1

2
(mg,l −mi−1

g,l )2 −Qg,l(t)bg,l(t)

−WgUg,l(t)].

(32)

Since the variation of channel quality is unknown, we cannot
ensure the convexity of the objective function. According
to [35], we adopt the proximal minimization in (32), which
allows the objective function to be non-convex over each block
of variables. The iterations will end either when the algorithm
converges or a certain number of iterations are reached. The
procedure of searching for the optimum MCS based on BCD
is summarized in Algorithm 1.

The procedure of the subgroup RB and MCS assignment is
depicted in Algorithm 2. Under the constraint of

∑L
l=1 ng,l 6

n∗g , we may tentatively try all legitimate RB assignments for
each subgroup, namely Ng , (ng,1, · · · , ng,l, · · · , ng,L). The
next step is to search for the optimum Mg under a given Ng
using Algorithm 1. We then repeat this process until the end
of iterations. Finally, we can get the optimal N ∗g and M∗g for
minimizing the objective function ϕ(Ng,Mg).

D. Complexity Analysis

The MCS and RB assignment will be conducted in every
scheduling slot. Here, we will analyze the complexity of the
proposed layered optimization algorithm for dynamic MCS
and RB assignment in multirate multicast services. The al-
gorithm is divided into two phases. In the first phase, we
try all the legitimate RB assignments for each group. Since
we have to assign N RBs to G groups, there is a total of

Algorithm 2 Subgroup RB and MCS Assignment
Input: The allocated RB for each group n∗g , the queue length

Qg,l, the subscribers’ channel quality qk(k ∈ Sg), the max
iterations Z.

Output: Mg,Ng
1: Initialization ϕ∗(Ng,Mg) = 0
2: repeat
3: Search for the optimum MCS Mg using Algorithm 1
4: Calculate ϕ(Ng,Mg)
5: if ϕ(Ng,Mg) > ϕ∗(Ng,Mg) then
6: Update the objective: ϕ∗(Ng,Mg)← ϕ(Ng,Mg)
7: Update MCS and RB: N ∗g ← Ng,M∗g ←Mg

8: end if
9: until All Ng are iterated

TABLE II
PARAMETERS SETUP

Parameter Value
Cell Radius 500 m
Carrier Frequency 2 GHz
Transmission Power 43 dBm
Distance Attenuation 128.1 + 37.6*log(d), d [km]
Shadow Fading Log-normal, 0 mean, σ = 8 dB
RB Size 12 Subcarriers, 0.5 ms
Total RBs 100
Scheduling Time Slot A Radio Frame, 10 ms
Subcarrier Bandwidth 15 kHz
MIMO Configuration 1 Tx, 1 Rx
Noise -174 dBm/Hz

(
N−1
G−1

)
options. Then, the complexity of the second phase

would be O[
(
N−1
G−1

)
]. In the second phase, we try all legitimate

feasible RB assignments for each subgroup. Since we have
to assign n∗g RBs to L subgroups, there are totally

(n∗
g−1
L−1

)
options. Here, we consider a general case that the N RBs
are assigned equally to each group, that is, n∗g = bNG c. For
each subgroup RB assignment, we have to find the optimum
MCS based on BCD. According to Algorithm 1, the search
complexity is O(Z · L). Notably, the subgroup RB and MCS
assignment procedure of Algorithm 2 will be carried out for
each group. Accordingly, the complexity of the second phase
would be O[G · Z · L ·

(bNG c−1
L−1

)
]. The overall complexity of

our proposed algorithm is O[
(
N−1
G−1

)
+G · Z · L ·

(bNG c−1
L−1

)
].

V. PERFORMANCE EVALUATION

In this section, the performance of our dynamic RB and
MCS assignment algorithm (DRMA) proposed for multirate
multicast services is verified. To show the performance im-
provement of our solution, we also implement the OLM [13],
the MSML [15] and the dynamic adaptive multicast (DAM)
[18] scheme as benchmarks, which are the most recent and
advanced multicast algorithm for OFDM systems.

A. Simulation setup

In the simulations, four video clips, namely Crew, Football,
City and Harbour clips [36], at a 4CIF resolution (704×576)
were encoded into a BL and 3 ELs by the H.264/SVC
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reference software JSVM [37]. We adopted the SNR scala-
bility mode to generate the SVC videos. Therefore, all the
layers had an identical spatial and temporal resolution, but the
quantization parameters (QPs) were gradually reduced upon
increasing the video quality, which were set to 36, 32, 30
and 28, respectively. Notably, the proposed method is also
capable of supporting temporal and spatial scalability coding.
The Group of Picture (GOP) size was fixed to 16 and the frame
rate was set to 30 fps. Actually, even with fixed QPs, the bitrate
of the video stream would fluctuate with time, especially when
the video scene or the motion activity changed. The average
bitrate of each video layer was summarized in Table III. In
order to assess the subjective video quality, we computed the
perceived quality scores of each SVC layer using the video
multi-method assessment fusion (VMAF) [38] in Table III.

We used the Matlab LTE Toolbox for performing video
transmission and reception over the LTE system. The toolbox
provides fully-implemented uplink and downlink PHY and
MAC functions, such as the adaptive modulation and coding
(AMC), the path loss measurements and the channel state
information feedback, which are appropriate for us to simulate
the wireless communications links. The evaluation was con-
ducted in accordance with the standard LTE parameters, which
are summarized in Table II. The channel quality experienced
by a specific subscriber was characterized by SNR, which
was defined as γ = h2P

dαN0
, where P was the transmission

power, h was the channel gain, N0 was the noise power,
α was the path loss exponent and d was the distance from
BS. In the simulation, the subscribers of each multicast group
were randomly distributed (2-dimensional uniform distribu-
tion) in the coverage area of the BS. Hence, the probability
that the subscriber was located within d from the BS is
Pr(d) = d2

R2 , where R was the cell radius. The path loss
was set to 128.1 + 37.6 · log(d) and the SNR experienced
was exponentially distributed according to [18]. Meanwhile,
the small scale fading of each subscriber’s channel obeyed an
i.i.d. Rayleigh distribution with a coefficient of 2. The noise
was Gaussian distributed with a power of −174 dBm/Hz.
Since only 1 Tx antenna and 1 Rx antenna were used in
our evaluations, the mapping of [39] was applied to map the
SNR to the CQI, while keeping the BLER under 10%. Other
MIMO configurations could be readily applied by modifying
the mapping tables [40]. According to the LTE specifications,
the Transmission Time Interval (TTI) was specified at 1 ms
and the CQI reporting cycle was set to 2 TTIs. The scheduling
slot was fixed to a radio frame, namely 10 ms. Initially,
we generated 20 uniformly distributed subscribers for each
multicast group. To emulate an actual multicast scenario with
an ever-changing number of subscribers, we assumed that the
subscribers’ arrival/departure followed a Poisson process with
a rate of λ = 10−4 per TTI.

The modulated video stream was transmitted over the
simulated wireless channels. According to the above channel
models, the SNR values of each subscriber were updated
every TTI. After demodulating the OFDM signals, different
subscribers might experience different BLERs of the received
data, due to their heterogeneous channel conditions. We de-
coded the received video stream into a video sequence in YUV

format using JSVM. By comparing it to the raw video clips
using VMAF, we assessed the quality of received video [41].
We simulated a video delivery period of 1000 scheduling slots,
and all the results were averaged over 50 independent simu-
lation runs. During each simulation run, the generated traces
of channel condition were the same for different algorithms.

B. Performance Metrics

• System Utility quantifies the average QoE perceived by
the multicast subscribers. Here, the coefficients, i.e. a
and b, of the logarithmic-form user QoE model in (7)
are set to 1, and then the utility ranges from −∞ to
0. The higher the system utility, the better the service
quality. The time-averaged system utility is defined as
1
T

∑T
t=1 U(t), where T is the simulation time and U(t)

is defined in (8).
• Data Backlog indicates the amount of video data cached

by the BS. A large backlog of data would cause
not only high latency, but also packet loss in case
of cache overflow. The data backlog is quantified by
1
TG

∑G
g=1

∑T
t=1Hg(t), where Hg is defined in (15).

• VMAF Score quantifies the subjective quality of the re-
ceived video. Due to the time-varying channel conditions,
the video quality would fluctuate with time. We compute
the VMAF score of each subscriber by comparing the
decoded video sequence with the raw video sequence.
Explicitly, the mean VMAF score is defined as

P̄ =

∑G
g=1

∑
k∈Sg

∑F
i=1 Pk,i

F · |S|
, (33)

where F is the total number of frames and Pk,i is the
VMAF score of the ith frame for the kth subscriber.

• Spectral Efficiency is defined as the ratio between the
average number of bits received by all subscribers and
the channel bandwidth consumed by multicast services,
which is quantified by 1

T |S|
∑T
t=1

∑
k∈S

rk(t)
B(t) , where

B(t) denotes the channel bandwidth.

C. Simulation Results

1) performance for different channel bandwidth: We varied
the number of RBs available for multicast services from 20 to
60 and quantified the performances of these multicast schemes,
which were plotted in Fig. ??. Here, the available bandwidth
was fixed during each run of the experiment. The average
channel SNR for all subscribers was set to 16 dB and the BS
cache size was set to 0.5 Mbits. Moreover, the trade-off factors
V and W were fixed to 100 for DRMA.

As shown in Fig. ??(a), the system’s utility increases
with the growth of available bandwidth, which indicates that
the proposed scheme is capable of accommodating different
channel conditions by adaptively assigning the RB and MCS
for each video layer. For a specific video layer, having more
radio resources allows us to use lower channel coding rates, so
that even the subscribers having poor channel conditions are
able to perceive a better QoE. In detail, the proposed DRMA
outperforms the others, since only DRMA optimizes the long-
term system utility. By contrast, the OLM and the MSML
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TABLE III
BITRATE AND VMAF SCORE OF THE SVC VIDEO CLIPS

Video Clips Crew Football City Harbour

BL
Bitrate (Kbps) 602 640 361 958
VMAF Score 72.3 82.3 84.6 81.0

EL1
Bitrate (Kbps) 1068 1192 839 1879
VMAF Score 81.4 90.5 32.3 90.3

EL2
Bitrate (Kbps) 1689 1798 1404 2945
VMAF Score 87.5 95.2 93.5 91.5

EL3
Bitrate (Kbps) 2361 2475 2102 4247
VMAF Score 90.7 97.2 94.9 93.7

solutions always adopt the specific RB and MCS assignment
that maximizes the short-term system utility based on the
instantaneous CQI. Due to the stochastic nature of the wireless
channel, the current CQI is not always an accurate predictor
of near-future variations of the channel, especially when the
scheduling slot is much longer than the CQI reporting cycle.
We can observe that the DAM achieves a slightly worse utility
than the DRAM. In DAM, the subscribers in a multicast group
are considered to be uniformly distributed in a single cell
area, and the distribution of the subscriber’s channel SNR
is assumed to be entirely determined by the distance from
the BS. These assumptions are naturally idealistic, because in
practice the subscriber’s distribution appears to be random and
time-variant, and the subscriber’s channel quality also suffers
from stochastic fast fading and shadow fading. By contrast, the
DRAM searches for the optimum MCS and RB assignment
using the user reported CQIs. It can be also seen in Fig.
??(a) that the MSML suffers from a poor utility, even when
increasing the available bandwidth. The reason behind this
trend is that the MSML is designed for maximizing the intra-
group spectral efficiency rather than the QoE. It maintains
a high MCS order for the delivery of ELs, which results
in excluding a part of subscribers having moderate channel
quality from obtaining a better video quality.

The average data backlog during the video streaming is
characterized in Fig. ??(b). The DAM backlogs the minimum
amount of data in the transmission queue. It assigns the RB
and MCS based on the average video bitrate of each layer.
If the arrival rate remains constant at the average bitrate,
there would be no data backlog. However, affected by the
time-varying network conditions and video bitrates, the actual
arrival rate is fluctuated with time. The proposed DRMA has
a slightly larger data backlog, since the DRMA considers
the long-term stability of the transmission queues. If massive
amounts of data are waiting to be transmitted in the queue, the
DRMA prefers to improve the transmission rate by adopting a
higher-order MCS, and vice versa. By contrast, the decision-
makings of both the OLM and MSML are merely based on the
instantaneous channel condition, which cannot guarantee the
transmission queue stable. If the available radio resources are
insufficient to transmit all the arriving bits of any video layer
in a single time slot, they would accumulate the video data in
the transmission queue. Consequently, as shown in Fig. ??(b),
both the OLM and MSML lead to a large backlog of data. By
comparing Fig. ??(a) to Fig. ??(c), we also observe that the
scheme achieving a higher system utility can guarantee a much

20 25 30 35 40 45 50 55 60

Number of available RBs

70

75

80

85

90

95

100

R
B

 c
on

su
m

pt
io

n 
(%

)

DRMA

OLM

DAM

MSML

Fig. 3. RB consumption for different channel bandwidth.

DRMA OLM DAM MSML

-2.02 -2.35 -2.28 -2.59

-0.50

-1.00

-1.50

-2.00

-2.50

-3.00

0.00

S
ys

te
m

 u
til

ity

(a)

DRMA OLM DAM MSML

0.56 1.52 0.36 1.82

0.00

0.40

0.80

1.20

1.60

2.00

D
at

a 
ba

ck
lo

g 
(x

 1
05  bi

ts
)

(b)

DRMA OLM DAM MSML

86.23 85.13 85.73 84.64

83.50

84.00

84.50

85.00

85.50

86.00

86.50

V
M

A
F

 s
co

re

(c)

DRMA OLM DAM MSML

0.42 0.31 0.34 0.45

0.20

0.25

0.30

0.35

0.40

0.45

0.50

S
pe

ct
ra

l e
ff

ic
ie

nc
y 

(b
ps

/H
z)

 

(d)

Fig. 4. Performance results in the scenario with dynamic bandwidths. (a)
System utility. (b) Data backlog. (c) VMAF score. (d) Spectral efficiency.

better video quality for the subscribers, which is consistent
with our optimization goal.

As shown in Fig. ??(d), the spectral efficiency decays as the
growth of available bandwidth, because more radio resources
enable the BS to convey the same data using much lower
MCS orders, which reduce the average number of bits carried
by each OFDM signal. In detail, the DRMA achieves a higher
spectral efficiency than both the OLM and DAM under the
same channel conditions. Since by definition, the spectral
efficiency characterizes how efficiently the radio resources are
exploited, this result implies that our scheme can improve the
reception rate as well as the video quality for all subscribers,
which is consistent with the results in Fig. ??(a). We can
also observe that the MSML outperforms the other schemes in
terms of spectral efficiency, when the number of RBs available
is over 40. The MSML policy is designed for maximizing the
spectral efficiency. In high-bandwidth scenarios, the further
increase of bandwidth would no longer help to improve the
spectral efficiency. As a result, in order to guarantee a high
spectral efficiency, the MSML would only exploit a part of
the available RBs for multicast services, even though the
channel bandwidth is adequate. We plot the RB consumption
under different channel bandwidths in Fig. 3. We find that
the proportion of RB consumption of the MSML is far below
that of the other schemes, especially in case of a high channel
bandwidth. Since the spectral efficiency is defined as the ratio
between the average bit rate received by all subscribers and the
channel bandwidth consumed by multicast services, a lower
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TABLE IV
STANDARD DEVIATION OF THE RESULTS.

Metric

Deviation Method
DRMA OLM DAM MSML

System utility 0.0849 0.1114 0.0965 0.0998
Data backlog (×105 bits) 0.0656 0.0771 0.0752 0.0821
VMAF score 0.8445 0.8075 0.7843 0.9265
Spectral efficiency (bps/Hz) 0.0292 0.0436 0.0279 0.0362

bandwidth consumption naturally leads to a higher spectral
efficiency. Additionally, the results in Fig. 3 also imply that
the DRMA can make the most of the available bandwidth.

2) performance for dynamic channel bandwidth: Differ-
ent from the above experiment where the available channel
bandwidth was fixed during video transmission, we conducted
a further experiment to investigate the performance for a
dynamic channel. Here, we assumed that the number of RBs
available for multicast services was Poisson distributed with a
mean of 40. The remaining parameters were the same as the
above experiments and the results were plotted in Fig. 4.

As shown in Fig. 4(a), the DRMA outperforms the other
schemes in terms of system utility. The DAM, OLM and
MSML assign the RB and MCS for each subgroup merely
based on the instantaneous available bandwidth, which varies
randomly in our experiment. As a result, they may adopt a
high-order MCS to increase the throughput once the avail-
able bandwidth decreases, even though there is a very small
backlog of data in the transmission queue. By contrast, since
the DRMA considers the long-term dynamics of the avail-
able bandwidth, it may adopt a low-order MCS so that the
subscribers having bad channel quality can receive the ELs.
This result indicates that by considering the stability of the
transmission queue, the DRMA readily accommodates the
bandwidth fluctuations and thus provides the best QoE for
the subscribers.

From Fig. 4(b), we can observe that there is almost no data
backlog for the DAM, since it always matches the transmission
rate with the mean video rate. By maintaining the long-
term stability of the transmission queue, the DRMA achieves
a much smaller data backlog than the other schemes. The
MSML has a large backlog of data, because the ELs may
be discarded when the bandwidth is inadequate. Fig. 4(c)
shows the video quality in face of a fluctuating bandwidth.
As expected, a higher system utility can ensure a much
better video quality for the subscribers. By comparing Fig.
4(d) to Fig. 4(c), we observe that the MSML achieves the
highest spectral efficiency of 0.45 bps/Hz at the expense of
eroded video quality. Since both the channel conditions and
the number of available RBs are randomly generated for each
simulation run, we also give the standard deviations of the
results over 50 independent runs in Table IV. The deviation is
small, which implies that the results of independent simulation
runs are close to the mean values.

3) performance for non-uniformly distributed subscribers
with dynamic bandwidths: We conducted a further experiment
for investigating the performance for non-uniformly distributed
subscribers, while the above experiments were based on a
uniform distribution. The numbers of subscribers in the groups

TABLE V
UTILITY FOR THE SAME CHANNEL MODEL PARAMETERS.

Criterion

Utility Group
Crew Football City Harbour

Mean -2.04 -1.98 -2.03 -2.12
Median -2.05 -2.01 -2.11 -2.09
Minimum -2.01 -1.96 -2.05 -1.98
Maximum -1.95 -2.02 -2.10 -2.06

requesting the Crew, Football, City, Harbour video clips were
set to 50, 40, 25, 15, respectively. The dynamics of the
number of RBs available for multicast services were assumed
to be Poisson distributed with a mean of 30. Since the
utility was negative, we plotted its absolute value for a better
representation in Fig. ??, where a lower absolute value implied
a higher utility.

It is found in Fig. ??(a) that the system utilities of both
the DAM and DRMA increase in the order of Crew, Football,
City and Harbour, which implies that the group containing
more subscribers achieves a higher utility. Since the system’s
utility is defined as a weighted sum of the group utilities,
where the weight is the normalized number of subscribers
in the group, the DRMA can guarantee proportional fairness
between different multicast groups. Consequently, the DRMA
prefers to assign more resources to the group having more
subscribers. More radio resources would result in a higher
spectral efficiency and a lower backlog of video data. As
shown in Fig. ??(b) and Fig. ??(d), the Crew group (containing
most subscribers) has the highest spectral efficiency and lowest
backlog of video data compared to the other groups. Due to
the differences of the video scenarios, we compare the increase
of the VMAF scores relative to the BLs, rather than directly
comparing the VMAF scores. In Fig. ??(c), the Crew group
achieves a higher video quality improvement than the other
groups relative to their basic video qualities (VMAF score
of the BLs). As shown in Fig. ??(d), for OLM, the ratio of
the utility between the Crew group and the Harbour group is
much higher than that of the other groups. The reason behind
this result is that using the OLM, the group having more
subscribers is given priority for allocating the limited radio
resources. That is, when the data transmissions of the large
groups are completed, the remaining radio resources are then
allocated to the smaller groups. Naturally, the OLM cannot
achieve proportional fairness between groups. By contrast, the
system’s utility of the MSML varies slightly between different
groups, because the MSML invokes a heuristic cost function,
which is defined as the ratio between the reception bitrate and
the video bitrate, to schedule the radio resources without any
consideration to the group size.

4) performance vs. assessment criteria of group channel
conditions: In the above experiments, we adopted the mean
CQI of all the group members to assess the channel condition
of a group. Here, we evaluated the performance under different
criteria, namely the mean CQI, the median CQI, the minimum
CQI and the maximum CQI. Each group had the same number
of subscribers and the available channel bandwidth changed
dynamically following a Poisson distribution with a mean of
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TABLE VI
UTILITY FOR DIFFERENT CHANNEL MODEL PARAMETERS.

Criterion

Utility Group
Crew Football City Harbour

Mean -2.39 -1.82 -1.58 -1.35
Median -2.45 -1.85 -1.56 -1.34
Minimum -1.84 -1.83 -1.80 -1.81
Maximum -1.82 -1.84 -1.93 -1.87

40 RBs. In the first case, we used the same channel model
parameters to generate the channel SNR for the subscribers in
different groups and the corresponding results were shown in
Table V. Observe that the utilities of the different groups are
quite similar. Using the same channel model parameters, dif-
ferent groups have the same channel SNR distribution across
the subscribers. As a result, the mean, median, minimum or
maximum CQI metrics of the different groups are almost the
same. Hence, the radio resources would be equally shared
among the groups, regardless of which criterion we use.

In the second case, we changed the channel model parame-
ters of different groups, ensuring that the average SNRs of the
group Crew, Football, City and Harbour increase in turn and
the results were shown in Table VI. We find that the utility
increases with the average SNR under the mean and median
criteria, but it changes very little under the minimum and
maximum criteria. This is because the mean or median CQIs
of different groups would change with the average channel
SNRs, but the minimum or maximum CQIs of different groups
are almost unchanged. These results imply that both the mean
and median criteria are capable of characterizing the channel
condition changes of the whole group.

5) performance vs. the trade-off factors: We conducted fur-
ther experiments for investigating the performance sensitivity
of the proposed DRMA vs. the trade-off factor V in (23)
and W in (31), where V was set to be equal to W and the
value of V varied in the range of 1 to 1000. The number of
RBs available for multicast services was fixed to 50 and the
remaining parameters were set to the same values as in Fig.
??. The simulation results were exhibited in Fig. 6. From Fig.
6(a) and (c), we observe that both the time averaged system
utility and the video quality saturate after a period of rapid
growth vs. V . Since the DRMA strikes a trade-off between the
queue length and the utility according to (23) and (31), a large
V improves the system utility by allocating more resources
to the groups containing more subscribers or having better
channel conditions. As shown in Fig. 6(d), upon increasing
the value of V , the DRMA tends to a lower spectral efficiency
by reducing the MCS order. In this way, the number of users
that could receive a better video quality is increased, and the
system utility is improved as well. However, this will impose
a large backlog of data on the other groups. As shown in Fig.
6(b), the data backlog increases with V . By contrast, a small
V increases the importance of queue stability in the decision
making of the DRMA. As a result, the DRMA tends to assign
more resource to the groups having lager backlog, which
avoids the playback freezes. Hence, controlling V provides an
efficient and flexible way for us to strike a trade-off between
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Fig. 6. Performance vs. the trade-off factors V . (a) System utility. (b) Data
backlog. (c) VMAF score. (d) Spectral efficiency.

the system’s utility and the playback smoothness.

VI. CONCLUSIONS

We conceived SVC based multicast to provide differentiated
QoE for numerous video subscribers having time-varying and
heterogeneous channel conditions. By dynamically scheduling
the video rate and the radio resource, we optimized the long-
term QoE for all subscribers, while taking both the inter- and
intra-group fairness into account. The problem was formulated
as a time-averaged optimization problem constrained by the
limited radio resources. This formulation was not influenced
by the instantaneous fluctuation of channel conditions and
video bitrates. Based on Lyapunov’s drift and optimization
theory, we proposed a layered twin-phase solution for solving
this problem. An efficient algorithm was proposed for accel-
erating the search for the optimum MCS, which mitigated
the computational burden. We then derived an analytical
performance bound to show its optimality. Our experiments
conducted using realistic video traces demonstrated that the
proposed solution achieved the best QoE, while additionally
maintaining proportional fairness among groups. Our future
research will focus on harnessing non-orthogonal multiplexing
techniques, which is considered as a promising candidate for
the next generation systems.

APPENDIX A
PROOF OF LEMMA 1

By minimizing the “loose” bound of (22), we obtain a
suboptimal RB assignment n∗g for the problem (13). Let b∗g
and U∗ denote the corresponding transmission rate and system
utility, respectively. Then, we have

∆(t)− V E[U∗(t)] =
1

2
E[

G∑
g=1

H2
g (t+ 1)−H2

g (t)]−

V E[U∗(t)] 6 C0 + C1 − E[

G∑
g=1

Hg(t)b
∗
g(t) + V U∗(t)].

(34)
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According to Theorem 4.5 in [34], there exists a stationary
optimal ω-only policy that achieves the optimal system utility
U
opt

, while satisfying the constraints in problem (13). The
ω-only policy implies that the decision only depends on the
observation of the random event ω, which characterizes the
channel dynamics here. Since the right side of inequality
(34) is the minimum of the “loose” bound of (22), any other
assignment policy would increase its value, yielding

1

2
E[

G∑
g=1

H2
g (t+ 1)−H2

g (t)]− V E[U∗(t)] 6

C0 + C1 − E[

G∑
g=1

Hg(t)b
opt
g (t) + V Uopt(t)|H(t)],

(35)

where boptg is the transmission rate under the optimal ω-only
policy. Since the above inequality holds for all slots, summing
both sides over t = 0, 1, . . . , T − 1 yields

1

2
E[

G∑
g=1

H2
g (T )−H2

g (0)]− V
T−1∑
t=0

E[U∗(t)] 6

TC0 + TC1 −
T−1∑
t=0

E[

G∑
g=1

Hg(t)b
opt
g (t) + V Uopt(t)].

(36)

Upon dividing both sides by V T and taking T →∞, we have

lim
T→∞

1

2V T
E[

G∑
g=1

H2
g (T )]− lim

T→∞

1

T

T−1∑
τ=0

E[U∗(τ)] 6
C0 + C1

V

+ lim
T→∞

Nd(M)

V T

T−1∑
τ=0

E[

G∑
g=1

H2
g (τ)]− lim

T→∞

1

T

T−1∑
τ=0

E[Uopt(τ)].

(37)

Here, the inequality bg 6 Nd(M) is used. Because
the queue Hg(t) is mean-rate-stable, namely we have
lim
t→∞

1
tE[Hg(t)] = 0, both the first term on the left side

and the second on the right side equal to 0. By defini-
tion, we have U∗ = lim

T→∞
1
T

∑T−1
τ=0 E[U∗(τ)] and Uopt =

lim
T→∞

1
T

∑T−1
τ=0 E[Uopt(τ)]. Hence, the above inequality (37)

may be represented by

U∗ ≥ Uopt − C0 + C1

V
. (38)
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