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Abstract—Hybrid beamforming (HB) has emerged as a promis-
ing technology to support ultra high transmission capacity and
with low complexity for Millimeter Wave (mmWave) multiple-
input and multiple-output (MIMO) system. However, the design
of digital and analog beamformer is a challenge task with
non-convex optimization, especially for the multi-user scenario.
Recently, the blooming of deep learning research provides a new
vision for the signal processing of communication system. In
this work, we propose a deep neural network based HB for
the multi-User mmWave massive MIMO system, referred as
DNHB. The HB system is formulated as an autoencoder neural
network, which is trained in a style of end-to-end self-supervised
learning. With the strong representation capability of deep neural
network, the proposed DNHB exhibits superior performance
than the traditional linear processing methods. According to the
simulation results, DNHB outperforms about 2 dB in terms of bit
error rate (BER) performance compared with existing methods.

Index Terms—HB, mmWave Massive MIMO, Deep learning,
Autoencoder neural network

I. INTRODUCTION

The massive multiple-input multiple-output (MIMO) with
Millimeter Wave (mmWave) can provide a high spatial gain
and diversity gain for the high data transmission, which is
considered as a key technology for the future wireless com-
munication system [1]. The HB technology, which consists
of digital and analog beamformer, is with low hardware and
computation complexity and maintains high data transmission
capacity. [2]

However, the global optimization of digital and analog
beamformer is still a challenge task [3]. The analog beam-
former/combiner is implemented with a constant modulus
constraint phase shifter network [4]. Besides that, the analog
beamformer/combiner and digital beamformer/combiner are
coupled. Consequently, the joint optimization of HB system is
an non-convex problem. This problem is even more difficult
for the multi-user scenario, where the beamformer/combiner
design for each user can only be optimized separatively [5].

The existing methods [6]–[9] to solve the challenges and
achieve feasible near-optimal solutions attempt to approximate
the full digital optimal beamformer by decoupled the design
of analog and digital stage. It first fixes one processing stage,
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i.e., analog beamformer, and optimizes the digital stage with
the optimization goal of full digital beamforming matrix.
Then the digital beamformer is fixed and the analog stage
is optimized. The two processes are performed iteratively
until the algorithm is converged. However, the solution is
sub-optimal by the limitation of analog beamformer based
on matrix decomposition methods. To this end, the result
will prone to be a local-optimum point for the separating
optimizing digital and analog part.

As alternative optimization tools, machine learning and
artificial intelligence (AI) provide new approaches for solving
the over-complicated problems in communication systems,
which have been applied in intelligent radio network [10]–
[12], backhaul optimization for mmWave system [13] and
signal processing for physical layer, [14], [15] and network
traffic analysis [16], [17] etc. As the communication problem
just gets what you transmit, it is exactly as the same as the ex-
pectation of autoencoder neural network which hopes outputs
equal inputs. Hence, to address the above critical challenges,
we introduce a deep neural network based HB design method
by mapping HB multi-user system as an autoencoder (AE)
neural network, referred as DNHB.

The contributions of this work are summarized as follows .

• Deep autoencoder neural network based self-supervised
learning. Instead of applying the data and labels from
matrix decomposition method for training, we integrate
the CSI matrix into a hidden layer of the considered
AE neural network. By training the DNN in an end-
to-end style, the proposed AE neural network HB can
break through the performance limit of the existing matrix
decomposition method.

• Supporting multi-user neural network scenario. Com-
pared with our previous work, we propose a splitting
neural network to support multi-user massive MIMO
system scenario. After the channel network layer, we
decompose the network to several sub-layer networks to
match the practical multi-user MIMO system.

• Superior performance over the existing methods. The
proposed design outperforms the existing methods about
2 dB in bit error rate (BER) performance.

The organization of this paper is as follows. In section II,
the multi-user mmWave massive MIMO HB system module
is illustrated and the optimization problem is clarified. In
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section III, multi-user mmWave massive MIMO the AE based
HB system structure is proposed. The map from traditional
structure to the neural network is detailed explained. The
following sections present the comparison of simulation results
in BER with other methods. The proposed method can get 2-3
dB gain in the contrast of traditional algorithms.

The notation in this paper is introduced as below A repre-
sents the matrix and A(i, j) represents the (i, j)−th entry of
a matrix A. |·| is the modulus of a complex number and ‖·‖F
is the Frobenius norm. For a vector or matrix, the superscripts
(·)T , (·)∗ and (·)H represent transpose, complex conjugate and
complex conjugate transpose, respectively. <(·) is the real-part
operator and =(·) is the imaginary-part operator. E[·] denotes
expectation, and IK is the K ×K identity matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. system model

A typical narrowband downlink single-cell multi-user
mmWave massive MIMO system is as shown in Fig. 1. A
base station (BS) is equipped with Nt transmit antennas, and
Nrf
t radio frequency (RF) chains. Each RF chains serves K

users, which is equipped with Nr receiver antennas and Nrf
r

RF chains [1]. The number of independent data streams is Ns,
which means that total KNs data streams are processed by the
BS. To guarantee the quality with the limited number of RF
chains, the number of the transmitted streams is constrained
by KNs ≤ Nrf

t ≤ Nt for the BS and Ns ≤ Nrf
r ≤ Nr for

each user.
At the BS, the transmitted symbols are assumed to be

processed by a Nrf
t ×KNs digital beamformer FD and then by

an analog beamformer FA of dimension Nt×Nrf
t to construct

the final transmitted signal. Notably, the digital beamformer
FD enables both amplitude and phase modification, while
only phase changes (phase-only control) can be realized by
analog beamformer FA with only phase shifters. To this end,
each element of FA is normalized to satisfy |FA(i, j)|2 = 1.
Mathematically, the transmitted signal can be written as

x = Fs = FAFDs =

K∑
k=1

FAFDksk, (1)

where F = FAFD denotes the HB matrix with
FD=[FD1,FD2, ...,FDK ]. FDk is a digital beamformer matrix
for k = 1, 2, ...,K, and s ∈ CKNs×1 is the vector of signal
symbols which is the concatenation of each user’s data stream
vector such as s = [sT1 , s

T
2 , ..., s

T
K ]
T , where sk denotes the data

stream vector for user k. It is assumed that E[ssH ] = IKNs
.

For user k, the received signal can be modeled as

yk = HkFAFDksk +Hk

∑
l 6=k

FAFDlsl + nk, (2)

where Hk ∈ CNr×Nt is the channel matrix for the k-th user
and nk ∈ CNs×1 is the vector of i.i.d. CN (0, σ2) additive
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Fig. 1. Illustration of a narrowband downlink single-cell multi-user mmWave
massive MIMO HB system.

complex Gaussian noise. The received signal after beamformer
at k-th user is given by

s̃k =WH
DkW

H
AkHkFAFDksk︸ ︷︷ ︸

desired signals

+WH
DkW

H
AkHk

∑
l 6=k

FAFDlsl︸ ︷︷ ︸
effective interference

+WH
DkW

H
Aknk︸ ︷︷ ︸

effective noise

,

(3)

where WAk ∈ CNr×Nrf
r is the analog combining matrix

and WDk ∈ CNrf
r ×Ns is the digital combining matrix for

the k-th user. Since WAk is also implemented by the analog
phase shifters, all elements of WAk should have the constant
amplitude such that |WAk(i, j)|2 = 1. In this paper, it
is assumed that perfect channel state information (CSI) is
available at both the transmitter and receiver and that there
is perfect synchronization between them.

B. Problem formulation

In this work, we employ the sum-MSE [18], [19] of all users
and all streams as the performance measure and optimization
objective for the joint transmit and receive HB design, which
is defined as

MSE
∆
=

K∑
k=1

MSEk =

K∑
k=1

E
{
‖sk − s̃k‖2F

}
, (4)

where MSEk denotes the MSE of the k-th user. By substituting
(3) into (4) and irrespective of effective interference, we have

MSE
∆
=

K∑
k=1

E{||sk − (WH
DkW

H
AkHFAFDksk

+WH
DkW

H
Aknk)||2F }.

(5)

Finally, the optimization problem in the narrowband scenario
for multi-user can be formulated as

minmize
FDk,FA,WH

Ak,W
H
Dk

K∑
k=1

MSEk

subject to tr
{
FAFDF

H
DFHA

}
≤ P,

|FA(i, j)|2 = 1,∀i, j,
|WAk(i, j)|2 = 1,∀i, j, k,

(6)
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Fig. 2. A simplified hardware block diagram of downlink single-cell multi-
user mmWave massive MIMO autoencoder based HB system.

where P is the total power budget at the BS. Obviously, the
optimization problem is non-convex and it is intractable to
obtain global optima for similar constrained joint optimization
problems [20].

III. AE BASED HB DESIGN

AE neural network is a subclass of the artificial neural
network used for unsupervised learning. AE neural network
was firstly proposed in data compression, by learning a pre-
sentation for a set of data, such as images. Traditional AE
neural networks are designed to recovery the original data from
compressed information, which is similar to the optimization
problem as writing (6). In this work, we propose a neural HB
network by mapping the hardware block diagram of downlink
single-cell multi-user mmWave massive MIMO system shown
in Fig. 2 .

A. Digital beamformer/combiner design

For digital beamformer/combiner, the input complex signal
x of the neural network is divided into two parts, the real part
<(x) and the imaginary part =(x). Therefore, the input signal
of the fully connected neural network can be written as X =
[<(x),=(x)]. The function for a one layer fully connected
neural network is given by

Y =[<(y),=(y)] = [σ(W<<(x)−W==(x) + b<),

σ(W<=(x) +W=<(x) + b=))],
(7)

where Y is the concatenation of the real part <(y), and the
imaginary part =(y) of the processed complex signal y. The
weights of the real and imaginary channel can be stated as W<
and W=, respectively. The biases of the real and imaginary
channel can be stated as b< and b=, respectively. Here, the
symbol σ(·) denotes the activation function.

Digital beamformer/combiner can adjust both the phase
and the amplitude of the original signals without limitations.
We employ two n-layers fully connected neural networks
to implement baseband beamformer/combiner, respectively.
Concisely, the processed signal of the digital beamformer is
represented as

SD = fnt (S;αt), (8)

where SD = [<(sD),=(sD)]. The output complex signal sD
of the digital beamformer neural network can be obtained by
combining SD. Here, fnt represents the concatenation of n-
layers fully connected neural network and αt represents the

parameters set of the real channel and imaginary channel in
the n-layer digital beamformer neural network.

Similarly, the receivers signal after baseband combining can
be stated as

S̃ = fnr (SA;αr), (9)

where the output of the digital combiner neural network can
be written as S̃ = [<(̃s),=(̃s)]. Here, s̃ =

[
s̃T1 , s̃

T
2 , ..., s̃

T
K

]T
denotes the concatenation of each user’s signal symbols pro-
cessed by HB system. For each element s̃k, it denotes the re-
ceived data stream vector for user k. Here, SA= [<(sA),=(sA)]
represents the output of the analog combiner neural network.
The complex signal processed by analog combiner be written
as sA. Besides, αr represents the parameters set of the real
channel and imaginary channel in the n-layer digital combiner
neural network.

B. Analog beamformer/combiner design

The analog beamformer/combiner neural network should
also satisfy the constraints of analog phase shifters to match
the practical hardware scheme. For fully connected beam-
former, each RF chain is connected to all Nr antennas via
phase shifter neural network. The transmit complex signals
processed by analog beamformer can be written as

st = ρ[st1, s
t
2, ..., s

t
Nt

]T

= ρ[
Nrf

t∑
p=1

sD,1e
jθtp,1 ,

Nrf
t∑

p=1
sD,2e

jθtp,2 ,...,
Nrf

t∑
p=1

sD,Nrf
t
ejθ

t
p,Nt ]T ,

(10)
where stn, n ∈ {1, 2, ..., Nt} denotes the transmitted signal of
the n-th antenna, and sD,p, p ∈ {1, 2, ..., Nrf

t } denotes the p-
th RF chain signal processed by digital beamformer. To meet
the transmit power constraint, the power control parameter ρ
is set as

ρ = (P

Nt∑
n=1

∣∣stn∣∣2)−1/2. (11)

For user k, the processed signal by analog combiner can be
modeled as

sA,k =[sA,k,1, sA,k,2, ..., sA,k,Nrf
r
]T

=[

Nr∑
m=1

srk,1e
jθrk,m,1 ,

Nr∑
m=1

srk,1e
jθrk,m,2 , ...,

Nr∑
m=1

srk,1e
jθr

k,m,N
rf
r ]T ,

(12)

where sA,k,q , q ∈ {1, 2, ..., Nrf
r } denotes the q-th RF chain’s

signal of the user k. Here, θrk,m,q , m ∈ {1, 2, ..., Nr} denotes
the phase parameter between the m-th receive antenna and the
q-th RF chain for the user k.

Notice that the formulas (10) and (12) involve multiplication
of complex number such as xejθ, combining with Euler’s
formula xejθ is equivalent to

y = xejθ = x(cosθ + j sin θ). (13)
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In phase shifter neural network, the multiplication in (13)
can be stated as

Y = [<(y),=(y)]
= [(<(x)cosθ −=(x) sin θ), (<(x) sin θ + =(x)cosθ)].

(14)

Similar to the writing (8) and (9) the output of the analog
beamformer/combiner can be represented respectively as

St = gt(SD; θ
t),

SA = gr(S
r; θr),

(15)

where gt(·)/gr(·) denotes the analog beamformer/combiner
neural network. The phase parameters are represented as
θt/θr.

C. Channel transmission

The channel transmission and noise adding process are
realized by neural network with fixed parameters, for the any
k-th user, which is stated as

Srk = [<(srk),=(srk)]
= [<(stHk + nk),=(stHk + nk)]

(16)

where sr =
[
(sr1)

T
, (sr2)

T
, . . . , (srK)

T
]T

. st is the transmitted
signal at BS, and srk is the received signal at user k. The
CSI matrix between the user k with the BS is represented
as Hk. nk represents the corresponding noise vector of i.i.d.
CN

(
0, σ2

k

)
.

D. Optimization Problem Formation

In the multi-user system, the sum-MSE (4) is regarded as
the reconstruction error. Thus, the loss function of DNHB is

L =L
(
S, S̃

)
=

K∑
k=1

E‖sk − s̃k‖2F

=

K∑
k=1

E
[
‖< (sk)−< (̃sk)‖2F + ‖= (sk)−= (̃sk)‖2F

]
(17)

IV. SIMULATION

In the simulation experiments, the mmWave propagation
channel is based on a geometry channel model [21]. The con-
figuration of the MIMO system simulation is set as, Nt = 64
at BS, Nr = 16, Nrf

r = 2 and Ns = 2 at each user. The
number of channel clusters is 2 and 2 rays with each cluster.

Fig. 3 shows the BER comparison of the different number of
users K = 2, 4 in fully connected and partially connected ana-
log beamformer/combiner. As it depicts, the fully connected
analog beamformer/combiner has 3dB better performance than
partially connected analog beamformer/combiner in BER. The
partially connected analog beamformer/combiner has more
constriction due to its structure. And the 2 users has superior
performance in comparison than 4 users, as the information
between different users cannot be transmitted and exchanged
in the multi-user system. With the increases in number of users
is in the system, its performance is suggested to get worse.
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The Fig. 4 is the comparison with other exsiting beamform-
ing methods, such as the conventional orthogonal matching
pursuit based algorithm in [22] (labelled with ’OMP’) and
one conventional HB algorithm in [23] (labelled with ’HBF’)
and the manifold optimization HB algorithm in [18] (labelled
with ’MO’). It illustrates the BER performance comparison
when K = 2. The proposed DNHB algorithm has 2 ∼ 3dB
performance advantages.

V. CONCLUSION

In this paper, a new vision on the HB design is proposed
in the perspective of autoencoder neural network. Compared
with traditional matrix decomposition, the AE neural network
provides a strong representation ability to map the non-
convex HB design to a network training process. The method
exhibits significantly superior performance than the traditional
linear matrix decomposition methods, in terms of BER. The
proposed work provides a new vision on the HB design, which
may have great potential in guiding designs in the future
intelligent radio.
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