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Abstract—Multibeam technology enables the use of two or
more subbeams for joint communication and radio sensing,
to meet different requirements of beamwidth and pointing
directions. Generating and optimizing multibeam subject to the
requirements is critical and challenging, particularly for systems
using analog arrays. This paper develops optimal solutions to a
range of multibeam design problems, where both communication
and sensing are considered. We first study the optimal combi-
nation of two pre-generated subbeams, and their beamforming
vectors, using a combining phase coefficient. Closed-form optimal
solutions are derived to the constrained optimization problems,
where the received signal powers for communication and the
beamforming waveforms are alternatively used as the objective
and constraint functions. We also develop global optimization
methods which directly find optimal solutions for a single beam-
forming vector. By converting the original intractable complex
NP-hard global optimization problems to real quadratically con-
strained quadratic programs, near-optimal solutions are obtained
using semidefinite relaxation techniques. Extensive simulations
validate the effectiveness of the proposed constrained multibeam
generation and optimization methods.

Index Terms—Multibeam, beamforming, joint communication
and radio sensing, dual-functional radar-communications.

I. INTRODUCTION

Joint communication and radio sensing (JCAS) techniques,

also known as Radar-Communications, have received increas-

ing interest from both academia and industry [1]–[5]. It

has appealing features, such as low cost, resource saving,

reduced size and weight, and mutual sharing of information,

for improved communication and sensing performance [6],

[7]. Millimeter-wave (mmWave) JCAS systems can potentially

provide very high data-rate communications and high accurate

sensing results, due to their large signal bandwidth and small-

profile massive antenna arrays.

Steerable beamforming (BF) technique can overcome large

propagation attenuation, supporting mobility and exploiting
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channel sparsity in mmWave JCAS. However, there are chal-

lenges associated with the technique, particularly in systems

using a single analog array. The primary challenge is that

communication and sensing have different requirements for

BF. Radio sensing often requires time-varying directional

scanning beams, while a stable and accurately-pointing beam

is usually expected for communication. In [5], [8]–[11], a

single beam was used for communication and sensing, and

hence sensing is restricted within the communication direction.

Multibeam technology [12] which enables the use of BF

waveform with more than one mainlobe (called as subbeam

hereafter), has a wide range of applications, such as radar [13],

[14], satellite communications [15], [16], wireless communi-

cations [17] and radio astronomy [18]. Recently, multibeam

technology, as a viable solution to the BF problem, has been

applied to JCAS, such as the use of BF network circuit

[19], [20] and digital BF in MIMO systems [21]–[23]. In

[21], sparse antenna array and BF optimization were studied

for communication-embedded MIMO radar systems. In [22],

multibeam waveform optimization was designed to minimize

the difference between the generated and the desired sensing

waveforms under the constraints on the signal-to-interference-

and-noise ratio (SINR) of multiuser MIMO communications.

In [23], globally optimal waveforms were derived for mul-

tiple desired radar beam patterns, based on the criterion of

minimizing multiuser interference for communications. These

solutions were based on digital MIMO systems, which are not

always feasible for mmWave due to high hardware complexity

and cost. More cost-effective options for mmWave JCAS were

suggested to be analog or hybrid arrays [24].

A multibeam scheme for JCAS with analog arrays was

first introduced in [25] and then improved in [6], [7]. In

that scheme, the multibeam consists of a fixed subbeam

dedicated to communication along and a scanning subbeam

with a direction varying across different packets. Several

methods for generating the multibeam varying over packets

were proposed in [6]. Method 2 in [6] directly generates

the multibeam by minimizing the mismatches between the

desired and the generated BF waveforms using an iterative

least squares (ILS) method, without consideration on commu-

nications. Method 1 in [6] is a low-complexity and flexible

subbeam-combination method, where two basic beams for

communication and sensing are separately generated according

to the desired BF waveform. The two beams are further shifted

to the desired directions by multiplying a sequence, and then

combined by using a power distribution factor and a phase

shifting coefficient. Method 1 also provides a simple way

http://arxiv.org/abs/2004.00875v1
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to determine the phase shifting coefficient, ensuring that the

fixed and scanning subbeams have the same phase in the

dominating communication direction and can be combined

constructively for communication, with no consideration on

the sensing waveform. Closed-form optimal solutions for the

phase coefficient, as well as for the quantization of the BF

vectors, were further investigated in [7]. The analog rank-

one multibeam BF with a single RF chain was proved to be

simple, cost-effective, compact, and computationally efficient

[6], [7], and is suitable for portable applications such as JCAS

in unmanned aerial and ground vehicles.

Two remaining important issues are yet to be addressed in

multibeam design [6], [7]. Firstly, in [7], the optimization of

the combining coefficient was conducted by maximizing the

received signal power at the communication receiver, without

explicit consideration on the sensing waveform. Although the

impact was demonstrated to be statistically small via numerical

simulations, the waveform at the sensing directions can distort

occasionally. Secondly, although the subbeam-combination

method investigated in [6], [7] is simple and flexible for

implementation, it is suboptimal because the BF weights are

separately pre-generated for the two subbeams and combined

by only a single variable. It is unclear what its performance

gap is from the optimum and whether the latter exists.

In this paper, we propose new multibeam optimization

techniques which take into account both communication and

sensing performance of a JCAS system with analog arrays,

hence addressing both of the above issues comprehensively.

We are particularly interested in two classes of optimiza-

tion problems: 1) maximizing the received signal power for

communications subject to the constraints on the scanning

subbeam; and 2) optimizing the BF waveform with constraints

on the received signal power for communications. For both

problems, we first study the subbeam combination method in

[6], [7] but with new holistic analysis and solutions developed,

and then design the global optimization techniques. Our main

contributions are summarized as below.

• For the subbeam-combiner method, we propose new

approaches to maximize the received signal power in

the cases of (1) constrained BF gain at discrete scanning

directions and (2) constrained total scanning power over

a range of directions. In both cases, we show that closed-

form optimal solutions for the combining coefficient can

be obtained by finding common solutions to the objective

and constraint functions;

• For the subbeam-combiner method, we provide closed-

form constrained optimal solutions that maximize the

scanning gain in particular directions or the scanning

power over a given range of directions, subject to the

constraint on the received signal power for communi-

cations. This is a dual problem to that stated in the

contribution above. These optimal solutions, as well as

those above, are shown to be practical and efficient, and

can be obtained at low computational complexities;

• We develop new global optimization methods that directly

optimize the BF vector, considering the requirements of

both communication and sensing. We introduce a novel

method to convert the original NP-hard complex prob-

lems to real quadratically constrained quadratic programs

(QCQPs), which are then solved efficiently by semidef-

inite relaxation (SDR) techniques [26]. These methods

achieve near-optimal solutions, providing benchmarks for

performance evaluation of suboptimal solutions.

Extensive simulation results validate the effectiveness of the

proposed BF optimization methods.

The rest of this paper is organized as follows. We introduce

the system model, formulate the problems, and elaborate

on our principle of multibeam optimization in Section II.

Constrained optimization methods for the combining coeffi-

cients are investigated in Section III. The proposed global

optimization methods are described in Section IV. In Section

V, extensive simulation results are presented, and finally,

concluding remarks are provided in Section VI.

Notations: (·)H , (·)∗, (·)T , (·)−1, and (·)† denote Hermitian

transpose, conjugate, transpose, inverse, and pseudo-inverse,

respectively. | · | and ‖ · ‖ denote element-wise absolute value

and Euclidean norm, respectively. E(·) denotes expectation.

arg(·) denotes the argument of a complex number. Rn and S
n

denote the sets of all real n× n matrices and real symmetric

n× n matrices, respectively.

II. SYSTEM MODEL

In this paper, we consider the same system set-up as in [6].

Two nodes perform two-way point-to-point communications in

time division duplex (TDD) mode and simultaneously sensing

the environment to determine the locations and speed of

nearby objects. To mitigate the leakage from the transmitter

to the receiver, each node uses two spatially separate analog

antenna arrays, for transmission and reception, respectively.

Each analog array only has a single radio frontend (RF) chain.

The received signals at the different antennas of the receiver

array are weighted, and combined before being sent to an

analog-to-digital converter (ADC). The digital baseband signal

is converted to analog by a digital-to-analog convertor (DAC),

and then weighted and fed to the different antennas of the

transmitter array. The weighting, with a complex value, can be

achieved using analog circuits either passively [7] or actively

[27]. Below we briefly describe the system. The readers are

referred to [6] for more details of the system and multibeam

JCAS technology.

We consider M -element uniform linear arrays (ULAs) with

half-wavelength antenna spacing. Considering planar wave-

front and a narrow-band BF model, the array response vector

is given by

a(θ) = [1, ejπ sin(θ), · · · , ejπ(M−1) sin(θ)]T , (1)

where θ is either the angle-of-arrival (AoA) or angle-of-

departure (AoD).

Similar to [24], [28]–[30], this work considers a narrowband

beamforming model and a narrowband sparse channel model

with a dominant line-of-sight (LOS) path and a limited number

of much weaker non-line-of-sight (NLOS) paths. On one hand,

the validity of the narrowband beamforming model relies on

the fractional bandwidth, which is defined as the ratio between

signal bandwidth W and carrier frequency fc. When the
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fractional bandwidth is sufficiently small, i.e., W/fc ≪ 1,

the variation of the phase shift across different frequencies,

i.e., the beam squint effect, is ignorable and the narrowband

beamforming model is valid [24]. On the other hand, in a

typical mmWave environment, the power ratio between the

LOS and NLOS paths is typically very large [31], [32]. For

example, referring to the measurement channel data for a

typical urban environment when the carrier frequency is 73

GHz [32], the power ratio between LOS and NLOS paths

is more than 30 dB when the Tx-Rx separation distance is

100 m. Therefore, frequency selectivity is negligible and the

consideration of a narrowband channel model is reasonable in

this paper. In particular, all multipath signals are assumed to

cause negligible inter-symbol interference in communications.

Consider an L-path channel with AoDs θt,ℓ and AoAs θr,ℓ,
l = 1, · · · , L. The quasi-static physical channels [24] can be

represented as

H =

L
∑

ℓ=1

bℓδ(t− τℓ)e
j2πfD,ℓta(θr,ℓ)a

T (θt,ℓ), (2)

where, for the ℓ-th path, bℓ is its amplitude, τℓ is the propa-

gation delay, and fD,ℓ is the associated Doppler frequency.

Let s(t) be the transmitted baseband signal, and wt and wr

be the transmitter and receiver BF vectors, respectively. The

received signal for either sensing or communication can be

written as:

y(t) = wT
r Hwt s(t) +wT

r z(t)

=

L
∑

ℓ=1

bℓe
j2πfD,ℓt

(

wT
r a(θr,ℓ)

)(

aT (θt,ℓ)wt

)

s(t− τℓ)

+wT
r z(t),

(3)

where z(t) is the additive white Gaussian noise (AWGN)

vector at the receiver.

We assume that H is known at the transmitter, and design

the BF weight vector wt that generates a fixed subbeam in

the principal communication direction and a scanning beam

for sensing in different directions. The scanning subbeams

are designed to scan areas in different directions from the

principal communication direction. Both subbeams contain the

same information, and are used for both communication and

sensing. Hereafter, we call these two subbeams as fixed and

scanning subbeams. For wr, we assume that maximal ratio

combining (MRC) [33] is applied in the analog domain, to

achieve the maximal output power at the receiver (or in other

words, the maximal SNR). Therefore, wr = (Hwt)
∗.

In [6], [7], two BF vectors, wt,c and wt,s, are designed to

generate the fixed and scanning subbeams, respectively. They

are combined by a phase shifting coefficient ejϕ and a power

distribution factor ρ (0 < ρ < 1), as given by

wt =
√
ρwt,c +

√

1− ρejϕwt,s. (4)

The value of ρ can typically be determined by balancing the

communication and sensing distances [7]. The optimization

is conducted with respect to ϕ, which has a non-negligible

impact on the BF performance. This is because when we

design the BF vectors of the subbeams, wt,c and wt,s are

only respectively optimized for magnitudes of the desired

BF waveform with no consideration on phases. The BF gain

of the combined multibeam for communication and sensing

depends on how these two BF vectors are combined. The

optimized ϕ can ensure that the two pre-generated subbeams

are coherently combined to form the multibeam. When wt,c

and wt,s change, for example, wt,s changes every packet due

to the varying AoD of the scanning subbeam, ϕ needs to

be accordingly updated. As mentioned in Section I, several

suboptimal methods have been proposed in [6], [7] to optimize

ϕ, without explicit consideration on the sensing BF waveform.

In the rest of this paper, we present constrained optimization

methods for ϕ and globally optimal solution for wr, given the

requirements of both communication and sensing.

In the following sections, the problem formulations of

BF for JCAS will be proposed. The notations used in the

formulations are summarized in Table I.

III. CONSTRAINED OPTIMAL SOLUTIONS FOR ϕ

In this section, we investigate several constrained optimiza-

tion methods to the design of the BF vector in (4). We

consider two types of optimization problems: (1) Maximizing

the received signal power for communications subject to BF

waveform constraints on scanning subbeams; and (2) opti-

mizing the BF waveform of the scanning subbeam subject to

constraints on the received signal power for communications.

A. Maximizing Received Signal Power with Constraints on

Scanning Waveform

We intend to maximize the received signal power and

equivalently the received signal-to-noise ratio (SNR) [7] for

communications, while meeting constraints on the BF wave-

form. We study two types of constraints on the sensing

subbeam in the following.

1) Constrained BF Gain in Discrete Scanning Directions:

We consider the cases where there are constraints on the

minimum BF gain in several sensing directions. Let the

threshold in the i-th sensing direction θsi be C2
si
(1 − ρ)M ,

where Csi ∈ [0, 1] is a scaling coefficient, representing the

ratio between the gain of the scanning subbeam in the direction

of interest and the maximum gain that the array can achieve

for sensing, i.e., (1 − ρ)M . In a practical system, the value

of Cs,i depends on the specific requirement of the BF gain

in the directions of interest, which depends on the radar

sensing parameters, such as the desired range of detection

and the distance of targets. We can formulate the constrained

optimization problem as

P1 : ϕ
(1)
opt = argmax

ϕ

wH
t HHHwt

‖wt‖2
, (5a)

s.t.
|aT (θsi)wt|2

||wt||2
≥ C2

si
(1− ρ)M, i = 1, 2, · · · , Ns, (5b)

with wt =
√
ρwt,c +

√

1− ρejϕwt,s,

where Ns is the number of constraints; and wt,c and wt,s

are pre-designed to generate the communication and scanning

subbeams with the required BF waveform, respectively.
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TABLE I
A SUMMARY OF IMPORTANT NOTATIONS USED IN THIS PAPER.

w BF vectors

wt TX BF vector
wr RX BF vector
wt,c TX BF vector for communications
wt,s TX BF vector for radio sensing

w
(q)
t , q = 1, 2, · · · , 8 Optimal BF vectors for the qth problem formulation

ϕ Phase shifting coefficient
ϕopt Optimal phase shifting value without consideration of constraints

ϕ
(q)
opt , q = 1, 2, · · · , 8 Optimal phase shifting value for the qth problem formulation

k Range of ϕ satisfying constraints

ki, i = 1, 2, , Ns Range of ϕ satisfying the ith constraint in (5b)
ks Range of ϕ satisfying (5b)
kp Range of ϕ satisfying (13b)
kg Range of ϕ satisfying (17c)

θ AoDs/AoAs

θt,l AoD at the lth path, l = 1, 2, · · · , L
θr,l AoA at the lth path, l = 1, 2, · · · , L
θsi The ith sensing AoD with a constraint on the minimum BF gain

θsl , θsr Bounds of the range of AoDs with the constraint of the total power

C
Scaling coefficient for the bounds

of the constraints

Csi The ith scaling coefficient to the maximum achievable BF gain
Csp The scaling coefficient to the total power over a range of consecutive scanning directions
Cp The scaling coefficient to the received signal power

ε
Bounds of the constraints

considering global optimizations

εw
The bound of the constraint for mismatches between the generated and the desired BF
waveforms

εsi The ith bound of the constraint for BF gain of the subbeam in the direction of interest

εp
The bound of the constraint for the power over a range of consecutive scanning
directions

Let ϕopt be the unconstrained optimal solution for (5a),

which was already obtained in [7]. To solve the constrained

optimization problem, we can first evaluate the range of ϕ
for each constraint in (5b), and then check ϕopt against their

intersection. Expanding the left-hand side of the i-th inequality

of (5b), we obtain

|aT (θsi)wt|2 = ρ|wH
t,ca

∗(θsi)|2 + (1− ρ)|wH
t,sa

∗(θsi)|2

+ 2PRe{ejϕwH
t,ca

∗(θsi)a
T (θsi)wt,s},

||wt||2 = ρ‖wt,c‖2 + (1− ρ)‖wt,s‖2 + 2PRe{ejϕwH
t,cwt,s}

= 1 + 2PRe{ejϕwH
t,cwt,s}, (6)

where P ,
√

ρ(1− ρ). Let wH
t,cwt,s = b1e

jβ1 ,

wH
t,ca

∗(θsi) = b2ie
jβ2i , and aT (θsi)wt,s = b3ie

jβ3i , where

the cross-product terms are represented by their magnitude

and phase. Further let B1i , [ρb22i + (1 − ρ)b23i]/(2P ), and

B2i , MC2
si
(1 − ρ)/(2P ). Thus each inequality in (5b) can

be converted to






X1i sinϕ+X2i cosϕ ≥ B2i −B1i,

X1i , 2Pb1B2i sinβ1 − b2ib3i sin(β2i + β3i),

X2i , b2ib3i cos(β2i + β3i)− 2Pb1B2i cosβ1.

(7)

We can now obtain the range of ϕ by considering the following

three cases.

• Case 1): If |B2i − B1i| ≤
√

X2
1i +X2

2i, we can get the

solution to (7) as a set ϕ ∈ ki = [ϕ1i, ϕ2i], where ϕ1i

and ϕ2i denote the two bounds of the set. The set is given

by

ki = [ϕ1i, ϕ2i]

=

{

[µi − σi,−µi + π − σi] , if X1i ≥ 0,
[µi + π − σi,−µi + 2π − σi] , if X1i < 0,

(8)

where µi , arcsin( B2i−B1i√
X2

1i
+X2

2i

) + 2kπ, k = ±1,±2, · · · ,
and σi , arctan(X2i

X1i
). Here, ki is cyclic and a complete

cycle is 2π.

• Case 2): If B2i −B1i ≤ −
√

X2
1i +X2

2i, we have ki =
R, i.e., any ϕ satisfies (6).

• Case 3): If B2i −B1i ≥
√

X2
1i +X2

2i, we have ki ∈ ∅,

i.e., no feasible ϕ can be found at the required ratio Csi .

This case needs to be avoided by carefully configuring

the values of Csi .

After obtaining the sets of all inequality constraints, we can

derive the final range of ϕ by finding their intersection. To

make the comparison simpler, for each ki satisfying Case 1),

we select a segment in a 2π-length section [x, x+2π], where

x can be any real number. Let x = −π, i.e., the 2π-length

section is [−π, π], and the selected segment is

k̄i =

{

[−π, ϕ̄i2] ∪ [ϕ̄i1, π], if ± π ∈ ki,
[ϕ̄i1, ϕ̄i2] , otherwise.

Then we can obtain the intersection over the 2π period as

ϕ ∈ K̄ , {k̄1 ∩ k̄2 ∩ · · · ∩ k̄Ns
} = [ϕ̄s1, ϕ̄s2]. (9)

It is worth noting that generally, the range of ϕ de-

creases with the increase of Ns. For a specific constraint

|aT (θsi)wt|/||wt|| ≥ Csi

√

(1− ρ)M , reducing the value of

Csi can make ϕ less constrained, and decrease the minimum

gain in the direction θsi . Overall, the chance of K̄ = ∅

grows with the increase of Ns and Csi . This extreme case

happens when the constraints lead to an empty intersection

of ϕ. In this case, we can use two possible ways to obtain

alternative, suboptimal solutions of K̄. One is to partially relax

the constraints, by progressively reducing the value of Csi or

discarding part of the constraints until K̄ 6= ∅. The other is to

firstly obtain the main segment of ϕ as the section [ϕ1m, ϕ2m],
and then refine it by considering the constraint(s) prioritized

to be met first. The constraints can be, but are not limited to,

the one constraining BF gain in the dominating AoD.
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The feasible range of ϕ can be then expressed as

ϕ ∈ ks = [ϕs1, ϕs2] = [ϕ̄s1+2kπ, ϕ̄s2 + 2kπ], (10)

k = ±1,±2, · · · .

After that, by comparing ks with ϕopt, the constrained

optimal combining phase can be obtained as

ϕ
(1)
opt =







ϕopt, if ϕopt ∈ ks,
ϕs1, if ϕopt /∈ ks and f(ϕs1) ≤ f(ϕs2),
ϕs2, if ϕopt /∈ ks and f(ϕs1) > f(ϕs2),

(11)

where f(ϕ) = wH
t HHHwt/‖wt‖2. Since the period of f(ϕ)

is 2π, and the range [ϕs1, ϕs2] is no greater than 2π, referring

to the monotonicity analysis in Appendix A, we can see that

when ϕopt /∈ K, the optimal value ϕ
(1)
opt is reached at either

ϕs1 or ϕs2. By comparing the values of f(ϕs1) and f(ϕs2),
we can determine the optimal solution, as described in (11).

According to [7], the complexity of calculating ϕopt is

O(M2), and the additional complexity of calculating ϕ
(1)
opt is

also bounded by O(M2), since Ns ≤ M in most cases.

When a single constraint on the desired scanning direc-

tion to which wt,s points is employed, a relatively simple

and practical solution can be obtained without looking into

complicated computation of the intersection. In this case,

ks = k1 = [ϕ11, ϕ21], where k1 is the range of ϕ. ϕ
(1)
opt can

be then obtained as

ϕ
(1)
opt =







ϕopt, if ϕopt ∈ ks,
ϕ11, if ϕopt /∈ ks and f(ϕ11) ≤ f(ϕ12),
ϕ12, if ϕopt /∈ ks and f(ϕ11) > f(ϕ12).

(12)

2) Constrained Total Scanning Power over a Range of

Directions: As shown in Section III-A1, when Ns is large,

finding the range for ϕ that meets the gain constraints on

multiple discrete directions can be operationally complicated.

More practically, we can set a minimum total power constraint

over a range of scanning directions. In this section, we

investigate the optimization problem under such a minimum

total power constraint. The problem can be formulated as

P2 : ϕ
(2)
opt = argmax

ϕ

wH
t HHHwt

‖wt‖2
, (13a)

s.t.

∫ θsr

θsl

|aT (θ)wt|2
||wt||2

dθ ≥ Csp

∫ θsr

θsl

|aT (θ)w2|2dθ, (13b)

with wt =
√
ρwt,c +

√

1− ρejϕwt,s.

The integrand |aT (θ)wt|2/||wt||2 on the left-hand side of

(13b) is the normalized BF gain in the direction of θ, and

θsl and θsr are the bounds of the BF range of interest. On

the right-hand side of (13b), Csp is a scaling coefficient;

and w2, ‖w2‖ = 1, is the BF weight optimized for the BF

waveform in Method 2 in [6]. The threshold does not affect

our methodology for solving this problem and can change to

different values. We use the one in (13b) to provide a concrete

reference only.

Note that the integration is conducted based on θ and is

independent of wt, we can move wt out of the integration in

(13b). This leads to

∫ θsr

θsl

|aT (θ)wt|2
||wt||2

dθ =
wH

t

(

∫ θsr
θsl

Aint(θ) dθ
)

wt

||wt||2
, (14)

Aint(θ) = a∗(θ)aT (θ). The integration on the right-hand side

of (14) is based on each element in the matrix Aint(θ), and

the output of the integration is also a matrix.

We cannot obtain a closed-form result for the integral of

each element in Aint(θ)
We can instead approximate the integral as a summation, as

follows.

A =

∫ θsr

θsl

Aint(θ)dθ ≈
NI
∑

i=1

δθAint(θs1 + iδθ), (15)

where δθ = (θsr − θsl)/NI is the step size and NI is the

total number of steps. It is assumed that NI is large enough

to guarantee a small enough step size. We use the primitive

form of numerical integration because the elements in A have

complex values, which makes it hard to implement numerical

integration algorithms developed mostly in the real space. For

a set of values of θsl and θsr , we can pre-calculate and store

the numerical results. Since Aint is a Toeplitz matrix, only

(2M − 1) numerical integrations are calculated and stored for

a given range of sensing BF directions. The complexity of

calculating A is O(MNI).
Once the matrix A is obtained, we can proceed to specify

the range of ϕ, i.e., [ϕp1, ϕp2], according to the constraint.

The derivation process is similar to that in Section III-A1,

and provided together with the results in Appendix A.

Therefore, ϕ
(2)
opt under the constrained total power can be

obtained as

ϕ
(2)
opt =







ϕopt, if ϕopt ∈ kp,
ϕp1, if ϕopt /∈ kp and f(ϕp1) ≤ f(ϕp2),
ϕp2, if ϕopt /∈ kp and f(ϕp1) > f(ϕp2),

(16)

The complexity of calculating ϕ
(2)
opt is O(max {M2,MNI}).

B. Optimizing Scanning Subbeam with Constraint on Received

Signal Power

We can also optimize the BF waveform of the scanning

subbeam while meeting the constraint on the received signal

power for communications. The optimization problem is for-

mulated as

P3 : ϕ
(3)
opt = argmax

ϕ

|aT (θs0)wt|2
‖wt‖2

, (17a)

or P4 : ϕ
(4)
opt = argmax

ϕ

∫ θsr

θsl

|aT (θ)wt|2
||wt||2

dθ, (17b)

s.t.
wH

t HHHwt

||wt||2
≥ CpPc, (17c)

with wt =
√
ρwt,c +

√

1− ρejϕwt,s.

where (17a) maximizes the gain at the dominating AoD of

the scanning beam, and (17b) maximizes the power over a
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range of scanning directions. Cp is the scaling coefficient,

and Pc = ‖Hwt,c‖2 is the output signal power when only

a single communication beam is used. Here, either (17a) or

(17b) is used, depending on the objective. For this optimization

problem, we can first find the optimal solution to one of (17a)

and (17b), and then check it against the range that can be

obtained from (17c).

Similar to (6), the objective function of (17a) can be

rewritten as

g(ϕ) =
[ρb220 + (1− ρ)b230] + 2Pb20b30 cos(ϕ+ β20 + β30)

1 + 2Pb1 cos(ϕ+ β1)
,

where wH
t,cwt,s = b1e

jβ1 , wH
t,ca

∗(θs0) = b20e
jβ20 , and

aT (θs0)wt,s = b30e
jβ30 . By letting g′(ϕ) = 0 and analyzing

the monotonicity of g(ϕ), we can obtain ϕsmax, which achieves

the maximal value of g(ϕ), as

ϕ(3)
smax =

{

π + η0 − ζ0 + 2kπ, if D1 ≥ 0,
η0 − ζ0 + 2kπ, if D1 < 0,

k = 0,±1,±2 · · · (18)

where

η0 , arcsin (Ls/
√

D2
1 +D2

2), ζ0 , arctan(D2/D1),

D1 ,− 2Pb20b30 cos(β2 + β3)

+ 2Pb1[ρb
2
20 + (1− ρ)b230] cosβ1

D2 ,− 2Pb20b30 sin(β2 + β3)

+ 2Pb1[ρb
2
20 + (1− ρ)b230] sinβ1

Ls ,− 4P 2b1b20b30 sin(β2 + β3 − β1).

(19)

Similarly, if (17b) is used as the objective function, we can

obtain

ϕ(4)
smax =

{

π + η̃0 − ζ̃0 + 2kπ, if D̃1 ≥ 0,

η̃0 − ζ̃0 + 2kπ, if D̃1 < 0,

k = 0,±1,±2 · · · (20)

where

η̃0 , arcsin
(

L̃s/

√

D̃2
1 + D̃2

2

)

, ζ̃0 , arctan(D̃2/D̃1),

D̃1 ,− 2P |bp| cosβp+

2P |b1|[ρwH
t,cAwt,c + (1− ρ)wH

t,sAwt,s] cosβ1,

D̃2 ,− 2P |bp| sinβp+

2P |b1|[ρwH
t,cAwt,c + (1− ρ)wH

t,sAwt,s] sinβ1,

L̃s ,4P 2|b1||bp| sin(β1 − βp).

The range of ϕ determined by (17c), can be derived in a

similar way to (5b) and (13b), and the detail is provided in

Appendix C. With the range of ϕ, [ϕg1 , ϕg2 ] given in Appendix

C, the optimal solutions, ϕ
(3)
opt and ϕ

(4)
opt , to problems P3 and

P4 can be obtained as

ϕ
(3)
opt =











ϕ
(3)
smax, if ϕ

(3)
smax ∈ kg,

ϕg1, if ϕ
(3)
smax /∈ kg and g(ϕg1) ≤ g(ϕg2),

ϕg2, if ϕ
(3)
smax /∈ kg and g(ϕg1) > g(ϕg2),

(21)

or

ϕ
(4)
opt =











ϕ
(4)
smax, if ϕ

(4)
smax ∈ kg,

ϕg1, if ϕ
(4)
smax /∈ kg and g(ϕg1) ≤ g(ϕg2),

ϕg2, if ϕ
(4)
smax /∈ kg and g(ϕg1) > g(ϕg2),

(22)

To calculate ϕ
(3)
opt , the complexity is upper bounded by

O(M2). Similar to the optimization in Section III-A2, the

complexity of calculating ϕ
(4)
opt is O(max {M2,MNI}).

The above subbeam-combiner methods have a quadratic

complexity (O(M2) or O(MNI)). In real-time operations,

wt is regenerated every packet. Even with tens of antenna

elements, e.g., M = 64, the period is long enough for the cal-

culations described above with the state-of-the-art commercial

signal processing devices, such as Intelr Stratixr 10 FPGAs

[34].

IV. GLOBAL OPTIMIZATION USING SDR

The optimization methods proposed in Section III, as well

as those in [6] and [7], seek the optimal combining weight

ϕ based on the pre-generated, known BF vectors wt,c and

wt,s. These results are relatively simple and practical for

implementation, but they are sub-optimal. In this section, we

develop global optimization methods that directly optimize

wt, considering communication and sensing requirements.

These methods allow us to obtain near-optimal solutions, and

enable us to evaluate the performance loss of the suboptimal

solutions. We first study the constrained maximization of

the received signal power for communication, and then the

constrained optimization of the BF waveform for sensing.

A. Maximizing Received Signal Power with Constraints on BF

Waveform

We first maximize the received signal power for communi-

cation, with one or other constraints on the BF waveform. The

global optimization problem for wt can be formulated as

P5 : w
(5)
t = argmax

wt,w
H
t wt=1

wH
t HHHwt, (23a)

s.t. ‖D(Awt − csdv)‖2 ≤ εw, (23b)

|a(θsi)Twt|2 ≥ εsi , i = 1, 2, · · · , Ns, and/or (23c)
∫ θsr

θsl

|a(θ)Twt|2dθ ≥ εp, , (23d)

where (23b) bounds the mismatches between the generated

and the desired BF waveforms (i.e., array radiation patterns),

(23c) constrains the gain of the scanning subbeam in Ns

concerned directions, (23d) constrains the power over a range

of consecutive scanning directions, and εw, εsi and εp are

the bounds for those constraints. These constraints can be

applied individually or jointly. The constraints (23c) and (23d)

correspond to those we have discussed in Section III. We

elaborate on the constraint (23b) below.

In (23b), A = [a(θ1), a(θ2), · · · , a(θN )]T is the array

response matrix in N specified directions. D is a pre-chosen

diagonal weighting matrix that can be used to impose different
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accuracy requirements on different segments of the generated

BF waveform. cs is a real scaling factor. dv = Dvpv is the

complex desired BF waveform, where Dv is a diagonal matrix

with diagonal elements being the magnitude of the desired BF

waveform, and pv is a vector containing the corresponding

phase. In most cases, only Dv needs to be specified, and

pv can be optimized by using, e.g., a two-step ILS method

[35]. When ILS is used, the value of pv is updated by

p
(l)
v = exp{j arg(Aw

(l−1)
t )} at the lth literation. The scaling

factor cs can be determined to minimize the BF waveform

mismatch. Taking the derivative of ‖D(Awt − csdv)‖2 with

respect to cs and letting it be zero, we can obtain

cs =
Re{dH

v DHDAwt}
‖dv‖2

. (24)

Then we can rewrite (23b) as

‖DAwt‖2 −Re
2{dH

v DHDAwt}/‖dv‖2 ≤ εw. (25)

Since (23) is a nonconvex NP-hard problem, it is challeng-

ing to obtain a closed-form solution to wt. However, we can

convert this problem to a homogeneous QCQP problem and

apply the SDR technique [26].

We first reformulate the original complex optimization prob-

lem to a real one, because (23b) cannot be directly converted

to the standard form of a complex semidefinite programming

(SDP) constraint. Let

Ã ,

[

Re{A} −Im{A}
Im{A} Re{A}

]

,

Ã ,

[

Re{A} −Im{A}
Im{A} Re{A}

]

,

H̃ ,

[

Re{H} −Im{H}
Im{H} Re{H}

]

, D̃ ,

[

D 0

0 D

]

,

Ãsi ,

[

Re{aT (θsi)} −Im{aT (θsi)}
Im{aT (θsi)} Re{aT (θsi)}

]

,

w̃t ,
[

Re{wT
t } Im{wT

t }
]T

,

d̃v ,
[

Re{dT
v } Im{dT

v }
]T

,

(26)

where w̃t and d̃v are 2M × 1 vectors, and Ã, Ã, Ãs, H̃, D̃ ∈
S
2M . As shown in Appendix D, using these real variables, we

can recast the problem with complex variables, (23), to

w̃
(5)
t = argmin

w̃t,w̃
T
t w̃t=1

−w̃T
t H̃

T H̃w̃t, (27a)

s.t. w̃T
t Ã

T D̃T (I− D̃d̃vd̃
T
v D̃

T

‖d̃v‖2
)D̃Ãw̃t ≤ εw, (27b)

w̃T
t Ã

T
si
Ãsiw̃t ≥ εsi , i = 1, 2, · · · , Ns and/or (27c)

w̃T
t Ãw̃t ≥ εp. (27d)

where I is a 2M × 2M identity matrix. (27) is an inhomo-

geneous QCQP problem, and can be further converted to a

homogeneous QCQP problem. Let

Â , ÃT D̃T (I− d̃vd̃
T
v /‖d̃v‖2)D̃Ã,

Âsi , ÃT
si
Ãsi , Ĥ , H̃T H̃,

(28)

where Â, Âsi , Ĥ ∈ S
2M . We can rewrite (27) as

w̃
(5)
t = argmin

w̃t,w̃
T
t w̃t=1

w̃T
t Ĥw̃t,

s.t. w̃T
t Âw̃t ≤ εw,

w̃T
t Âsiw̃t ≥ εsi , i = 1, 2, · · · , Ns, and/or

w̃tÃw̃t ≥ εp.

(29)

The real-valued homogeneous QCQP problem in (29) can be

relaxed to

W(5) = argmin
W,Tr (W)=1, W≥0

Tr (−ĤW)

s.t. Tr (ÂW) ≤ εw,

Tr (ÂsiW) ≥ εsi , i = 1, 2, · · · , Ns, and/or

Tr (ÃW) ≥ εp,

(30)

where W = w̃tw̃
T
t , and W ≥ 0 indicates that W is positive

definite.

The problem (30) can now be solved by SDP from the

standard convex optimization toolbox CVX [36], and the

globally optimal solution W(5) to (30) can be obtained. Once

W(5) is obtained, we can apply several different ways [26]

to obtain an approximated solution for w̃
(5)
t , and the simplest

one is to apply the eigen-decomposition to W(5). The eigen-

decomposition method is efficient since the rank of W(5) is

observed to be very low (mostly 1 and occasionally 2) in our

simulations. This also applies to the following three problem

formulations in this section. Let

w̃⋆
t =

√

λ1q1, (31)

where λ1 is the maximal eigenvalue of W(5), and q1 is its

corresponding eigenvector. Then the complex BF vector w⋆
t

is given by

w⋆
t =

w̃⋆
t [1 : M ] + j w̃⋆

t [M + 1 : 2M ]

||w̃t||2
, (32)

where w̃⋆
t [1 : M ] and w̃⋆

t [M + 1 : 2M ] denote the first and

last M elements of w̃t, respectively. The normalization is

applied to w⋆
t to make the power of w⋆

t equal to 1.

Since the optimal pv cannot be directly obtained in one

iteration, the computation is recursively applied several times

until convergence or the maximal number of iterations is

reached. The iterative algorithm is summarized in Algorithm 1.

Similar to the ILS approach in [35], the suboptimal value of pv

can be iteratively calculated, and the optimization algorithm

can be shown to converge after a few iterations in most cases.

B. Constrained Optimization of BF Waveform

Seeking the global optimal solutions, we can also target

at optimizing the BF waveform of the scanning subbeam

under various constraints. Such an optimization problem can

be formulated in different ways. Here, we consider an example
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Algorithm 1 SDP-ILS Algorithm

Input: H, A, A, Dv , pv0 = [1, · · · , 1]T , θs, Lmax, εsi , εp,

εw.

Output: Global optimized w
(5)
t , γmax

0) pv = pv0 , go to 1);

1) If l < Lmax, let dv = Dvpv; and compute Ĥ, Â, Âsi , Ã

through (26) and (28), go to 2); If l = Lmax, go to 5);

2) Compute W(5) in (30) using SDP, go to 3);

3) Calculate the approximate w⋆
t using (31) and (32), or other

methods, e.g., the randomization procedure in [26]. Go to 4);

4) With w⋆
t , let pv = exp{j arg(Aw⋆

t )}, go to 1);

5) Let w
(5)
t = w⋆

t , and compute the maximal received signal

power by γmax = ‖Hw
(5)
t ‖2.

of minimizing the mismatch between the desired and the

generated BF waveforms. The problem can be formulated as

P6 : w
(6)
t = argmin

wt,w
H
t wt=1,cs,pv

‖D(Awt − csDvpv)‖2, (33a)

s.t. wH
t HHHwt ≥ CpPc, (33b)

|a(θsi )Twt|2 ≥ εsi , i = 1, 2, · · · , Ns (optional),
(33c)

∫ θsr

θsl

|a(θ)Twt|2dθ ≥ εp (optional), (33d)

where (33b) requires the received signal power to meet the

communication requirement, and the other two constraints

(33c) and (33d) are optional. Using the value of cs in (24), we

can rewrite the objective function (33a) as the left-hand side

of inequality (25).

Similar to the derivation in Section IV-A, we can relax

the original problem with complex variables in (33) to a

homogeneous QCQP problem with real variables. The relaxed

version of (33) can be obtained as

W(6) = argmin
W,Tr (W)=1, W≥0

Tr (ÂW)

s.t. Tr (ĤW) ≥ CpPc,

Tr (ÂsiW) ≥ εsi , i = 1, 2, · · · , Ns (optional),

Tr (ÃW) ≥ εp (optional),
(34)

which can be solved by SDP. A suboptimal solution for w⋆
t

can be obtained.

We may formulate other objective functions, such as max-

imizing the BF gain over some specified directions or energy

over a range of directions, subject to constraints on commu-

nication performance. These problems can be solved in the

same way as in the above example. Here, we only list two

alternative formulations that will be simulated for comparison

with other schemes. The details are omitted.

1) Maximize BF gain in specified directions:

P7 : w
(7)
t = argmax

wt,w
H
t wt=1

|a(θs0 )Twt|2,

s.t. ‖D(Awt − csdv)‖2 ≤ εw,

wH
t HHHwt ≥ CpPc,

optionally,

|a(θsi)Twt|2 ≥ εsi i = 1, 2, · · · , Ns − 1;

(35)

2) Maximize BF energy over a given range:

P8 : w
(8)
t = argmax

wt

∫ θsr

θsl

|a(θ)Twt|2dθ,

s.t. ‖D(Awt − csdv)‖2 ≤ εw,

wH
t HHHwt ≥ CpPc,

optionally,

|a(θsi)Twt|2 ≥ εsi , i = 1, 2, · · · , Ns.

(36)

C. Complexity of Global Optimization

The complexity of the proposed global optimization meth-

ods is much higher than the sub-optimal solutions developed

in Section III, due to the iterative use of SDP.

Applying SDP, the proposed methods in Section IV have

polynomial complexities. In the worst case, the complexity is

O(Lmaxmax{Ncs, 2M}4
√
2M log(1/ǫ)), where ǫ > 0 is the

required solution accuracy and Ncs is the number of con-

straints, e.g., Ncs = Ns+3 if (30) is solved. For the JCAS sys-

tem, 2M is typically greater than Ncs. Hence the worst-case

computational complexity is O(16
√
2LmaxM

4.5 log(1/ǫ)). As

will be observed in simulations, the algorithms can typically

converge within 3 to 6 iterations. The complexity can be

reduced by employing fast real-time convex optimization

solvers which use the possible special features of the data

matrices’ structures such as sparsity [26], [37]. Usually, the

computational complexity practically achieved by the SDP

solvers [36] is much lower than the worst-case complexity.

For arrays with medium numbers of antenna elements, e.g.,

M = 10, even with the worst-case complexity, the real-time

implementation of our algorithms is possible, with advanced

commercial signal processing hardware possessing computing

performance of more than ten teraFLOPS (TFLOPS), such as

Intelr AgilexTM [38]. When the number of array elements is

large, the implementation of the algorithms can be costly at

present. The algorithms still provide benchmarks for perfor-

mance evaluation of suboptimal solutions.

V. SIMULATION RESULTS

In this section, simulation results are presented to verify

the proposed optimization methods. The proposed methods are

compared to three existing schemes: Methods 1 and 2 in [6],

and the method developed in [7] without any constraint on

sensing waveform, which are denoted by “M1-Zhang”, “M2-

Zhang” and “Without Cons” in the legends of all the figures,

respectively. ”M2-Zhang” and ”Without Cons” can be treated

as the benchmark methods that achieve superior BF waveform

and received signal power for communications, respectively.
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The solutions to the problem formulations P1, P2, P3, and P4

in Section III-B are denoted as “P1: RxP-SG”, “P2: RxP-SP”,

“P3: SG-RxP”, and “P4: SP-RxP ”, respectively. The solutions

to problems P5, P6, P7, and P8 in Section IV are denoted

as “P5: SDP-RxP”, “P6: SDP-Err”, “P7: SDP-SG”, and “P8:

SDP-SP”, respectively.

A. Simulation Setup

For all simulations, a ULA with M = 16 omnidirectional

antennas (spaced at half wavelength) is used. We assume

that the basic reference fixed subbeam points at zero degree.

The 3dB beamwidth for a linear array with Ks antennas is

approximately 2 arcsin( 1.2
Ks

) in radian. We generate the basic

beams with Ks = 16 and 12 for the fixed and scanning

subbeams, respectively. The cases of overlapping fixed and

scanning subbeams are studied. The power distribution factor

ρ is set as 0.5. For communication, we consider a narrowband

Rician channel, where the mean power ratio between the dom-

inating LOS signal and NLOS signals is 10 dB. Consider the

narrowband assumption, the difference in signal propagation

delay is set to be negligible in communications, i.e., τl = 0.

In the simulations, all the NLOS multipath components are

randomly and uniformly distributed within an angular range

of 14 degrees centered in the LOS direction. The total number

of paths L is 8, unless specified otherwise. All the results of

the received signal power for communications are normalized

to the power value when the whole transmitter array generates

a single beam pointing to the dominating AoD. To obtain the

MSE of the BF waveform, the squared Euclidean norm of

the difference between the generated BF radiation pattern and

the desired one is averaged over randomly generated channel

matrices.

For the methods proposed developed in Section III, wt,c

points to the dominating AoD, and wt,s is generated by

multiplying a phase-shifting sequence to the basic scanning

subbeam to change the pointing directions, as described in

[6]. In the cases where the integral of the total scanning power

needs to be calculated by (15), we let NI = 16. It is observed

that when NI ≥ 12, each element in A can achieve smaller

errors than 10−3, compared to the value after convergence.

The BF radiation pattern achieved by these values are nearly

identical.

For the methods developed in Section IV, the MATLAB

CVX toolbox is used and the SDPT3 solver with default

precision is employed. ǫ =
√
ǫ0, where ǫ0 = 2.22 × 10−16

is the machine precision [36]. The number of iterations Lmax

is set to 5. The values of the thresholds εw, εsi , and εp are

set to be the product between a scalar in [0.5, 1] and the MSE

of the BF waveform achieved by Methods 2 in [6].

With the above simulation settings, the computational com-

plexity for the proposed methods in Section III is O(162), and

the worst-case complexity of the methods developed in Section

IV is O(20
√
2× 165 × (log 2.22 + 8)) ≈ O(2.475× 108).

B. Results

Fig. 1 shows the effectiveness of the proposed approaches

in reducing the mismatches of the waveform. We can see that
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Fig. 1. BF waveform (radiation pattern) when the scanning subbeam points
at 5.01◦. For “MaxRxP-SG”, “MaxRxP-SP”,“MaxSG-RxP”, and “MaxSP-
RxP”, Cs = 0.9, Csp = 0.9, and Cp = 0.725, respectively. For the methods
constraining the power of the scanning subbeam, the integral range (θs2−θs1)
is 8.59◦ (3dB beamwidth).

there can be a reduction of more than 4.5 dB in the gain

in the desired scanning directions when only the received

signal power is optimized, as compared to “M2-Zhang”. With

multiple optimization objectives and constraints considered,

the approaches proposed in this paper can achieve the BF

waveforms much closer to the one using Method 2 in [6].

Compared with “M2-Zhang” which only optimizes the BF

vector according to the desired BF waveform, the sidelobes

of the BF waveform generated by the proposed methods are

observed to slightly improve. This can disperse the power

transmitted from the mainlobe and increase the signal power

in undesired directions. Nevertheless, the proposed methods

can balance between the performance of communication and

sensing. The sidelobes can also be suppressed by imposing

constraints on the desired BF waveform in these directions.

Figs. 2(a) and 2(b) present how the values of the constraint

thresholds influence the BF performance. The figures show

that an increased threshold of the received power for com-

munication generally results in a larger MSE of the sensing

BF waveform, and a decreased threshold of the received power

results in a smaller MSE. We also observe that, compared with

the subbeam-combination methods, the global BF optimization

generally achieves a better overall performance. For example,

when Cs ≥ 0.85 or Cp < 0.84, the global BF optimization

methods achieve a higher received signal power and smaller

MSEs of the BF waveform than the subbeam-combination

methods, for any given value of Cs or Cp.

In Fig. 3, we show the normalized received signal power

and the MSE of the sensing BF waveform in several different

scanning directions. From the two subfigures, we can see

that the global optimization methods achieve 5% − 10%
higher received signal powers than the subbeam-combination

methods, with a reduced MSE of the BF waveform. For

the subbeam-combination methods, the constrained methods

lead to a slightly decreased received power, but better BF
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(a) For the methods constraining the gain at the dominating scanning
direction, averaged normalized received signal power and MSE of the
sensing BF waveform with varying Cs.
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(b) For the methods using the constraint of the received signal power,
averaged normalized received signal power and MSE of the sensing
BF waveform with varying Cp.

Fig. 2. For constrained multibeam generating methods, BF performance with
varying bounds for the constraints. The scanning beam points to −6.45◦.

waveform, as compared to the unconstrained counterparts.

When the fixed and scanning subbeams overlap substantially,

the global optimization methods achieve a significantly lower

waveform MSE (by up to approximately 50%, as compared

to the unconstrained case), while maintaining a high received

signal power. As typically expected, the waveform MSEs are

larger when the constraints are imposed to the received signal

power (i.e., solutions to P3, P4, P7, and P8).

In Fig. 4, we show how the BF performance is affected

by the number of NLOS paths. When the scanning subbeam

points to −12.18◦, which means some paths may not be within

the 3dB beamwidth of both fixed and scanning subbeams, the

waveform MSE increases with the growth of L. For “P5: SDP-

RxP”, the MSE of the scanning BF waveform is even smaller

than the other two subbeam-combination methods, although

the received signal power of “P5: SDP-RxP” is higher. Similar

results can be observed for the other methods and in other

directions, which are not shown for the clarity of this figure.

The figure also shows that the global optimization methods
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Fig. 3. Normalized received signal power for communications and MSE of the
scanning BF waveform for different BF methods when the scanning subbeam
points to various directions. The scanning subbeams point to −24.36◦,
−18.21◦, −12.27◦ , −6.45◦, 5.02◦, 10.81◦, 16.71◦ , 22.80◦ , respectively.
The values of Cs, Csp , Cp and (θs2 − θs1) are the same with those in Fig.
1.
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Fig. 4. Normalized received signal power and MSE of BF waveform with
varying number of paths L when the scanning beam points to −18.21◦.
The other settings are the same with those for Fig. 3. For “P1: RxP-SG”,
Cs = 0.9.

can balance (and better control) the different aspects of the

BF performance.

VI. CONCLUSIONS

We studied a range of multibeam optimization methods for

JCAS systems using analog arrays, considering the require-

ments of both communication and sensing. We first proposed

new constrained optimization methods which provide closed-

form optimal solutions to the phase coefficient for combining

fixed and scanning BF vectors. We also proposed new global

optimization methods that directly generate the single BF

vectors. We presented the process of converting the original

NP-hard problems to QCQP, which can be solved efficiently

by using SDP techniques. The global optimization methods

provide effective benchmarks for evaluating the performance

tradeoff of other methods. Simulation results show that the
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proposed optimization methods can achieve a good balance

between communication and sensing performances.

Our work can be potentially extended to more complicated

signal and channel models with frequency selectivity and

beam squint effect [39]. For example, by referring to the

method in [39], one can formulate a cost function capturing all

subcarriers, which considers both beam squint and frequency

selectivity effects; and then optimize a single analog beam-

forming vector to minimize the cost function. The work in

this paper can also be extended to hybrid arrays with multiple

analog subarrays and RF chains, offering the capability of fine-

tuning individual analog subarrays to improve digital beam

synthesis of an entire hybrid array.

APPENDIX A

MONOTONICITY ANALYSIS OF f(ϕ)

Referring to the derivation process in [7], the monotonicity

of f(ϕ) can be obtained by analyzing the sign of its first-order

derivative

f ′(ϕ) =
g′1(ϕ)g2(ϕ) − g′2(ϕ)g1(ϕ)

g2(ϕ)2
, (37)

where

g1(ϕ) , ρ‖Hwt,c‖2 + (1− ρ)‖Hwt,s‖2

+ PejϕwH
t,cH

HHwt,s + Pe−jϕwH
t,sH

HHwt,c,

g2(ϕ) , ρ‖wt,c‖2 + (1 − ρ)‖wt,s‖2 + PejϕwH
t,cwt,s

+ Pe−jϕwH
t,swt,c.

Obviously, g22(ϕ) > 0, which implies that we can determine

the sign of f ′(ϕ) by analyzing the sign of the numerator in

(37). Let h(ϕ) be the numerator, and let wH
t,cH

HHwt,s =
a1e

jα1 and wH
t,cwt,s = a2e

jα2 , where a1 ≥ 0 and a2 ≥ 0.

We have

h(ϕ) = −2Pa1 sin(ϕ+ α1)− 4P 2a1a2 sin(α1 − α2)+

2Pa2[ρ‖Hwt,c‖2 + (1− ρ)‖Hwt,s‖2] sin(ϕ+ α2)

= X1 sin(ϕ) +X2 cos(ϕ) + L,

where

X1 ,2P |a1| cosα1 + 2P |a2|[ρ‖Hwt,c‖2

+ (1− ρ)‖Hwt,s‖2] cosα2,

X2 ,− 2P |a1| sinα1 + 2P |a2|[ρ‖Hwt,c‖2

+ (1− ρ)‖Hwt,s‖2] sinα2,

L ,− 4P 2|a1||a2| sin(α1 − α2).

By considering the sign of X1, h(ϕ) can be written as

h(ϕ) =

{
√

X2
1 +X2

2 sin(ϕ+ ζ) + L, if X1 ≥ 0

−
√

X2
1 +X2

2 sin(ϕ+ ζ) + L, if X1 < 0,

where ζ = arctan(X2/X1).
Since h(ϕ) is a cyclic function and a cycle lasts 2π, we

study the monotonicity of f(ϕ) in one cycle. Details that can

be found in [7] are omitted due to page limit. When X1 >
0, the monotonic intervals is summarized in Table II, where

µ0 = arcsin (
L

√

X2
1 +X2

2

). When X1 < 0, the monotonicity

of f(ϕ) is opposite to what it is when X1 > 0.

APPENDIX B

THE RANGE OF ϕ UNDER CONSTRAINTS (13b)

We rewrite (13b) as

hp1
(ϕ)

hp2
(ϕ)

≥Cspw
H
2 Aw2 (or Csp2

wH
s Aws), (38)

where

hp1
(ϕ) =ρwH

t,cAwt,c + (1− ρ)wH
t,sAwt,s

+ 2PRe{ejϕwH
t,cAwt,s}, (39)

hp2
(ϕ) =ρ‖wt,c‖2 + (1− ρ)‖wt,s‖2 + 2PRe{ejϕwH

t,cwt,s}
=1 + 2PRe{ejϕwH

t,cwt,s}. (40)

Let wH
t,cAwt,s = bpe

jβp , Bp1
, [ρwH

t,cAwt,c + (1 −
ρ)wH

t,sAwt,s]/2P , and Bp2
, Cspw

H
2 Aw2/2P , and (38) can

be converted to






Cp1
sinϕ+ Cp2

cosϕ ≥ Bp2
−Bp1

,

Cp1
, 2Pb1Bp2

sinβ1 − bp sinβp,

Cp2
, bp cosβp − 2Pb1Bp2

cosβ1.

(41)

Consider the following three cases:

1) If |Bp2
−Bp1

| ≤
√

C2
p1

+ C2
p2

, we can obtain

ϕ ∈ kp = [ϕp1, ϕp2]

=

{

[µp − σp,−µp + π − σp] , if Cp1
≥ 0,

[µp + π − σp,−µp + 2π − σp] , if Cp1
< 0,

where µp , arcsin(
Bp2

−Bp1√
C2

p1
+C2

p2

)+2kπ, k = ±1,±2, · · ·

and σp , arctan(
Cp2

Cp1

).

2) If Bp2
−Bp1

≤ −
√

C2
p1

+ C2
p2

, we have kp = R.

3) If Bp2
−Bp1

>
√

C2
p1

+ C2
p2

, we have kp ∈ ∅.

APPENDIX C

THE RANGE OF ϕ UNDER CONSTRAINTS (17c)

Start with expanding the left-hand side of (17c). The ex-

pansion of its denominator is the same as it is with (6), and

for the numerator we have

wH
t HHHwt (42)

= ρ‖Hwt,c‖2 + (1− ρ)‖Hwt,s‖2

+ PejϕwH
t,cH

HHwt,s + Pe−jϕwH
t,sH

HHwt,c. (43)

Let wH
t,cH

HHwt,s = bge
jβg , Bg1 , [ρ‖Hwt,c‖2 + (1 −

ρ)‖Hwt,s‖2]/2P , and Bg2 , CpPc/2P . Then (17c) can be

converted to






Cg1 sinϕ+ Cg2 cosϕ ≥ Bg2 −Bg1 ,

Cg1 , 2Pb1Bg2 sinβ1 − bg sinβg,

Cg2 , bg cosβg − 2Pb1Bg2 cosβ1.

(44)

Considering the three cases similar to those in Section III-A1

and Appendix B, we can specify the range of ϕ as

kg =



















[ϕg1, ϕg2] , if |Bg2 −Bg1 | ≤
√

C2
g1

+ C2
g2
,

R, if Bg2 −Bg1 ≤ −
√

C2
g1

+ C2
g2
,

∅, if Bg2 −Bg1 >
√

C2
g1

+ C2
g2
.

(45)
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TABLE II
FOR X1 > 0, THE MONOTONICITY AND MAXIMUM OF f(ϕ) IN ONE PERIOD.

(a) L > 0

Range of ϕ (−2π − µ0 − ζ,−π + µ0 − ζ) −π + µ0 − ζ (−π + µ0 − ζ,−µ0 − ζ) −µ0 − ζ (−µ0 − ζ, π + µ0 − ζ) π + µ0 − ζ

Sign of f ′(ϕ) > 0 0 < 0 0 > 0 0

f(ϕ) monotonically increasing maximum monotonically decreasing minimum monotonically increasing maximum

(b) L < 0

Range of ϕ (−π + µ0 − ζ,−µ0 − ζ) −µ0 − ζ (−µ0 − ζ, π + µ0 − ζ) π + µ0 − ζ (π + µ0 − ζ,2π − µ0 − ζ) · · ·

Sign of f ′(ϕ) < 0 0 > 0 0 < 0 · · ·

f(ϕ) monotonically decreasing minimum monotonically increasing maximum monotonically decreasing · · ·

where

[ϕg1, ϕg2]

=

{

[µg − σg,−µg + π − σg] , if Cg1 ≥ 0,
[µg + π − σg,−µg + 2π − σg] , if Cg1 < 0,

and

µg , arcsin(
Bg2 −Bg1
√

C2
g1

+ C2
g2

) + 2kπ, k = ±1,±2, · · ·

σg , arctan(
Cg2

Cg1

).

APPENDIX D

EQUIVALENCE OF COMPLEX-VALUED AND REAL-VALUED

OPTIMIZATION PROBLEMS

Separating the real part from the imaginary, A, wt, and dv

can be written as

A = Re{A}+ jIm{A} = AR + jAI ,

wt = Re{wt}+ jIm{wt} = wtR + jwtI ,

dv = Re{dv}+ jIm{dv} = dvR + jdvI .

(46)

Substituting (46) into constraint (25), we can obtain

‖DAwt‖2

= (wT
tR − jwT

tI)(A
T
R − jAT

I )D
TD(AR + jAI)(wtR + jwtI)

= (wT
tRA

T
R −wT

tIA
T
I )D

TD(ARwtR −AIwtI)+

(wT
tIA

T
R +wT

tRA
T
I )D

TD(ARwtI −AIwtR),

Re
2{dH

v DHDAwt}/‖dv‖2

= Re
2{(dT

vR − jdT
vI)D

TD(AR + jAI)(wtR + jwtI)}
= |(dT

vRD
TDAR + dT

vID
TDAI)wtR+

(dT
vID

TDAR − dT
vRD

TDAI)wtI |2/(‖dvR‖2 + ‖dvI‖2).
(47)

Using Ã, w̃t, D̃, and d̃v defined in (26), it is easy to verify

that

|D̃T Ãw̃t|2 = (wT
tRA

T
R −wT

tIA
T
I )D

TD(ARwtR −AIwtI)+

(wT
tIA

T
R +wT

tRA
T
I )D

TD(ARwtI −AIwtR),

|d̃T
v D̃

T D̃Ãw̃t|2/‖d̃v‖2

= |(dT
vRD

TDAR + dT
vID

TDAI)wtR+

(dT
vID

TDAR − dT
vRD

TDAI)wtI |2/(‖dvR‖2 + ‖dvI‖2).
(48)

After mathematical manipulation, |D̃T Ãw̃t|2 −
|d̃T

v D̃
T D̃Ãw̃t|2/‖d̃v‖2 can be converted to the form

of the waveform constraint (27b). The equivalence between

the objective function and the other constraints in (23) and

(27) can be established in the same way.
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