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Abstract—The numerical model is a well-acknowledged tool to 

evaluate railway pantograph-catenary interaction performance. 
The current standard restricts most current simulation tools by a 
cut-off frequency of 20 Hz. This low-frequency range of interest 
cannot fully describe the current collection quality of pantograph-
catenary. This paper includes simulation with cut-off frequencies 
up to 200 Hz to investigate the high-frequency behaviour of 
pantograph-catenary interaction. The reference model of 
pantograph-catenary in the benchmark is taken as the analysis 
object. Firstly, the effect of key simulation parameters of the 
resulting contact force is investigated. A small element length in 
the finite element model is proposed to prevent the frequency 
range of interest being contaminated by the numerical error. The 
contact stiffness has an opposite effect on the contact force in low 
and high-frequency ranges. Then the source and the amplification 
factor of high-frequency components of contact force are 
investigated. The results show that the half and quarter of the 
dropper/steady arm interval length presents the primary source of 
high-frequency components of the contact force. The 
corresponding wavelength can also be found in the high-order 
modes of the catenary. Finally, a variable time step procedure is 
also proposed to capture the contact loss occurring at high 
frequencies accurately. The comparison of the results between the 
variable and constant time steps indicates that the traditional 
constant time step may result in errors when calculating the 
contact loss duration.   
 

Index Terms—Electrified railway, Current collection quality, 
High-frequency, Pantograph-catenary interaction, Variable time 
step 

I. INTRODUCTION 
n electrified rail operations the electric power is transmitted 
from the catenary to the locomotive via the sliding contact 

with a pantograph installed on the train roof, as shown in Fig. 
1. The pantograph is often the only source of power 
transmission for electric trains. The interaction performance of 
pantograph-catenary is thus of critical importance, as it directly 
determines the current collection quality and restricts the 
maximum operating speed. As the rapid expansion of high-
speed network all over the world in the last several decades, the 
revelation, evaluation and optimisation of pantograph-catenary 
interaction performance have attracted ever-increasing 
attention from both academy and industry.  
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A. Problem description 
In order to ensure an excellent current collection quality, a 
stable contact force is desired between the pan head and the 
contact wire. An excessive contact force worsens the wear and 
fatigue of the contact surface, and even damage the contact 
wire. In contrast, an inadequate contact force increases the 
possibility of occurrence of contact loss, which results in 
frequent arcing [1] and even the interruption of electrical 
supply. Therefore, the contact force is the most important 
indicator to assess the interaction performance of pantograph-
catenary. According to EN 50367 [2], the current collection 
quality is mainly evaluated by some time-domain statistics of 
contact force, which are low-pass filtered at 20 Hz due to the 
limitation of detection and simulation techniques. The 
traditional view is that this low-frequency range is enough to 
describe the critical implication of the catenary geometry on the 
contact force. Usually, the span length of a catenary is around 
40-65 m, and the dropper spacing is around 5-6 m. The current 
top operating speed is 350 km/h across the world, and the 
corresponding span-length and dropper-spacing frequencies are 
around 1.50-1.62 Hz and 16.20-19.44 Hz, respectively, which 
are covered by the current low-pass frequency 20 Hz [3]. This 
frequency range of interest is also enough to adequately 
describe the rigid body motions used to compensate for between 
measuring the force under the pan head and calculating the 
contact force. Thus, this frequency of interest is widely adopted 
in most numerical models [4]. With the recent improvement of 
the understanding of the pantograph-catenary dynamics, the 
high-frequency behaviours are also of great importance for the 
assessment of current collection quality. Some realistic short-
wavelength disturbances (such as the wear and cant in the 
contact wire) have a direct impact on the contact force at up to 
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Fig. 1. Schematic of a pantograph-catenary system  
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100 Hz [5]. The high-order deformation modes of the contact 
wire are also contributing factors affecting the high-frequency 
performance. Some phenomena happening at high frequencies 
are critical for evaluating the current collection quality. For 
instance, EN 50367 [2] specifies that the minimal contact loss 
duration is 0.005 s. Thus, to fully describe the contact loss 
phenomenon, the numerical models should be validated up to 
200 Hz. 

B. Literature review 
As is well known, numerical models are efficient tools to 
evaluate the pantograph-catenary interaction performance, 
compared with the tremendous cost of laboratory and field tests. 
Especially in the design phase, the numerical simulation is 
helpful to validate the design strategy and optimise the 
structural parameters. Therefore, the accuracy of the numerical 
model to reproduce the realistic phenomenon is of great interest 
to the scientific and industrial communities. The catenary is 
customarily comprised of many tensioned cables exhibiting 
significant pre-stress and nonlinearity. The finite element 
method is the most preferred approach to model the catenary. 
Lopez-Garcia et al. [6] utilise an analytical cable equation to 
calculate the initial configuration of catenary based on Newton-
Raphson method. Tur et al. [7] propose a shape-finding method 
for computing the equilibrium state based on the absolute nodal 
coordinate formulation (ANCF). Song et al. [8] present a 
nonlinear modelling method for catenary based on the explicit 
formula of cable and truss elements. Considering realistic 
disturbances to the catenary, the wind load [9], aerodynamic 
instability [10] and vehicle-track perturbation [11] are included 
in the numerical models to evaluate their effects on the 
pantograph-catenary interaction. To reproduce the realistic 
defects of catenary, the contact wire irregularities [12], [13], 
dropper defect [14] and wear [15] are included in the 
assessment of current collection quality. To ensure the accuracy 
of simulation results, the measurement data from field tests are 
utilised to modify [16] and validate [17], [18] the numerical 
models. The hardware-in-the-loop technique has been widely 
developed to couple a mimic catenary and realistic pantograph 
[19], which provide more convincing measured results to 
analyse the pantograph behaviour. To improve the simulation 
efficiency, some simplifications are made based on the idea of 
moving mesh [20], [21] and linearisation [22] without affecting 
the simulation accuracy. Base on numerical models, the 
influence of some critical parameters, such as the tension [23], 
pantograph interval [24], and catenary geometry [25] on the 
interaction performance are analysed. 
 The frequency of interest for the evaluated contact forces 
obtained by numerical simulations is normally limited to 0-20 
Hz. This is manifested in the latest benchmark [26], in which 
ten mainstream simulation tools of pantograph-catenary 
interaction are compared to establish a validation benchmark 
for up to 20 Hz. Recently, this low-frequency range of interest 
has been challenged by several scholars [27], [28], as it is not 
enough to fully describe the current collection quality. The 
effect of short-wavelength disturbances, the high-order 
deformation mode of contact wire and some critical high-
frequency phenomena (such as the contact loss and arcing) have 

important implications on the current collection quality. 
Therefore, the cut-off frequency is necessary to move up for 
both online detection and numerical simulations. When the 
frequency of interest moves up, the numerical algorithm 
validated for low-frequency may not be still valid for simulating 
high-frequency response. It has been indicated in [29] that the 
catenary modelled by cable element cannot describe the wave 
dispersion happening at over 50 Hz. Therefore, the beam 
element is widely adopted to include the effect of bending 
stiffness. Some simulation parameters, such as the time step, 
element length and contact stiffness in the previous numerical 
models, should be updated for higher frequencies. In order to 
accurately capture the contact loss occurring at high frequencies, 
a very tiny time step should be adopted to improve the sampling 
frequency, which may bring tremendous computational cost. In 
order to improve efficiency, most current simulation models 
adopt low sampling frequencies (normally no more than 1000 
Hz [26]) in their simulations. In this way, the traditional 
constant time step integration scheme is not able to accurately 
capture the time instance of the separation and the reattachment 
between the pan head and the contact wire, which renders some 
errors when calculating the contact loss duration. Therefore, a 
variable time step is desired to properly describe the contact 
loss occurring at up to 200 Hz with a relatively low sampling 
frequency. Furthermore, the physical meanings of high-
frequency components of the contact force are still not clear. 
Fundamental research on the high-frequency response of 
contact force is thus justified to be conducted. 

C. Contribution and scope 
Addressing the shortcomings in previous researches, this paper 
focuses on the analysis of the high-frequency behaviour of 
pantograph-catenary interaction via numerical simulations. The 
ANCF beam element is utilised to model the catenary. In order 
to fully describe the contact loss occurring at high frequencies, 
the frequency range of interest in the simulation is set up to 0-
200 Hz. Without loss of generality, the reference model in the 
benchmark [26], which has been validated for 0-20 Hz is 
adopted to conduct the analysis. Firstly, the key simulation 
parameters such as the mesh size and contact stiffness are 
discussed for the high-frequency stimulation. Then the high-
frequency components of contact force are analysed to make 
sense of their physical meanings. Finally, a variable time step 
integration scheme is proposed to accurately capture the contact 
loss duration occurring at high frequencies without having to 
use an extremely high sampling frequency, which is shown 
necessary when using only constant time step. The resulting 
contact forces obtained by the variable and constant time steps 
are compared to indicate the necessity of using a variable time 
step. 

II. MODEL OF PANTOGRAPH-CATENARY SYSTEM 
In this work, a reference model of the pantograph-catenary 
system in the benchmark [26] is utilised to investigate its high-
frequency behaviour. The catenary is modelled by ANCF, and 
the pantograph is considered as a lumped mass model. The 
details of the modelling approach are described in this section. 
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A. Modelling of catenary 
The ANCF is a widely used nonlinear finite element approach 
to simulate the large deformations in different engineering 
backgrounds. As shown in Fig. 2, the ANCF beam is utilised to 
model the contact and messenger wires. The ANCF bar is 
adopted to model the dropper and steady arm. The claws and 
clamps on the wire are assumed as lumped masses. Considering 
an ANCF beam element, the nodal degree of freedom (DOF) 
vector that contains the displacements and the gradients are 
defined as: 

T
j j ji i i

i i i j j j

x y zx y z
x y z x y z

χ χ χ χ χ χ
∂ ∂ ∂ ∂ ∂ ∂

=  ∂ ∂ ∂ ∂ ∂ ∂ 
e

(1) 
in which, χ is the local coordinate in the undeformed 
configuration ranging from 0 to the element length L0. The 
position vector in the deformed configuration r is interpolated 
using the shape function matrix S as 

r = Se                                          (2) 
In this work, S is defined as follows: 
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The strain energy is obtained from the contribution of axial and 
bending deformation as 

0 2 2
0

1 ( )
2

L
lU EA EI dε κ χ= +∫                       (4) 

in which, E is Young’s modulus A is the section area, I is 
the moment inertial of the wire, lε  is the longitudinal strain and 

κ  is the curvature. The generalised elastic forces can be 
defined as 

e( )TU∂
= =

∂
Q K e

e
                                (5) 

In this way, the element stiffness matrix Ke is obtained. In the 
shape-finding procedure, the tangent stiffness matrix is used to 
calculate the incremental nodal DOF vector ∆e  and the  
incremental unstrained length 0L∆ . The corresponding tangent 
stiffness matrices KT and KL can be obtained as follows: 

0 0
0

T LL L
L

∂ ∂
∆ = ∆ + ∆ = ∆ + ∆

∂ ∂
K e

e
KQ QF e            (6) 

Similarly, the tangent stiffness matrices of the ANCF bar 
element can also be derived. It should be noted that the bar 
element used to represent dropper can only withstand tension 
but not compression. The axial stiffness changes to zero when 
the dropper works in compression. Assembling the element 
matrices by FEM (Finite Element Method) yields the global 
incremental equilibrium equation for the whole catenary as 
follows: 

0
GG
LC

G
T∆ = ∆ + ∆K KF U L                         (7) 

where G∆F  is the global unbalanced force vector. G
TK  and 

G
LK  are the global stiffness matrices related to the incremental 

nodal displacement vector C∆U  and the incremental 

unstrained length vector 0∆L , respectively. It is seen that 
G G
T L  K K  is not a square matrix. The total number of 

unknowns in Eq. (7) exceeds the total number of equations, 
which leads to undetermined solutions. Hence, additional 
constraint conditions have to be provided to suppress undesired 
movements, according to the design specifications. Thus, the 
following additional constraint conditions are defined. 
 The vertical positions of the dropper point in the contact 

wire are restricted to describe the reserved pre-sag. 
 The longitudinal direction of each node is restricted to 

suppress the longitudinal movement. 
 The tensions are applied to the endpoints of messenger and 

contact wires. 
Employing the parameters of the reference model [26], the 
initial configuration of catenary calculated by the present 
modelling method is shown in Fig. 3. Introducing a consistent 
mass matrix and a Rayleigh damping, the equation of motion 
for the catenary system is written by 

( ) ( ) ( ) ( ) ( )G G G G
C C C C C C Ct t t t tM U + C U + K U = F            (8) 

 
Fig. 3. Initial configuration of catenary 
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Fig. 2.Catenary model based on ANCF beam and bar elements 
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in which, G
CM , G

CC  and ( )G
C tK  are the mass, damping and 

stiffness matrices, respectively. ( )G
C tF  is the external force 

vector which contains the contact force and gravity. 

B. Modelling of pantograph and contact 
The pantograph is represented by a three-stage lumped mass 
model as depicted in the benchmark [26]. The interaction 
between the pan head and the contact wire is modelled by a 
penalty function method based on the assumption of the 
relative penetration δ  on the contact surface. The contact 
force cf  is calculated by the product of the contact stiffness 

sk  and the penetration δ  as follows: 

s
c

0
0 0

k if
f

if
δ δ

δ
>

=  ≤
                       (9) 

With the help of Eq. (9), the equation of motion for the coupling 
pantograph-catenary system is written by 

( ) ( ) ( ) ( ) ( )G G G Gt t t t tM U + C U + K U = F       (10) 

in which, GM , GC  and ( )G tK  are the mass, damping and 

stiffness matrices for the whole system, respectively. ( )G tF  is 
the external force vector. A Newmark integration scheme is 
adopted to solve Eq. (10). The stiffness matrix ( )G tK  is 
updated in each time step to fully describe the nonlinearity of 
the system. 

C. Validation of model 
The mean values of the results obtained by the ten different 
software in the world are utilised to validate the accuracy of the 

present model. The world benchmark provides the results for 
both static and dynamic validations [26]. In the static validation, 
the pre-sag and elasticity of the contact wire obtained by the 
present model are compared with the benchmark in Table 1. It 
shows that pre-sag obtained by the present method is exactly 
the same as the benchmark. The maximum error of the elasticity 
is just 6.52%, which is much lower than the threshold 10%. The 
dynamic validation is implemented by comparing the key 
contact force statistics with the benchmark. As shown in Table 
2, the results of the present model show good consistency with 
the benchmark. However, it should be noted that this validation 
is just valid for up to 20 Hz. The high-frequency behaviour is 
not involved in the benchmark. 

III. SIMULATION PARAMETERS FOR HIGH-FREQUENCY 
 When the frequency of interest increases, the numerical 
algorithm validated for low-frequency range may not be valid 
for simulating high-frequency response. In this section, the 
effect of two key simulation parameters (mesh size and contact 
stiffness) on the simulation results are investigated. The 
analysis model of catenary has 17 spans, and the 10 central 
spans are selected as the analysis object to avoid the boundary 
effect. The train speed is set to as 320 km/h in the following 
analysis. 

A. Mesh size 
Four types of element length are adopted to perform numerical 
simulations. The element length is defined by the number of 
nodes between two adjacent droppers (NAD). Using different 
element lengths, Fig. 4 (a) and (b) present the contact forces 
with a low-pass filtered frequency of 20 Hz and 200 Hz, 
respectively. In Fig 4 (a), when the contact force is low-pass 
filtered at 20 Hz, no significant difference can be found among 
different element lengths. However, when the frequency 
increases, the effect of element length on the contact force 
time-history becomes significant, as shown in Fig. 4 (b). This 
phenomenon is also observed in Fig. 5, which shows the 
contact force standard deviations with different NADs and cut-
off frequencies. For the cut-off frequencies of 20 Hz and 100 

Table 1. Static validation of present model against benchmark 

Dropper 
No. 

Pre-sag Elasticity 
Benchmark 

(mm) 
Present 
(mm) 

Error 
(%) 

Benchmark 
(mm/N) 

Present 
(mm/N) 

Error 
(%) 

Sup 0 0 0 0.206 0.19257 6.52 

1 0 0 0 0.165 0.15647 5.17 

2 24 24.00 0 0.273 0.26774 1.93 

3 41 41.00 0 0.345 0.3268 5.28 

4 52 52.00 0 0.388 0.36832 5.07 

5 55 55.00 0 0.4 0.37509 6.23 

6 52 52.00 0 0.388 0.36832 5.07 

7 41 41.00 0 0.345 0.3268 5.28 

8 24 24.00 0 0.273 0.26774 1.93 
9 0 0 0 0.165 0.15647 5.17 

Sup 0 0 0 0.206 0.19257 6.52 
 

Table 2. Dynamic validation of present model against benchmark 
 Benchmark Present model Error 

Fm [N] 169 169.15 0.09% 
σ  (0-20 Hz) 

[N] 53.91 52.59 2.45% 

σ  (0-2 Hz) [N] 38.27 38.25 0.05% 

σ (0-5 Hz) [N]b 41.04 41.00 0.10% 
σ (5-20 Hz) 

[N]b 34.80 32.99 5.20% 

Fmax [N] 313.22 305.85 2.35% 
Fmin [N] 60.40 56.22 6.9% 

 

 
(a) 

 
(b) 

Fig. 4. Contact force with different NADs (a) low-pass filtered by 20 Hz; (b) 
low-pass filtered by 200 Hz 
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Hz, the contact force standard deviations do not exhibit big 
difference with different NADs. However, when the low-pass 
frequency increases, the contact force standard deviations with 
longer element length are higher than the results with smaller 
element length. For all cut-off frequencies, the results with 
NAD = 15 are similar to NAD = 18. Figs. 6 (a-d) show the 
frequency spectrums of contact force with the frequency range 
of 0-100 Hz, 100-160 Hz, 160-200 Hz, and 200-300 Hz 
respectively. In Fig. 6 (a), it is seen that for 0-100 Hz, the 
spectrums of contact force with different element lengths are 
almost the same. The significant difference appears in Fig. 6 
(b), in which the spectrum amplitude with NAD = 9 is much 
higher than others at around 123 Hz and 157 Hz. When a 
moving load traverses along a finite element beam, the element 
length is able to introduce a disturbance with the specific 

wavelength same to the element length. This periodic 
disturbance is generated by the interpolation of the 
displacement between two nodes. The frequency fe of this type 
of disturbance can be calculated by 

( )e
e

1,2vf n n N
L

= =                       (11) 

in which, Le is the element length. v is the train speed. With 
NAD = 9, there are two element lengths of 0.56 m and 0.72 m. 
By substituting into Eq. (11), it can be shown that the 
corresponding frequencies are 123.67 Hz and 158.02 Hz, which 
are consistent with the spectrum peaks observed in Fig. 6 (b). 
According to this theory, fe with NAD = 12 can be calculated 
as 170.05 Hz and 217.28 Hz, which again can be observed in 
Figs. 6 (c-d). For NAD = 15, fe is calculated as 216.43 Hz and 
276.54 Hz, which can be observed in Fig. 6 (d). For NAD = 18, 
fe is calculated as 262.80 Hz and 335.80 Hz. The former can be 
seen in Fig. 6 (d). It should be noted that there is a significant 
peak at around 250 Hz with NAD = 9 in Fig. 6 (d). This peak 
is relevant to the half element length, namely n = 2 in Eq. (11). 
In order to correctly reproduce the physical phenomenon, fe 
should be out of the frequency range of interest. Therefore 
NAD = 15 and NAD = 18 can be selected for simulating up to 
200 Hz in this case.  

B. Contact stiffness 
The contact stiffness in Eq. (9) is a parameter introduced due to 
the contact formulation used in the numerical simulation to 
couple the pantograph and catenary. The value of the contact 
stiffness is normally selected based on experience to keep the 
frequency response functions between the displacements of the 
contact point considered as belonging to the pan head and the 
contact wire as close to unity as possible in the frequency range 
of interest. Therefore, the contact stiffness should be big enough 
to make the two contact points as tight as possible. But an 
overlarge value may cause mathematical problems, and cannot 
lead to accurate results. Normally the contact stiffness is 
selected within 50000–200000 N/m, which ensures that 
appropriate results can be obtained at 0-20 Hz [15]. In this 
section, a sensitivity analysis is conducted to reveal the effect 
of contact stiffness on the contact force within different 
frequency ranges of interest. 
 The simulation conditions are set as the same as the above 
analysis. Fig. 7 shows the time histories of the two-span contact 
force at 0-200 Hz with different contact stiffness. It is seen that 
the contact stiffness does not change the waveform of contact 
force, but has a direct effect on the amplitude. Figs. 8 (a) and 
(b) show the contact force spectrums at 0-50 Hz and 50-200 Hz, 
respectively. In Fig. 8 (a), it is seen that for most peaks, the 
contact force amplitude decreases with the increase of contact 
stiffness. However, in the high-frequency range, as shown in 
Fig. 8 (b), most peaks decrease with the increase of contact 
stiffness. Similar results can also be seen in Fig. 9, which 
presents the contact force standard deviations versus contact 
stiffness with different cut-off frequencies. In the frequency 
ranges of 0-20 and 0-50 Hz, the contact force standard deviation 
undergoes a continuous decrease with the increase of contact 
stiffness. However, when the frequency of interest moves up to 
200 Hz, the contact force standard deviation shows a contrary 

 

 
Fig. 5. Contact force standard deviations with different NADs and cut-off 
frequencies  
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Fig. 6. Contact force spectrums with different NADs at: (a) 0-100 Hz; (b) 100-
160 Hz; (c) 160-200 Hz; (d) 200-300 Hz  
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trend against the low-frequency range. Therefore it is concluded 
that the contact stiffness has a different effect on the contact 
force in low and high-frequency ranges. It is also seen that with 
the increase of the contact stiffness from 50000 N/m to 500000 
N/m, the resulting contact force standard deviation shows a 
difference of 11.94%, 6.08% and 16.67% at 0-20 Hz, 0-50 Hz 
and 0-200 Hz respectively. The determination of an appropriate 
contact stiffness requires the high-frequency measurement data 
as a reference. Therefore, the breakthroughs of the current 
standard and the current inspection equipment, which limits the 
measurement frequency within 0-20 Hz are expected to emerge. 

IV. HIGH-FREQUENCY COMPONENTS ANALYSIS 
From the contact force spectrum given in Fig 8, it is seen that 

there are some components in the high-frequency range. For the 
traditional low-frequency range, the source of the frequency 
components is clear. Most of the low-frequency components are 
directly related to the structural parameters, such as the span 
length, dropper to dropper interval and steady arm to dropper 
interval. In this section, the source of the high-frequency 
components of the contact force is analysed, and the 
corresponding mode is investigated to determine the 
amplification factor. 
  

A. Source of the high-frequency component 
In the low-frequency range, it has been a common 
understanding that most frequency components of the contact 
force are directly determined by the structural parameters. The 
contact wire configuration is a direct reflection of the structural 
geometry. As shown in Fig. 10, the contact wire pre-sag 
exhibits a significant periodicity with respect to the span length, 
dropper to dropper (DD) interval and the steady arm to dropper 
(SD) interval. The spectrum of the contact wire pre-sag is 
shown in Fig. 11 (a). To facilitate a comparison, the contact 
force spectrums at three different speeds, namely 225 km/h, 275 
km/h and 320 km/h are presented in Figs. 11 (b-d). It is seen 
that the spectrum peaks in the contact force are highly 
consistent with the peaks in the pre-sag. As the physical 

 
Fig. 7. Two-span contact force at 0-200 Hz with different contact stiffness 
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Hz; (b) 50-200 Hz 

0 5 10 15 20 25 30 35 40 45 50

Frequency [Hz]

0

5

10

15

20

25

30

C
on

ta
ct

 fo
rc

e 
am

pl
itu

de
 [N

]

k s
 = 50000

k
s

 = 100000

k
s

 = 200000

k
s

 = 300000

k
s

 = 400000

k
s

 = 500000

50 100 150 200

Frequency [Hz]

0

2

4

6

8

10

12

C
on

ta
ct

 fo
rc

e 
am

pl
itu

de
 [N

]

k s
 = 50000

k
s

 = 100000

k
s

 = 200000

k
s

 = 300000

k
s

 = 400000

k
s

 = 500000

 
Fig. 9. Contact force standard deviation versus contact stiffness with different 
cut-off frequency 
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meanings of low-frequency components have been identified 
by several previous works [30], this work mainly focuses on the 
identification of the physical meaning in the high-frequency 
(long-wavelength) range. The spectrum is divided into six 
regions. The first two regions are at around a wavelength of 
5.75 m and 4.25 m, respectively, which are related to the DD 
and SD interval. The third region is at around the wavelength 
of 2.88 m, which is related to the half DD interval. The fourth 
one is at around the wavelength of 2.12 m, which is related to 
half SD interval. The fifth one is at around the wavelength of 
1.44 m, which is related to a quarter of DD interval. The last 
one is at around the wavelength of 1.13 m, which is related to a 
quarter of the SD interval. It is also seen that out of the four 
ranges, the spectrum energy is small and can be neglected. 
Therefore, it is concluded that the half and quarter of the DD/SD 
interval present the main source of high-frequency components 
of the contact force. 

B. Amplification factor 
This section investigates the catenary mode shapes to determine 
the sensitive wavelength, which is the amplification factor of 
the contact force at the specific frequency. The procedure as 
shown in Fig. 12 is proposed to identify the sensitive 
wavelength for each mode. Through the Fast Fourier 
Transformation (FFT) to the vertical mode shape of the contact 
wire against its longitudinal distance, the spectrum of contact 
wire mode shape can be obtained. The spectrum peaks represent 
the sensitive wavelengths of each mode. Among all the modes, 
it can be found that some of them have the specific sensitive 
wavelengths equal to DD/2, SD/2, DD/4 and SD/4, which may 
amplify the excitation from the pre-sag. Figs. 13 (a-b) show the 
catenary mode shape related to the DD/2 and the corresponding 
spectrum of contact wire mode shape, respectively. It is seen 
that a high spectrum peak appears at around the spatial 
frequency related to DD/2, which may cause the amplification 
of the contact force amplitude at this frequency. Figs. 14 (a-b) 
show the catenary mode shape related to the SD/2 and the 
corresponding spectrum of contact wire mode shape, 
respectively. This procedure can also establish similar contact 
wire mode shape spectra associated with the DD/4 and SD/4 by 
investigating high-order modes of the catenary. These are, due 
to the similarity, not presented here to save paper space. 

 
C. Suggesting the frequency range 
According to the traditional view, the cut-off frequency of 20 
Hz can reflect the effect of structural geometry on the contact 
force. However, through the analysis in this section, it is seen 
that the frequency related to a half/quarter of DD/SD have a 
noticeable effect on the contact force. Thus, in order to fully 
describe the catenary geometrical effect, the cut-off frequency 
should move up over than the frequency related to a quarter of 
DD/SD. For the given case, the contact force standard 
deviations with different cut-off frequencies are presented in 

Formulate mass and stiffness 
matrices M and K

Calculate the eigenvalue and 
eigenvector of K/M

Fast Fourier Transformation to 
the ith vertical mode shape 

Obtain natural frequency and 
each mode of the catenary

Extract the sensitive 
wavelength for ith mode

 
Fig. 12. Extraction of sensitive wavelength for each mode 
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Fig. 13. Catenary mode related to DD/2: (a) model shape; (b) contact wire uplift 
spectrum 
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Fig. 15 at different speeds. As the frequency related to SD/4 is 
0.88 m-1, the suggested cut-off frequency is set to 0.9 m-1. The 
corresponding temporal frequency is 50 Hz, 56.25 Hz, 62.5 Hz, 
68.75 Hz and 80 Hz at 200 km/h, 225km/h, 250km/h, 275 km/h 
and 320 km/h, respectively. It is seen that the resulting contact 
force standard deviations filtered at the suggested frequency are 
very close to the results filtered at 200 Hz. However, the results 
filtered at 20 Hz are much lower than others, as the low cut-off 
frequency cannot cover the important implication of the 
geometrical effect. Therefore, it is concluded that in order to 
fully describe the geometrical effect, the cut-off frequency 
should be higher enough to reflect a quarter of DD/SD 
wavelength.  

V. VARIABLE TIME STEP FOR CONTACT LOSS DURATION 
The contact loss occurring at high-frequency is an important 
index to assess the current collection quality. However, the 
traditional numerical simulation is always implemented with a 
constant time step (CTS), which may not accurately capture the 
separation and reattachment time instants. In this section, a 
variable time step (VTS) is proposed to accurately calculate the 
contact loss duration. 

A. Definition of VTS 
As shown in Fig. 16, assume that the contact loss occurs within 
the time step 1n nt t +→ . If a constant time step t∆  is used, the 
exact separation time instant cannot be captured. To address 
this shortcoming, a tangent line l is drawn to calculate its 
intersection point 1

b
nt +  with the time axis. Then the time step is 

updated to 1 1
b b

n nt t t+ +∆ = −  to calculate the penetration δ  at 

1
b
nt + . This procedure can be repeated until a proper penetration 

criticalδ δ<  is obtained. In this work, the threshold criticalδ  is 
defined as 10-4 m. A similar procedure is also used to capture 
the reattachment time instant.  

B. Numerical simulation 
In this section, the numerical simulations are performed to 
compare the results of VTS with the traditional constant time 
step. It should be noted that the simulations in the above 
sections are conducted in ideal conditions, which cannot 
reproduce the contact loss in reality. In order to simulate the 
contact loss, some realistic disturbances should be included in 
the model. Here, the contact wire irregularity, which is the most 
common disturbance to the pantograph-catenary interaction, is 
included in the catenary model. Due to the lack of measurement 

data, the contact wire irregularity for this type of catenary is 
assumed as a set of random uniform number. The initial 
configuration of the contact wire with irregularities is shown in 
Fig. 17. Compared with Fig. 10, it is seen that the distortion of 
the geometry causes significant contact wire irregularities. The 
other simulation conditions are set as the same as the above 
sections. The train speed is 320 km/h, and a high sampling 
frequency of 1000 Hz is adopted in the analysis. In order to 
show the advantage of the present variable time step, a very 
high sampling frequency of 5000 Hz is also adopted for the 
comparison. Fig. 18 presents the evaluated contact forces 
obtained by the VTS and the CTS with both of 1000 Hz and 
5000 Hz sampling frequencies. It is seen that the waveforms of 
resulting contact forces are generally similar. Only the duration 
of the contact loss obtained by the three methods is different, as 
depicted in the locally enlarged views. For the contact loss 
occurring at around 4.954 s, the contact loss duration of VTS is 
similar to the result of CTS with 5000 Hz sampling frequency. 
Whereas, the contact loss duration of CTS with 1000 Hz is 
much different from others. From the other enlarged view, it is 
seen that the CTS with 1000 Hz sampling frequency cannot 

 
Fig. 15. Contact force standard deviation versus speed with different cut-off 
frequency 
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Fig. 16. Description of variable time step scheme 
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Fig. 17. Contact wire pre-sag with irregularities 
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capture the contact loss occurring at 8.828 s. The position of the  
evaluated contact loss duration by VTS is a bit different from 
the result of CTS with 5000 Hz sampling frequency, which is 
caused by the limitation of low sampling frequency. The VTS 
is able to improve the accuracy to evaluate the contact loss 
duration, but cannot reflect behaviours that need higher 
sampling frequencies to be described. This conclusion is also 
demonstrated in Table. 3, where each contact loss duration 
obtained by the three methods are presented. It is seen that two 
contact losses evaluated by CTS with 5000 Hz are not captured 
by the VTS due to the limitation of sampling frequency. When 
the CTS with 1000 Hz sampling frequency is adopted to 
calculate the contact loss duration, the maximum error with 
respect to the VTS can reach 75.63%. Even two times the 
contact loss, which is described by the VTS and CTS with 5000 
Hz sampling frequency is not captured by CTS with 1000 
sampling frequency. In contrast, the error of CTS with 5000 Hz 
sampling frequency with respect to VTS is no more than 
20%.According to EN 50367 [2], the simulation tool can be 
used to evaluate the contact loss rate. However, a very high 
sampling frequency should be used to accurately capture the 
contact loss duration, which causes tremendous computational 
cost. Using the variable time step is an efficient and economical 
way to accurately reproduce this physical phenomenon 
occurring at high-frequencies. From the numerical results in 
Table. 3, it is seen that even though a high sampling frequency 
up to 1000 Hz is used, some significant differences of evaluated 
contact loss duration can be seen between the constant and 
variable time steps. 

VI. CONCLUSIONS 
The simulation of high-frequency behaviours of pantograph-
catenary interaction is of great importance to improve the 
understanding of pantograph-catenary dynamics and accurately 
evaluate the quality of the current collection. The previous 
numerical algorithms validated at up to 20 Hz may not be 
directly used for simulating high-frequency behaviours. In this 
paper, the effect of some key simulation parameters (including 
mesh size and contact stiffness) on the resulting contact force at 
high frequencies is analysed. The source and amplification 
factor of high-frequency components of the contact force are 
investigated. Finally, a variable time step procedure is proposed 
to properly capture the contact loss occurring at high 
frequencies. The main conclusions are drawn as follows: 
 1) The element length related frequency e/v L  should be out 
of the frequency range of interest to avoid the contamination of 
the results. 

2) The contact stiffness has an opposite effect on the contact 

force in low and high-frequency ranges. The increase of contact 
stiffness causes the decrease of contact force fluctuation in low-
frequency range but the increase of contact force fluctuation in 
high-frequency range. 

3) The half and quarter of the DD/ SD interval present the 
main source of high-frequency components of the contact force. 
The corresponding structural wavelength can also be found in 
high-order catenary modes.  

4) In order to fully describe the geometrical effect, the cut-
off frequency should be higher enough to reflect a quarter of 
DD/SD wavelength. 

5) A variable time step is an efficient approach to accurately 
capture the contact loss duration occurring at high-frequencies 
without a very high sampling frequency, which definitely leads 
to considerable computational cost. 

Apart from the factors affecting high-frequency response 
included in this paper, other factors such as the vehicle 
vibrations, anomalies of pantograph-catenary and wind loads 
disturbances also contribute to the high-frequency response. 
The non-stationary response caused by the stochastic 
disturbance at high-frequency deserves more attention in the 
authors’ future works 
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