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Abstract—Distributed phased arrays based multiple-input
multiple-output (DPA-MIMO) is a newly introduced architec-
ture that enables both spatial multiplexing and beamforming
while facilitating highly reconfigurable hardware implementa-
tion in millimeter-wave (mmWave) frequency bands. With a
DPA-MIMO system, we focus on channel state information
(CSI) acquisition and hybrid precoding. As benefited from a
coordinated and open-loop pilot beam pattern design, all the
sub-arrays can perform channel sounding with less training
overhead compared with the traditional orthogonal operation
of each sub-array. Furthermore, two sparse channel recovery
algorithms, known as joint orthogonal matching pursuit (JOMP)
and joint sparse Bayesian learning with ℓ2 reweighting (JSBL-
ℓ2), are proposed to exploit the hidden structured sparsity in
the beam-domain channel vector. Finally, successive interference
cancellation (SIC) based hybrid precoding through sub-array
grouping is illustrated for the DPA-MIMO system, which de-
composes the joint sub-array RF beamformer design into an
interactive per-sub-array-group handle. Simulation results show
that the proposed two channel estimators fully take advantage
of the partial coupling characteristic of DPA-MIMO channels to
perform channel recovery, and the proposed hybrid precoding
algorithm is suitable for such array-of-sub-arrays architecture
with satisfactory performance and low complexity.

Index Terms—Distributed phased arrays based multiple-input
multiple-output (DPA-MIMO), millimeter-wave (mmWave),
array-of-sub-arrays, channel estimation, orthogonal matching
pursuit (OMP), sparse Bayesian learning (SBL), successive in-
terference cancellation (SIC), hybrid precoding.

I. INTRODUCTION

DRIVEN by the tremendous growth in demand for wire-

less data, many new technologies have been proposed

for fifth generation cellular communications (5G) to enable

orders of magnitude increases in the network capacity [1, 2].

In the physical layer, the exploration of new spectrum in the

so-called 5G upper bands, for example, from 6 GHz up to 100

GHz, including the millimeter-wave (mmWave) frequencies,

has made multi-gigabit-per-second wireless communications

more promising and feasible [3]. However, applying mmWave
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communications to commercial cellular networks is very chal-

lenging mainly due to, first, much higher propagation losses

compared with those at lower microwave frequencies; second,

strict constraints on hardware designs and implementations

which include but are not limited to, antenna performance

and dimension, circuits and systems integration challenges [4],

power consumption and power supply, form factor (partic-

ularly critical for a mobile handset device), etc., according

to [5]. Fortunately, massive antenna elements working at

mmWave bands can be accommodated into a limited hardware

area due to shorter wavelength, facilitating large beamforming

gain for combating large pathloss and establishing stable links

with reasonable signal-to-noise ratio (SNR) values.

To enable massive multiple-input multiple-output (MIMO)

communication with less ratio frequency (RF) chains, a

hybrid analog-digital solution [6, 7] was proposed. In this

architecture, the signal processing in conventional MIMO is

divided into low-dimensional digital beamforming, and high-

dimensional analog beamforming that is implemented with

low-cost phase shifters. This hybrid transceiver topology is

further categorized into the fully-connected and sub-array

based structures in terms of how RF chains are mapped

to antennas. In a fully-connected structure, each RF chain

enables full array gain through individual connection to all

antennas [8]; while for the latter structure, each RF chain is

only connected to partial antennas, which reduces complexity

at the penalty of degrading beamforming gain [9]. In practice,

the array-of-sub-array structure has drawn great attention due

to its low-complexity implementation, high energy efficiency,

and flexible configurations [10–12].

Recently, a distributed phased arrays based MIMO (DPA-

MIMO) architecture which can be easily applied to both

base station (BS) and user equipment (UE) designs, has been

proposed for practical system and hardware designs [5]. One

of its key characteristics distinguishing from the traditional

array-of-sub-array structure is to deploy sub-arrays in separate

locations similar to distributed antenna systems [13] with

relatively small separation. More importantly, the underlying

mechanism of DPA-MIMO requires the sub-arrays to sepa-

rate from each other for several reasons [4, 5, 14]: 1) The

practical coupling effects that cause spatial interference (such

as the unavoidable side lobes) can be mitigated to guarantee

the isolation and independence of each sub-array; 2) The

heat dissipation capability and thermal performance can be

enhanced by separating sub-arrays with some distance; 3) In

particular, at the UE end, separating sub-arrays is critical to

http://arxiv.org/abs/1903.05928v2
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overcome the human body (hand) blockage issue. This highly

reconfigurable architecture facilitates the multi-beam multi-

stream based 5G system and hardware designs under some

realistic constraints and resources limitation, which enables

appealing advanced features for both academic research and

industrial applications [15–18].

Owing to the geographically separated sub-array structure,

the DPA-MIMO based channel modeling requires an in-depth

exploration. The basic idea has been inspired by the channel

measurements for outdoor BS composed of a very large

array [19]. Instead, this extra-large MIMO channel cannot

be characterized as a wide sense stationary (WSS) model in

the spatial domain. Following the analysis in [19, 20], this

spatially non-WSS channel feature results from that, some

clusters are only visible to a part of the large array due to

some practical factors, such as the cluster sizes, the array

aperture, and the spacing between these clusters and the

array. Furthermore, this spatial non-stationarity in massive

MIMO channels was visualized by introducing the concepts of

partially visible clusters and wholly visible clusters which are

categorized according to their visibility regions (VRs) [21, 22].

A recent measurement campaign has further verified this

spatially non-stationary characteristic over a 40 × 40 planar

RX array at frequencies from 13 to 17 GHz [23]. Based on the

above discussion, increasing the spacing between adjacent sub-

arrays inevitably triggers an effect that independent scatterers

appear over different sub-arrays in a DPA-MIMO system

due to their VRs, which has also occurred in indoor THz

communications [24]. Meanwhile, as constrained by hardware

dimension and power consumption, a reasonable distance

between adjacent sub-arrays should be set [5]. As a result,

the channels between any transmitter (TX) and receiver (RX)

sub-arrays are partial coupling, i.e., both common and local

scatterers exist in a DPA-MIMO transmission environment.

Due to the inherent sparsity of mmWave channels, we consider

modeling the DPA-MIMO channel using the virtual angular

domain representation [25]. In this way, the channel coupling

relationship can be conveniently characterized as structured

sparsity in the beam domain [26].

Channel state information (CSI) acquisition in mmWave

systems is challenging due to high dimensional channels,

and low point-to-point SNR before beamforming. This makes

conventional channel estimators such as the least square (LS)

approach infeasible. Exploiting the mmWave channel sparsity

to reduce the training overhead is expected to address this

challenge [26–28]. By appropriately choosing the RF and

digital precoder matrices, the work in [29] developed a spatial

grid based orthogonal matching pursuit (OMP) method to

estimate the channel of hybrid MIMO systems. A sparse

Bayesian learning (SBL) based channel estimator in [30] was

further demonstrated to achieve better performance than the

greedy method that is sensitive to the choice of the dictionary

matrix in [29]. By leveraging the common sparsity over

multiple measurement vectors (MMV), the authors in [31]

applied an SBL based approach to mmWave hybrid MIMO

systems for accurate support detection. This type of block

sparsity, e.g., the common angle-domain channel sparsity over

all pilot subcarriers, has also been observed and exploited

in [26, 32] to enhance broadband channel estimation when

orthogonal frequency-division multiplexing (OFDM) modu-

lation is utilized. However, different channels between any

pair of the TX and RX sub-arrays are jointly correlated due

to the shared common scatterers in DPA-MIMO systems.

Therefore, it is highly desirable to exploit both common and

innovation sparsity to decrease the pilot overhead and improve

the accuracy of the DPA-MIMO channel estimate.

With the obtained channel, hybrid precoding should be

performed to facilitate directional data transmission in DPA-

MIMO systems. Some works have been devoted to hybrid

precoding in energy-efficient sub-array architectures [9, 11,

12, 33]. In [33], Yu et al. proposed an alternating optimization

based method to minimize the Euclidean distance between the

fully digital precoder and the hybrid precoders. Therein, during

each iteration, the optimal digital precoder is obtained by

solving a semidefinite relaxation (SDR) problem with a heavy

computational burden while the optimal RF precoder has a

closed-form expression. The work in [9] designed hybrid pre-

coders by creatively introducing the mechanism of successive

interference cancellation (SIC) in multi-user detection. Thus,

a total achievable rate maximization problem, with nonconvex

constant amplitude constraints of phase shifters, is decom-

posed into a series of subrate optimization problems each of

which handles one sub-array. However, this algorithm only

focuses on the TX design with a simple diagonal baseband

precoding matrix under the case that the number of data

streams equals that of RF chains. Inspired by [9], we extend

the SIC idea to hybrid precoding in DPA-MIMO systems.

In this paper, we consider cooperative multi-sub-array based

channel estimation and hybrid precoding for DPA-MIMO

systems. The main contributions are summarized below.

• We exploit joint channel sparsity among distributed sub-

arrays. The inter-sub-array coupling channel model mo-

tivates us to take advantage of a multi-sub-array coordi-

nated channel sounding strategy which undoubtedly de-

creases the training overhead. Based on this strategy, we

formulate the DPA-MIMO channel estimation problem as

a structured single measurement vector (SMV) recovery

problem in compressed sensing (CS) [34]. Instead of

using traditional random pilots at the cost of complicated

RF hardware, we design deterministic pilot beam patterns

by minimizing the total coherence of the equivalent

measurement matrix [35], which have successful applica-

tions in fully-connected hybrid MIMO [29, 31] and lens

arrays [36].

• We propose two customized algorithms to find the op-

timal sparse channel vector with equi-length structured

blocks each of which has both the common and innova-

tion supports. Inspired by [37], we divide the proposed

joint orthogonal matching pursuit (JOMP) algorithm into

two intuitive parts, namely the common support identifi-

cation and the innovation support identification. Another

one is called the joint SBL (JSBL)-ℓ2 algorithm which

adapts the SBL framework [38–40] to the structured

DPA-MIMO channel estimation problem by capitalizing

on a dual-space transform.

• We propose a low-complexity SIC-based hybrid precod-



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 3

ing scheme through sub-array grouping for the array-

of-sub-arrays architecture. For the design of the RF

beamformers, the idea of SIC is used to decompose

the spectral efficiency (SE) maximization problem into

several subproblems each of which is only related to one

group of sub-arrays, thereby facilitating efficient handling

of the sub-arrays group by group.

Organization: The rest of the paper is organized as follows.

Section II introduces a jointly sparse DPA-MIMO channel

model and a scheme of cooperative multi-sub-array beam

training. Section III formulates the DPA-MIMO channel esti-

mation problem and proposes the sub-array based pilot beam

pattern design. Section IV presents two channel recovery

algorithms based on the structured channel sparsity. Section V

specifies the SIC-based hybrid precoding design through sub-

array grouping, with simulation results analyzed in Section VI.

Finally, Section VII concludes this paper.

Notation: bold uppercase A (bold lowercase a) denotes

a matrix (a vector). We denote [A]i,j and [A]:,j as its

(i, j)th element and jth column, respectively. vec (·) stacks

the columns of a matrix into a tall vector, and Tr {·} stands

for the matrix trace operation. IN and 0M,N denote the N×N
dimensional identity matrix and the M × N dimensional

all-zero matrix, respectively. (·)H , (·)T , (·)∗, (·)−1
and

(·)† stand for the conjugate transpose, transpose, conjugate,

inverse and pseudo-inverse, respectively. diag {a}, diag {A}
and blkdiag {A1, · · · ,AN} represent a diagonal matrix with

a along its main diagonal, a vector constructed by the main

diagonal of the matrix A, a block diagonal matrix , respec-

tively. ⊗ denotes the Kronecker product of two matrices. ℓ0
, ℓ1 and ℓ2 norm of vectors are denoted by ‖·‖0, ‖·‖1 and

‖·‖2, respectively. ‖A‖F denotes the Frobenius norm and the

mixed ℓ1/ℓ2 norm is defined as ‖A‖1,2 ,
∑

i

√
∑

j |[A]i,j |
2
.

CN (µ,R) denotes the complex Gaussian distribution with

mean µ and covariance matrix R. E {·} is the expectation

operator. Finally, \ denotes the set subtraction operation.

II. SYSTEM MODEL

In this section, we present the jointly sparse DPA-MIMO

channel model and the cooperative multi-sub-array beam train-

ing design in the DPA-MIMO system.

A. Joint Channel Sparsity Model

Consider a Mr ×Mt DPA-MIMO system shown in Fig. 1,

where a TX with Mt sub-arrays communicates Ns data

streams to a RX with Mr subrrays. We denote by N tot
t (N tot

r )

the total number of antennas at the TX/RX end. Note that

N tot
t = MtN

sub
t and N tot

r = MrN
sub
r . Furthermore, we

assume that each sub-array is a uniform linear array (ULA)1,

and all the sub-arrays are equally spaced and are arranged in

the same axis at both TX and RX ends. Fig. 2 shows that

de is antenna element spacing inside each sub-array and da
defines the inter-sub-array spacing. In order to avoid causing

too serious grating lobes and significant channel capacity

degradation in the DPA-MIMO system, the antenna spacing

and inter-sub-array spacing usually satisfy de = 0.5λc and

da ≥ 1.5λc respectively [5]. Furthermore, da >> de can

be easily satisfied at mmWave frequencies. For example, by

adopting the DPA-MIMO architecture on a unmanned aerial

vehicles (UAV) where da is larger than 20 times the free-space

wavelength, or 40 times the de, Gbps data-rate communication

for multi-user scenarios without interference can be enabled

and has been preliminarily verified from field tests [16, 17].

Compared with the rich scattering channel model often

used for microwave frequencies, mmWave channels are better

characterized by a limited number of scattering clusters [41].

Thus, the Lm,n-path narrowband channel matrix between the

nth TX sub-array and the mth RX sub-array is formulated as

Hm,n =

√

N sub
t N sub

r

Lm,n

Lm,n−1
∑

i=0

α(i)
m,nar

(

ϑ(i)m,n

)

aHt

(

ψ(i)
m,n

)

,

(1)

where α
(0)
m,n is the complex gain of the line-of-sight (LoS)

component with ϑ
(0)
m,n and ψ

(0)
m,n representing its spatial di-

rections composed of an angle of arrival (AoA) and an angle

of departure (AoD), respectively. For i = 1, 2, · · · , Lm,n − 1,

α
(i)
m,n is the complex gain of the ith non-LoS (NLoS) com-

ponent with ϑ
(i)
m,n and ψ

(i)
m,n denoting its spatial directions

composed of an AoA and an AoD, respectively. Note that some

AoDs/AoAs are correlated along different sub-arrays, which

will be investigated in the proposed jointly sparse DPA-MIMO

channel model defined in Definition 1. The path amplitudes are

assumed to be Rayleigh distributed, i.e., α
(0)
m,n ∼ CN

(
0, σ2

LoS

)

and α
(i)
m,n ∼ CN

(
0, σ2

NLoS

)
, where σ2

LoS and σ2
NLoS are the

variances of the LoS and NLoS path gain, respectively [44].

For an ULA with N antennas, the array response vector

is a (ψ) , 1√
N

[

1, e−j
2πde
λc

ψ, · · · , e−j 2πde
λc

(N−1)ψ
]T

and the

spatial direction is defined as ψ = cos θ where θ is the physical

direction and λc is the carrier wavelength. We use at (·) and

ar (·) to denote the array response vectors for the TX and RX

sub-arrays, respectively, and define the entire channel matrix

between all TX and RX sub-arrays using H.

In a DPA-MIMO system, since the AoAs or AoDs for

different sub-arrays are partially overlapped as shown in

1The ULA is widely applied to the existing cellular UE and BS, e.g.,
the performance comparison of single-user precoding schemes with multi-
user precoding schemes has been conducted based on ULA configuration
in the high-impact work [8]. Moreover, [41] studied the efficacy of different
beamforming approaches for initial UE discovery in mmWave MIMO systems,
also based on a typical example of ULA setup case. On the other hand,
admittedly, the uniform planar arrays (UPAs) are believed to play a promising
and crucial role at both BS [5] and UE [42] end, particularly for mmWave
cellular communications, since they can accommodate many more antenna
elements into a sub-array in two-dimensional (2-D) configuration to enable 3-
D beamforming. The proposed DPA-MIMO application can be also extended
to the UPA setup by using the Kronecker product based codebook [43]. We
expect to extend and discuss this topic carefully in the future work.
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Fig. 1, the spatial resolution is actually determined by the

number of sub-array antennas. Assuming in an extreme case

that two sub-arrays have different AoAs, the dimension of

the channel should equal the number of sub-array anten-

nas [45]. The physical spatial domain and the beam domain

are related through a spatial unitary transform matrix, which

contains the array steering vectors of uniformly spaced or-

thogonal spatial directions covering the entire space, e.g.,

U =
[
a
(
ψ̄1

)
, · · · , a

(
ψ̄NG

)]
, where ψ̄g = 2

NG
(g − 1) − 1

for g = 1, · · · , NG with NG ∈
{
N sub
t , N sub

r

}
[25]. Note

that finite-resolution discrete dictionary may cause the power

leakage problem. One way to handle this problem is to use

a redundant dictionary matrix. Interested readers can refer

to [36] for detailed operations. We use Ut (Ur) to denote the

spatial transform matrix for each TX/RX sub-array. Thus, the

beam-domain channel matrix between the nth TX sub-array

and the mth RX sub-array can be represented as Hm,n =
UrGm,nU

H
t . Subsequently, we can express the relationship

between the entire spatial channel and the entire beam-domain

channel for the DPA-MIMO system as H = ArGAH
t , where

At = IMt
⊗Ut and Ar = IMr

⊗Ur constitute the beam-

domain transform matrix for the TX and the RX, respectively,

and G is the entire beam-domain channel matrix that has the

following form

G =






G1,1 · · · G1,Mt

...
. . .

...

GMr ,1 · · · GMr ,Mt




 . (2)

Since spatially correlated mmWave channels are expected to

have limited scattering, the beam-domain subchannels Gm,n’s

are sparse by neglecting the subtle grid quantization error of

the AoAs and AoDs [25, 46]. Furthermore, the entire beam-

domain channel G is composed of all the subchannels Gm,n’s

leading to its sparsity equal to the sum of all the components,

which is vividly shown in the left part of Fig. 3. In order

to decrease the training overhead in the DPA-MIMO system

working on mmWave bands, it is more efficient to estimate

the sparse beam-domain channel G instead of the original

physical channel H [2, 44].

As illustrated in Fig. 1, there exist both the common and

local scatterers between any pair of the TX and RX sub-arrays

due to large sub-array spacing. In this figure, the VR of the

common scatterer covers all the sub-arrays while the VR of

any local scatterer only illuminates certain sub-array at the

TX/RX end. This result is analogous to that of the newly

studied extra-large antenna arrays [20, 22, 47]. In the DPA-

MIMO architecture, the structure composed of all sub-arrays

at the TX/RX end can be treated as another special version

of an extra-large ULA where segments of antenna elements

are removed at uniform intervals. Therefore, the spatial non-

stationarity of DPA-MIMO means that different scatterers may

be observed by different sub-arrays, which is parallel to the

spatially non-WSS assumption made on the large array [48].

Due to the inherent channel sparsity at mmWave frequencies,

it is more convenient to investigate this kind of spatially

non-WSS channels from the perspective of virtual angular

domain [37]. Therefore, we conclude the following assumption

on the beam-domain channel matrices in the DPA-MIMO

system:

Definition 1 (Jointly Sparse DPA-MIMO Channel). The

channel matrices {Gm,n} have the following properties:

• Common sparsity due to both the LoS path and common

scattering: Denote supp {A} as the index set of non-zero

entries of the matrix A. Then, {Gm,n} are simultaneously

sparse. Different {Gm,n} share a common support, i.e., the

index set Ωc which satisfies

Ωc ,

Mr⋂

m=1

Mt⋂

n=1

supp {Gm,n} . (3)
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• Innovation sparsity due to local scattering: There exist

unique components for Gm,n, i.e.,

Ωm,n , supp {Gm,n} \Ωc. (4)

Remark 1. Common sparsity consists of the paths and sub-

rays that lead to the same AoA and AoD for different sub-

arrays. The exact components of the common sparsity set

depend on the TX and RX positions, sub-array spacings,

and the relative locations and orientations of the scattering

surfaces. Moreover, the property of common sparsity is based

on the prerequisite that all the sub-arrays at the TX (RX)

are installed in parallel, e.g., all the sub-arrays composed

of ULAs at the TX (RX) are deployed in the same line [49]

or all the sub-arrays composed of UPAs at the TX (RX) are

parallelly placed on the same plane [5, 11]. Some examples

of demonstrations are shown in Fig. 5 and Fig. 13 of [5].

Furthermore, take mmWave UPAs as an example, the spacing

between sub-arrays is proposed to be larger than 1.5 times

the free-space wavelength (one wavelength is 10.7 mm when

the carrier frequency is 28 GHz) [5], in order to avoid

electromagnetic mutual coupling [50]. Thus, several free-

space wavelengths that are equal to several centimeters are

still relatively small compared to the transmission distance

of the LoS communication path and the transmission distance

between any common scatterer and any sub-array. As a result,

the LoS path or any path caused by common scattering

produces almost same AoA and AoD upon all the sub-arrays

based on the far-field approximation [51], which leads to a

common support in the beam domain.

It is observed from Definition 1 that the DPA-MIMO chan-

nel sparsity support is parametrized by the set {Ωc, {Ωm,n}},

where Ωm,n and Ωc determine the innovation sparsity support

and the shared common sparsity support, respectively. In the

most common case of Ωm,n = ∅ for ∀m,n, all sub-arrays

at the TX/RX have the same AoDs (AoAs) [9, 11, 49]. In

another case of Ωc = ∅, independent scatterers are present

for each sub-array [24]. Furthermore, Fig. 3 is given for a

better understanding of the structured sparsity in the DPA-

MIMO channel. In this example, we assume a 2 × 2 DPA-

MIMO system with N sub
t = N sub

r = 4, and there are

the LoS path and one common cluster among all sub-arrays

and one local cluster within each transceiver sub-array pair.

By applying the vectorized operation to each beam-domain

channel matrix Gm,n and putting the obtained channel vectors

together, we can formulate a new structured sparse matrix

[vec (G1,1) , vec (G2,1) , vec (G1,2) , vec (G2,2)] that is row-

sparse plus element-sparse. In the following, for both the LoS

path and the shared paths formed by the common clusters, we

call them the common paths indiscriminately.

B. Cooperative Multi-Sub-Array Beam Training

Spatial scanning based beam training approaches are widely

adopted for mmWave channel estimation due to its simplic-

ity and high performance [52–54]. However, for the non-

cooperative spatial scanning based training process, each

sub-array at the TX should individually spend N sub
t N sub

r

training beams defined in discrete Fourier transform (DFT)

Fig. 3. Beam-domain representation of the jointly sparse DPA-MIMO channel
due to common and local scattering.

based RF codebooks [11, 55]. In order to decrease the

probing overhead, we adopt a cooperative multi-sub-array

beam training scheme2. For CSI acquisition, the TX uses

Nbeam
t (Nbeam

t ≤ N tot
t ) pilot beam patterns denoted as

{
fp ∈ CN

tot
t ×1 : ‖fp‖22 = 1, p = 1, · · · , Nbeam

t

}
, and the RX

adopts Nbeam
r (Nbeam

r ≤ N tot
r ) pilot beam patterns denoted

as
{
wq ∈ CN

tot
r ×1 : ‖wq‖22 = 1, q = 1, · · · , Nbeam

r

}
.

During the training period, the TX successively sends its

training beam patterns {fp} which are received by the RX

through its beam patterns {wq}. The (q, p)th received sample

for the pth TX beam pattern is given by [31]

yq,p = wH
q Hfpxp +wH

q z̃p, (5)

where xp is the transmitted pilot symbol and z̃p ∈ CN
tot
r ×1

is a noise vector with CN
(
0, σ2

zINtot
r

)
. Collecting yq,p for

q ∈
{
1, · · · , Nbeam

r

}
, we have yp ∈ C

Nbeam
r ×1 given by

yp = WHHfpxp + zp, (6)

where W =
[
w1, · · · ,wNbeam

r

]
∈ CN

tot
r ×Nbeam

r and zp =

WH z̃p ∈ CN
beam
r ×1. To represent the received signals for all

TX beam patterns, we collect yp for p ∈
{
1, · · · , Nbeam

t

}

yielding

Y = WHHFXp + Z, (7)

where the concatenated received signal matrix Y =[

y1, · · · ,yNbeam
t

]

∈ CN
beam
r ×Nbeam

t , the complete TX pro-

cessing matrix F =
[

f1, · · · , fNbeam
t

]

∈ CN
tot
t ×Nbeam

t and

the concatenated noise matrix Z =
[

z1, · · · , zN beam
t

]

∈
CN

beam
r ×Nbeam

t . In general, we choose the pilot matrix Xp =
√
PpINbeam

t
where Pp is the pilot power per transmission.

In our array-of-sub-arrays architecture, the TX and RX

processing matrices are decomposed as F = FRFD and

2The hierarchical codebook based scheme [41, 45, 46, 56] only requires
SL2 ⌈SL/Mr⌉ logS

(

Ntot/L
)

TX training beams, where Lm,n = L for

∀m,n, Ntot
t = Ntot

r = Ntot and S is a design parameter that is usually
set to be 2. However, this low overhead scheme is not suitable for the partial
coupling DPA-MIMO channel characterized in Definition 1.
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W = WRWD. Thus, the multiple measurements in (7) is

expressed as

Y =
√

PpW
H
DWH

RHFRFD + Z, (8)

where FR ∈ C
Ntot

t ×Ntot
t and WR ∈ C

Ntot
r ×Ntot

r denote RF

beamforming matrices at the TX and the RX, respectively,

while FD ∈ CN
tot
t ×Nbeam

t and WD ∈ CN
tot
r ×Nbeam

r denote the

TX and the RX baseband processing matrices, respectively. At

the TX, F is further partitioned into N tot
t /Mt = N sub

t blocks,

that is,

F =
[

FR,1FD,1, · · · ,FR,b1FD,b1 , · · · ,FR,N sub
t
FD,N sub

t

]

=
[

FR,1, · · · ,FR,b1 , · · · ,FR,N sub
t

]

︸ ︷︷ ︸

FR

· blkdiag
{

FD,1, · · · ,FD,b1 , · · · ,FD,N sub
t

}

︸ ︷︷ ︸

FD

,

(9)

where FR,b1 ∈ CN
tot
t ×Mt represents the shared analog pro-

cessing matrix for all the beam patterns at block b1 and each

column of FD,b1 ∈ C
Mt×

Nbeam
t

Nsub
t denotes one digital pilot

beamforming vector for the corresponding beam pattern at

block b1 [29, 31, 36]. In the same way, the RX admits the

following processing by blocks

WR =
[
WR,1, · · · ,WR,b2 , · · · ,WR,N sub

r

]
, (10a)

WD = blkdiag
{
WD,1, · · · ,WD,b2 , · · · ,WD,N sub

r

}
, (10b)

where WR,b2 ∈ CN
tot
r ×Mr and WD,b2 ∈ C

Mr×
Nbeam

r

Nsub
r .

Moreover, each column of the RF processing matrix is zero

except for a continuous block of non-zero entries (consist-

ing of the beamforming weights used on the corresponding

sub-array), i.e., FR,b1 = blkdiag
{

f
[1]
R,b1

, · · · , f [n]R,b1
, · · · , f [Mt]

R,b1

}

and WR,b2 = blkdiag
{

w
[1]
R,b2

, · · ·w[m]
R,b2

, · · · ,w[Mr ]
R,b2

}

, where

f
[n]
R,b1

∈ CN
sub
t ×1 and w

[m]
R,b2

∈ CN
sub
r ×1 denote the RF

beamforming weights for the nth TX sub-array and the mth

RX sub-array, respectively. Furthermore, the amplitude of

each element of f
[n]
R,b1

and w
[m]
R,b2

equals 1√
N sub

t

and 1√
N sub

r

,

respectively.

III. FORMULATION OF CHANNEL ESTIMATION PROBLEM

AND PILOT BEAM PATTERN DESIGN

In this section, we first exploit the jointly sparse nature of

the DPA-MIMO channel, and formulate its channel estimation

problem as a structured sparse vector recovery problem. Then,

we propose a deterministic beam training scheme.

A. Formulation of Channel Estimation Problem

To exploit the sparse nature of the DPA-MIMO channel, it

is necessary to vectorize the received signal matrix Y in (8).

After denoting
vec(Y)√

Pp

by y ∈ CN
beam
t Nbeam

r ×1, we have

y
(a)
=

((
FTDF

T
R

)
⊗
(
WH

DWH
R

))
vec (H) + z

(b)
= Qvec (G) + z,

(11)

where (a) follows from the equivalent noise vector z ,

1√
Pp

[

zT1 , · · · , zTNbeam
t

]T

∈ C
Nbeam

t Nbeam
r ×1 and the properties

of Kronecker product, vec (ABC) =
(
CT ⊗A

)
vec (B) and

(A⊗B)T = AT ⊗BT [57], and (b) follows from vec (H) =
(A∗

t ⊗Ar) vec (G) and (A⊗B) (C⊗D) = (AC)⊗ (BD).

The equivalent sensing matrix Q ∈ CN
beam
t Nbeam

r ×Ntot
t Ntot

r

can be defined as

Q ,
(
FTDF

T
RA

∗
t

)
⊗
(
WH

DWH
RAr

)
. (12)

The formulation of the vectorized received signal in (11)

represents a sparse formulation of the channel estimation prob-

lem as vec (G) has only N0 = |Ωc| +
∑Mr

m=1

∑Mt

n=1 |Ωm,n|
non-zero elements and N0 ≪ N tot

t N tot
r . This implies that the

number of required measurements Nbeam
t Nbeam

r to detect the

non-zero elements can be much less than N tot
t N tot

r . We expect

to exploit the hidden joint sparsity in the beam-domain channel

to reduce the required training and improve the performance

of channel estimation. For convenience, we exchange the order

of elements in vec (G) to get a new vector with MtMr equi-

length blocks as

x ,

[

xT1 , · · · ,xTMtMr

]T

=
[

vecT (G1,1)
︸ ︷︷ ︸

1th block

, · · · , vecT (GMr ,1)
︸ ︷︷ ︸

Mrth block

, · · · ,

vecT (G1,Mt
)

︸ ︷︷ ︸

(Mr(Mt−1)+1)th block

, · · · , vecT (GMr ,Mt
)

︸ ︷︷ ︸

MtMrth block

]T

,

(13)

where the block size is N sub
t N sub

r . This manipulation is also

shown in Fig. 3. In this case, the corresponding equivalent

measurement matrix Φ , QΠ is obtained by exchanging the

column order of Q where Π is a column permutation matrix,

such that Φx = Qvec (G). As a result, the problem of DPA-

MIMO channel recovery at the RX can be formulated as

min
x

‖y −Φx‖22
s.t. x satisfies the joint sparsity model in Definition 1.

(14)

However, problem (14) is very challenging due to the common

and innovation sparsity requirement in the constraint which

is quite different from the conventional CS-recovery problem

with a simple sparsity (ℓ0-norm) constraint. In addition, the

equivalent measurement matrix has to be carefully designed

to guarantee the recovery of the non-zero elements of the

vector with high probability by using a small number of

measurements.

B. Open-Loop Pilot Beam Pattern Design

Instead of randomized sensing matrices frequently used for

CS-based channel estimation, a deterministic measurement

matrix designed by minimizing its total coherence can improve

the recovery performance [26, 35]. This strategy has been

recently applied to pilot beam pattern design for the fully-

connected structure [29, 31]. Due to its excellent performance

improvement and zero feedback overhead, this strategy is

further applied to channel sounding in the DPA-MIMO system.
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Since the total coherence of Φ is defined by µtot (Φ) ,
∑Ntot

t

k=1

∑Ntot
t

l 6=k

(

[Φ]
H
:,k [Φ]:,l

)2

, we have

µtot (Φ)
(a)
= µtot (Q)

(b)

≤ µtot
(
FTDF

T
RA

∗
t

)
· µtot

(
WH

DWH
RAr

)
,

(15)

where (a) follows from the definition of the total coherence,

and (b) can be derived in a similar way as [29, Lemma 7]

and this upper-bound plays an important role in the decou-

pling of pilot beam design at both ends. Therefore, we can

decompose the design problem of minimizing µtot (Φ) into

two separate designs, namely the design of FD and FR via

minimizing µtot
(
FTDF

T
RA

∗
t

)
and the design of WD and WR

via minimizing µtot
(
WH

DWH
RAr

)
.

Sequentially, we can simplify µtot
(
FTDF

T
RA

∗
t

)
as

µtot
(
FTDF

T
RA

∗
t

) (a)
=

∥
∥
∥

(
FTDF

T
RA

∗
t

)H
FTDF

T
RA

∗
t − INtot

t

∥
∥
∥

2

F

(b)
=

∥
∥
∥F

T
DF

T
RA

∗
tA

T
t F

∗
RF

∗
D − INbeam

t

∥
∥
∥

2

F
+ d0

(c)
=

∥
∥
∥F

T
DF

∗
D − INbeam

t

∥
∥
∥

2

F
+ d0,

(16)

where d0 = N tot
t − Nbeam

t , (a) is to make the equivalent

measurement matrix approximate an identity matrix [35], (b)
results from the relationship between the Frobenius norm

and the trace, and (c) comes from AtA
H
t = INtot

t
and

FTRF
∗
R = IN tot

t
. Thus, we can optimize FD by minimizing

∥
∥
∥FTDF

∗
D − INbeam

t

∥
∥
∥

2

F
, which can be further transformed into

several parallel subproblems for b1 = 1, 2, · · · , N sub
t

min
∥

∥

∥[FD,b1 ]:,m
∥

∥

∥

2

2
=1

∥
∥
∥F

T
D,b1F

∗
D,b1 − INbeam

t

N sub
t

∥
∥
∥

2

F (17)

Via relaxing the individual power constraints and then using

the method of Lagrange multipliers [29, Theorem 2], the

optimal baseband precoder of the b1th block is given by

F⋆D,b1 = Ūt

[

INbeam
t

Nsub
t

,0Nbeam
t

Nsub
t

,Mt−
Nbeam

t

Nsub
t

]T

V̄H
t , (18)

where Ūt ∈ CMt×Mt and V̄t ∈ C

Nbeam
t

Nsub
t

×Nbeam
t

Nsub
t are arbitrary

unitary matrices, e.g., unitary DFT matrices.

In order to make RF pilot beams cover a full range of AoDs,

we choose the unitary DFT matrix as the solution of TX sub-

array m
[(

f
[m]
R,1

)⋆

, · · · ,
(

f
[m]

R,Nsub
t

)⋆]

= circshift
(

FNsub
t
,m− 1

)

,

(19)

where FN denotes the N -dimensional unitary DFT matrix and

circshift (A,m) represents moving the columns of a matrix A

to the right for (m) columns in a circular manner. Different

from the previous pilot beam pattern design for the fully-

connected structure [29, 31], the dimension of the DFT matrix

equals the number of sub-array antennas in a DPA-MIMO

system due to the joint sparse channels. In this way, the entire

TX array simultaneously probes different spatial directions

using RF beams.

Similar operation can be applied to the RX, leading to the

optimal combiners as

W⋆
D,b2 = Ūr

[

INbeam
r

Nsub
r

,0Nbeam
r

Nsub
r

,Mr−
Nbeam

r

Nsub
r

]T

V̄H
r , (20)

[(

w
[n]
R,1

)⋆

, · · · ,
(

w
[n]

R,Nsub
r

)⋆]

= circshift
(
FNsub

r
, n− 1

)
,

(21)

where Ūr ∈ C
Mr×Mr and V̄r ∈ C

Nbeam
r

Nsub
r

×Nbeam
r

Nsub
r are arbitrary

unitary matrices. Furthermore, the noise vector after the de-

signed RF and baseband processing remains i.i.d. Gaussian

with CN
(

0,
σ2

z

Pp
INbeam

t Nbeam
r

)

without prewhitening, which

provides much convenience for the further design of CSI

recovery algorithms in the next section.

IV. DPA-MIMO CHANNEL ESTIMATION ALGORITHMS

To solve problem (14), we present two customized algo-

rithms, i.e., an OMP based greedy algorithm with low com-

plexity and a SBL inspired algorithm with excellent accuracy.

For notational simplicity, we define the number of training

overhead N , Nbeam
t Nbeam

r , the number of resolvable spatial

directions B , N sub
t N sub

r and K ,MtMr, respectively.

A. Proposed JOMP Algorithm

The details of the proposed JOMP algorithm are described

in Algorithm 1 that is inspired by [37], where not only the per-

link channel sparsity but also the joint sparsity structure are

exploited to enable a distributed compressive CSI estimation

scheme for multi-user massive MIMO systems. First of all,

δ1 and δ2 are defined as the predetermined thresholds to

control the residual error of different loops within reasonable

ranges. In principle, they are related to the noise level σ2
z and

the measurement vector length N . Meanwhile, T1,JOMP and

T2,JOMP are the maximal numbers of iterations to guarantee

the convergence. It is obvious that the ideal values of the

two iteration numbers should be set as T1,JOMP = |Ωc|
and T2,JOMP =

∑Mr

m=1

∑Mt

n=1 |Ωm,n|. Although it is difficult

to acquire the true common and innovation sparsity levels

(S , {|Ωc|, {|Ωm,n|}}), their statistic bounds change over a

very long time scale and can be easily obtained from long-

term stochastic learning and estimation as in [37]. Thus, we

can choose a lower bound of the common sparsity |Ωc| as the

iteration number for the common support identification, while

rendering an upper bound of the sum of all the individual

sparsity as the iteration number for the innovation support

identification |Ωm,n|., i.e., T1,JOMP ≤ |Ωc| and T2,JOMP ≥
∑Mr

m=1

∑Mt

n=1 |Ωm,n|.
The proposed JOMP algorithm is further divided into two

parts, where the first part aims at common support identifi-

cation, and the second part continues the innovation support

identification. Observe that the estimation target x in (13)

has non-zero elements at the same positions of each block.

Therefore, motivated by the simultaneous sparse approxima-

tion algorithm proposed for MMV problems in [58], we wish

to find a group of equi-spaced atoms in the equivalent mea-

surement matrix Φ by maximizing the sum of their absolute
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correlations with the residual r1. This procedure is done in

step 1 and the absolute sum has the equivalent expression

as
∑K

k=1

∥
∥
∥ΦH

:,b+(k−1)Br1

∥
∥
∥

2

2
=

∥
∥
∥

(

ΦΩK
b

)H

r1

∥
∥
∥

2

2
. After the

common support Ωec is detected, the standard OMP method

in [59] is used to identify the innovation support Ωei as realized

from step 5 to 8. Depending on the estimated support index,

the LS method is finally used to recovery the channel vector.

Algorithm 1 JOMP Algorithm

Input : Φ, y, T1,JOMP, T2,JOMP, δ1, δ2 .
Part 1 (Common Support Identification): Initialize Ωe

c = ∅,
Ωa = {1, · · · , BK}, r1 = y, and
ΩK

b = {b,B + b, · · · , (K − 1)B + b} for 1 ≤ b ≤ B.

while t1 ≤ T1,JOMP or ‖r1‖
2

2
> δ1

1. (Support Estimate): b⋆ = arg max
1≤b≤B

∥

∥

∥

∥

(

Φ
ΩK

b

)H

r1

∥

∥

∥

∥

2

2

.

2. (Support Update): Ωe
c = Ωe

c ∪
{

ΩK
b⋆

}

.

3. (Residual Update): r1 = y −ΦΩe
c

(

ΦΩe
c

)†
y.

4. (Iteration Update): t1 = t1 + 1.

Part 2 (Innovation Support Identification): Set Ωe
i = Ωe

c ,
r2 = r1 and Ωr = Ωa \ Ωe

c .

while t2 ≤ T2,JOMP or ‖r2‖
2

2
> δ2

5. (Support Estimate): j⋆ = arg max
j∈Ωr

∣

∣

∣
[Φ]H

:,j
r2

∣

∣

∣

2

.

6. (Support Update): Ωe
i = Ωe

i ∪ {j⋆}.

7. (Residual Update): r2 = y −ΦΩe
i

(

ΦΩe
i

)†
y.

8. (Iteration Update): t2 = t2 + 1.

Output: x̂Ωe
i
= ΦΩe

i

(

ΦΩe
i

)†
y and x̂Ωa\Ωe

c
= 0.

B. Proposed JSBL-ℓ2 Algorithm

1) Introduction to SBL: Consider the classical sparse re-

covery model without the structured sparsity y = Φx + z,

where z is a noise vector with CN (0, λIN ) and λ is the

known equivalent noise variance. Thus we have the Gaus-

sian likelihood model p (y|x) = CN (Φx, λIN ). Assume

the parametrized Gaussian prior p (x) = CN (0,Γ), where

Γ = diag {γ} with a vector of hyper-parameters γ governing

the prior variances of the elements in x. This latent variable

based Gaussian assumption is reasonable from the perspective

of variational approximations, which is verified in [38, Sec.

V]. For a fixed γ, using the Bayesian rules we can obtain the

Gaussian posterior density of x as p (x|y) = CN (µx,Σx),

where µx = ΓΦH
(
λIN +ΦΓΦH

)−1
y and Σx = Γ −

ΓΦH
(
λIN +ΦΓΦH

)−1
ΦΓ. The next key task is to estimate

the latent variables γ. By treating x as the hidden variables and

integrating them out [38], we obtain the maximum a posterior

(MAP) estimate on γ as

γ(II) = arg max
γ�0

∫

p (y|x) p (x;γ) dx

= arg min
γ�0

yHΣ−1
y y + ln |Σy| ,

(22)

where the covariance matrix of y denotes Σy = λIN +
ΦΓΦH . Once γ(II) is obtained, a commonly accepted point

estimate for x naturally emerges as

x(II) = E
[
x|y;γ(II)

]
= Γ(II)Φ

H
(
λI+ΦΓ(II)Φ

H
)−1

y.
(23)

This procedure is referred to Type II estimation, also called

empirical Bayesian. From (23), it can be observed that a sparse

γ(II) leads to a corresponding sparse estimate x(II). Note that

the logarithm term ln |Σy| in (22) is a concave function with

respect to γ according to [38, Lemma 1], thereby favoring

a sparse γ, which further results in a sparse x through (23).

The traditional SBL algorithm assumes independent priors for

an estimated signal, which however fails to consider the joint

sparsity property in the DPA-MIMO channel.

2) SBL-Inspired Cost Function: By reshaping the vector x,

we define a new matrix X , [x1, · · · ,xK ] ∈ CB×K which

is both row-sparse and element-sparse, as shown in Fig. 3. In

order to promote such a structure, X can be viewed as the

summation of an element-sparse matrix S , [s1, · · · , sK ] ∈
CB×K and a row-sparse matrix C , [c1, · · · , cK ] ∈
C
B×K [40]. Furthermore, by using convex approximation,

problem (14) can be transformed into the following convex

optimization problem3:

min
C,S

‖y −Φvec (C+ S)‖22 + β1

K∑

k=1

‖sk‖1 + β2 ‖C‖1,2 (24)

where β1 ≥ 0 and β2 ≥ 0 are weights regarding element-

sparsity and row-sparsity respectively.

In order to promote sparsity of the solution, we transform

the cost function of (24) in x-space to the SBL-like cost

function in γ-space by using a dual-space view [39], where

the following variational representations are used [61] :

‖xk‖1 = min
γs
bk

>0

1

2

B∑

b=1

( |xbk|2
γsbk

+ γsbk

)

, (25a)

‖X‖1,2 = min
γc
b
>0

1

2

B∑

b=1

(
∑K

k=1 |xbk|
2

γcb
+ γcb

)

, (25b)

where xbk , [X]b,k, γcb and γsbk are scalars, γ
c ,

[γc1, · · · , γcB]
T

is a vector common to all columns of X, and

γ
s ,

[
γs1,1, · · · , γsB,1, · · · , γs1,K , · · · , γsB,K

]T
is a vector with

each element corresponding to that of vec (X). By using the

identity (its derivation is given in Appendix A)

yH (Σsc)−1
y = min

c,s

1

λ
‖y −Φ (c+ s)‖22

+ sH (Γs)
−1

s+ cH (IK ⊗ Γc)
−1

c,

(26)

where s ,
[
sT1 , · · · , sTK

]T ∈ C
BK×1, c ,

[
cT1 , · · · , cTK

]T ∈
CBK×1, Γc , diag {γc}, Γs , diag {γs}, and

Σsc , λIN +Φ (Γs + IK ⊗ Γc)ΦH , (27)

we can further express the convex cost function of (24) in

3In fact, we just provide one of the intuitive transformations to tackle the
challenging problem in (14). As SBL-like algorithms adapt to the measure-
ment matrix and promote a sparse solution, we further address the formulated
optimization problem from an SBL perspective. Provided that one finds a
special structured prior that contains both common and individual sparsity,
turbo-type message passing algorithms may further improve the estimation
performance [28, 60]. This meaningful topic requires further investigation.
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γ-space as

L(I) (γ
c,γs) = yH (Σsc)

−1
y + βTr (Γs) + Tr (IK ⊗ Γc) .

(28)

Comparing the data-related term yH (Σsc)
−1

y in (28) and

that of the SBL cost function in (22), we can observe that

the common component γc and the innovation component γs

interact with each other in a manner like Γ = Γs + IK ⊗ Γc.

Following the innovative decoupling idea in [40], we can

replace the convex penalties in the existing models with

the SBL counterpoints to obtain some of the corresponding

benefits, even without any formal probabilistic model for this

derivation4. Therefore, we put forth a new cost function in

γ-space from (28) as

L(II) (γ
c,γs) = yH (Σsc)

−1
y + β ln |Σs|+ ln |Σc| , (29)

where

Σs ,
λ

2
IN +ΦΓsΦH , (30a)

Σc ,
λ

2
IN +Φ (IK ⊗ Γc)ΦH . (30b)

Since the log-determinant function is concave and non-

decreasing, the term ln |Σc| and the term ln |Σs| promote

a sparse common component γ
c and a sparse innovation

component γs, respectively. Moreover, the weight β regarded

as a tradeoff between row sparsity and element sparsity in

the defined matrix X, should be tuned with training data or

given with prior information. Note that this weight depends

on the large-scale properties of the scattering environment and

changes over a long time scale.

3) ℓ2 Reweighting Scheme: Following an extension of the

duality space analysis for the basic SBL framework [39],

we can transform the cost function of (29) from γ-space

to x-space. First, via using the identity (26) and standard

determinant identities, we can upper-bound (29) by

L (γc,γs, c, s) =
1

λ
‖y −Φ (c+ s)‖22 + β ln |Γs|

+K ln |Γc|+BK (β + 1) ln

(
λ

2

)

+ βhs (z
s)

+ hc (z
c) +

B∑

b=1

K∑

k=1

|sbk|2
γsbk

+
B∑

b=1

∑K
k=1 |cbk|

2

γcb
,

(31)

where we define two concave functions, namely

hs (γ
s) , ln

∣
∣
∣
∣
(Γs)

−1
+

2

λ
ΦHΦ

∣
∣
∣
∣
, (32a)

hc (γ
c) , ln

∣
∣
∣
∣
(IK ⊗ Γc)

−1
+

2

λ
ΦHΦ

∣
∣
∣
∣
. (32b)

Due to the duality of concave conjugate functions, we have

4As a matter of fact, [40] was the first attempt to apply simultaneous
SBL approximation to the two multitask structured sparse models with real
variables, i.e., row-sparse with embedded element-sparse and row-sparse plus
element-sparse. In this paper, we extend the SBL framework to perform the
recovery of the complex structured SMV defined in (13) for DPA-MIMO
channel estimation.

the following upper bounds given by

hs (γ
s) = min

zs�0

B∑

b=1

K∑

k=1

( zsbk
γsbk

− h̄s (z
s)
)

, (33a)

hc (γ
c) = min

zc�0

B∑

b=1

( zcb
γcb

− h̄c (z
c)
)

. (33b)

By using (31) and (33), we can then perform block coordinate

descent (BCD) optimization over the following approximation

with irrelevant terms dropped:

min
Z

‖y −Φ (c+ s)‖22 + λ
[ B∑

b=1

K∑

k=1

( |sbk|2 + βzsbk
γsbk

+ β ln γsbk

)

− βh̄s (z
s) +

B∑

b=1

(∑K
k=1 |cbk|

2
+ zcbk

γcb
+K ln γcb

)

− h̄c (z
c)
]

(34)

where Z , {c, s,γc,γs, zc, zs}.

By fixing the other variables, we first calculate the optimal

values of s and c. In this way, the optimization problem (34)

is equivalent to problem (26). The optimal solutions are

expressed as

s⋆ = ΓsΦH (Σsc)
−1

y, (35a)

c⋆ = (IK ⊗ Γc)ΦH (Σsc)
−1

y. (35b)

which are also proved in Appendix A.

We then optimize zc and zs. According to the duality

relationship in (33), their optimal values are obtained as

(zs)
⋆
= diag

{

Γs − ΓsΦH (Σs)
−1

ΦΓs
}

, (36a)

(zc)
⋆
= Ξ · diag

{

IK ⊗ Γc (36b)

− (IK ⊗ Γc)ΦH (Σc)−1
Φ (IK ⊗ Γc)

}

, (36c)

where the Moore-Penrose pseudo-inverse [57] is used for

computation reduction and Ξ , [IB, · · · , IB ] ∈ CB×BK .

Sequentially, the optimal hyperparameters are given by

(γsbk)
⋆
=

|sbk|2
β

+ zsbk, (37a)

(γcb )
⋆ =

∑K
k=1 |cbk|

2
+ zcbk

K
. (37b)

with the other variables fixed. Finally, by alternately minimiz-

ing and repeatedly updating the upper-bound function (34), we

obtain the reweighted algorithm described in Algorithm 2. As

the objective function in (34) decreases or keeps unchanged in

each iteration, the proposed JSBL-ℓ2 algorithm can promise a

local minimum of problem (34).

Algorithm 2 JSBL-ℓ2 Algorithm

Input : Φ, y, λ, β, TJSBL, ǫ .
while t ≤ TJSBL or ‖s+ c− sold − cold‖

2

2
> ǫ

1. sold = s and cold = c.
2. Update s⋆ and c⋆ using (35).
3. Update (zs)⋆ and (zc)⋆ using (36).
4. Update (γs

bk)
⋆

and (γc
b)

⋆
using (37).

5. t = t+ 1.

Output: x̂ = (Γs + IK ⊗ Γc)ΦH (Σsc)−1
y.
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V. SIC-BASED HYBRID PRECODING THROUGH

SUB-ARRAY GROUPING

As a result of CSI acquisition in Section IV, we now

consider the channel is known at both TX and RX ends.

The task of this section is to design the hybrid precoding

and combining matrices for the DPA-MIMO system. The

processed received signal after combining is given by

yd = UH
DUH

RHVRVDsd +UH
DUH

R zd, (38)

where sd ∈ CNs×1 is the data vector such

that E
{
sds

H
d

}
= Pd

Ns
INs

, Pd is the average

transmitting power, zd is a Gaussian noise vector with

CN
(
0, σ2

zINtot
r

)
, VR = blkdiag

{

v
[1]
R , · · · ,v[Mt]

R

}

and

UR = blkdiag
{

u
[1]
R , · · · ,u[Mr ]

R

}

. Furthermore, we assume

the amplitude of each element of v
[n]
R and u

[m]
R equals 1√

N sub
t

and 1√
N sub

r

, respectively. With Gaussian signaling employed

at the TX, the instantaneous achievable SE is

R = log2

∣
∣
∣INs

+
Pd

Ns
R−1

z UH
D UH

R HVRVD

·VH
D VH

R HHURUD

∣
∣
∣,

(39)

where Rz , σ2
z U

H
D UH

R URUD. Thus we determine the hybrid

precoders and combiners by maximizing the SE defined in

(39) with a transmitting power constraint ‖VRVD‖2F = Ns.

A. Design of VD and VR

In lieu of maximizing the SE, we design VR and VD

to maximize the mutual information achieved by Gaussian

signaling [6]. Then, the hybrid precoder design problem can

be written as

max
VR,VD

log2

∣
∣
∣INtot

r
+ Pd

(
Nsσ

2
z

)−1
HVRVDV

H
DVH

RHH
∣
∣
∣

(40a)

s.t. ‖VRVD‖2F = Ns (40b)

|[VR]i,j | = 1/
√

N sub
t , ∀i, j ∈ Vt (40c)

where Vt denotes the set of non-zero element of VR.

1) Design of VD: We first group the sub-arrays at the

TX according to the number of data streams Ns satisfying

Ns ≤ Mt. We simply assign successive equal number of

sub-arrays to each data stream if Mt is multiples of Ns,
otherwise, redundant sub-arrays are all assigned to any data

stream. Note that this homogeneous grouping strategy is not a

special case of the hybridly connected structure based partition

strategy in [62]. We use the vector dt , [d1, · · · , dNs
] to

indicate the number of sub-arrays assigned to each data stream.

The optimal grouping strategy for the DPA-MIMO system is

scheduled for future research. Furthermore, assisted by the

combination of sub-array grouping and variable decoupling,

the proposed scheme can handle both the TX and the RX

design with a flexible number of data steams in comparison

with [9]. Thus, we have the precoders with the new structures

as V̄D ∈ CNs×Ns and V̄R = blkdiag
{

v̄
[1]
R , · · · , v̄[Ns]

R

}

∈
CN

tot
t ×Ns where

v̄
[i]
R =

[(

v
[
∑i−1

j=1 dj+1]
R

)T

, · · · ,
(

v
[
∑

i
j=1 dj]

R

)T ]T

∈ C
diN

sub
t ×1.

(41)

In Fig. 4, we give a example of sub-array grouping with Ns =
2 and Mt = 4. In this scenario, two data symbols are first

processed by a 2 × 2 digital precoding matrix. Then, each

precoded data is allocated to two sub-arrays. Such a grouping

operation facilitates the efficient design of RF precoding using

SIC, as will be shown in the following.

Digital

Baseband

Precoder

BB
V

Sub-array 1

Sub-array 2

Sub-array 3

Sub-array 4

2
s

[ ]1
RF

v1
s

[ ]2
RF

v

Fig. 4. Illustration of sub-array grouping with Ns = 2 and Mt = 4.

With the defined variables V̄R and V̄D substituted into (40),

we follow the common decoupling procedure [12] that given

a fixed RF precoder V̄R and an equivalent channel matrix

Heq , HV̄R, the optimal digital precoder has a closed-form

water-filling solution as

V̄⋆
D = D

−1/2
t UeΛ

1/2
e , (42)

where Dt = V̄H
R V̄R = diag {dt}, Ue is the set of right

singular vectors corresponding to the Ns largest singular

values of HeqD
−1/2
t and Λe is a diagonal matrix with the

allocated powers to each data stream on its main diagonal.

2) Design of VR: With an equal power allocation scheme,

i.e., Λe ≈ INs
, which shows a little loss in performance for

moderate and high SNR regimes, we obtain the approximately

optimal digital precoder V̄D ≈ D
−1/2
t Ue. Thus, the RF

precoder can be obtained by solving the following problem

max
ṼR

log2

∣
∣
∣INtot

r
+ Pd

(
Nsσ

2
z

)−1
HṼRṼ

H
RHH

∣
∣
∣ (43a)

s.t. |[ṼR]i,j | = 1/
√

djN sub
t , ∀i, j ∈ Ṽt (43b)

where ṼR , V̄RD
−1/2
t ∈ CN

tot
t ×Ns and Ṽt denotes the set

of non-zero element of ṼR.

According to the block structure of ṼR, it is observed that

problem (43) with nonconvex constraints can be decomposed

into a series of simple subproblems, each of which only con-

siders one specific group of sub-arrays [9, 62]. In particular,

we can divide the matrix ṼR as ṼR =
[

ṼNs−1ṽNs

]

, where

ṽNs
is the Nsth column and ṼNs−1 is a matrix containing

the first Ns − 1 columns of ṼR, respectively. Thus, the cost
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function of (43) can be written as

(43a) =
∑Ns

n=1
log2

∣
∣
∣1 + Pd

(
Nsσ

2
z

)−1
ṽHn HHR−1

n−1Hṽn

∣
∣
∣ ,

(44)

where Rn−1 = INtot
r

+ Pd

(
Nsσ

2
z

)−1
HṼn−1Ṽ

H
n−1H

H and

R0 = INtot
r

. This equality follows from |I+AB| =
|I+BA| and |AB| = |A| |B| [57].

In (44), the total achievable rate can be a summation of

the subrates of all data streams. Motivated by the idea of SIC

for multi-user detection, we can first optimize the achievable

subrate of the first data stream and then update R1. After some

iterations, the optimal RF precoder design subproblem for the

nth group of sub-arrays can be equivalently represented by

ṽ⋆n = arg max
ṽn

log2

∣
∣
∣1 + Pd

(
Nsσ

2
z

)−1
ṽHn Tn−1ṽn

∣
∣
∣ , (45)

where Tn−1 = HHR−1
n−1H. Note that Tn can be iteratively

obtained without matrix inverse, with its derivation shown in

Appendix B. Due to the special structure of ṽn, (45) can be

further simplified to

(

v̄
[n]
R

)⋆

= arg max
v̄
[n]
R

(

v̄
[n]
R

)H

T̂n−1v̄
[n]
R , (46)

where T̂n−1 is a dnN
sub
t × dnN

sub
t Hermitian ma-

trix formed as a submatrix of matrix Tn−1 by tak-

ing the
(

N sub
t

∑n−1
i=1 di + 1

)

th row and column to the
(
N sub
t

∑n
i=1 di

)
th row and column of Tn−1. Since each

element of v̄
[n]
R can be separated in (46), its optimal solution

can be obtained by iteratively updating the following equation

until convergence

[

v̄
[n]
R

]

i
=

1
√

N sub
t

e
j∡

(

∑

j 6=i
[T̂n−1]

i,j

[

v̄
[n]
R

]

j

)

, (47)

where the symbol ∡ (.) extracts the corresponding phases of

the element. Note that this iterative procedure is guaranteed

to converge to a local optimum since the objective function of

(46) increases in each iteration.

B. Design of UD and UR

1) Design of UR: We group the sub-arrays at the RX

in the same way as the TX. Furthermore, we decouple the

design of ŪR and ŪD by first optimizing the RF combiner

with assumed ideal digital combiner and then finding the

optimal digital combiner for the obtained RF combiner. Since

ŪH
R ŪR = Dr = diag {dr} where dr ,

[
d̄1, · · · , d̄Ns

]
, we

can define ŨR , ŪRD
−1/2
r , which results in the similar

problem as (43):

max
ŨR

log2

∣
∣
∣INs

+ Pd

(
Nsσ

2
z

)−1
ŨH

R H̄eqH̄
H
eqŨR

∣
∣
∣ (48a)

s.t. |[ŨR]i,j | = 1/
√

d̄jN sub
r , ∀i, j ∈ Vr (48b)

where Vr denotes the set of non-zero element of ŨR.

2) Design of UD: Assuming all other beamformers are

fixed, the optimal digital combiner based on the minimum

mean-square error (MMSE) criterion is formulated as [6]

Ū⋆
D = (Pd/Ns)J

−1ŪH
RHV̄t, (49)

where J = Pd

Ns
ŪH

RHV̄tV̄
H
t HHŪR + σ2

zDr ∈ CNs×Ns

and V̄t = V̄⋆
RV̄

⋆
D. Finally, the proposed hybrid precoding

approach is summarized in Algorithm 3.

Algorithm 3 SIC-Based Hybrid Precoding Through Sub-array
Grouping

Input : Ns, Pd and σ2
z .

1. Group the sub-arrays at the TX and RX respectively.
2. Update v̂n using (47) until convergence .
3. Optimize V̄⋆

D using (42).

4. Optimize Ũ⋆
R the same way as (43).

5. Optimize Ū⋆
D using (49).

Output: V⋆
R, V⋆

D, U⋆
R and U⋆

D.

VI. SIMULATION RESULTS

The performance of the proposed algorithms is evaluated

through simulation with the following parameters. The TX

and RX sub-arrays are ULAs of half-wavelength antenna

spacing. For the sub-array spacing, we simply set da = 9λc
for algorithm verification. Note that the practical value of da
has relationship with joint sparsity and it is worth pointing

out that this relationship needs to be validated through ex-

tensive measurement and study of mmWave channels [4, 5].

Since the amplitude of the LoS components is typically 5

to 10 dB stronger than that of the NLoS components at

mmWave frequencies [63], the channel coefficients are gen-

erated through (1) with the variances of the channel paths

as σ2
LoS = 1 and σ2

NLoS = 10−0.5 [44]. We denote the

channel common sparsity as Lc = |Ωc| ≥ 1 and assume

the equal channel individual sparsity among different sub-

arrays as L = |Ωm,n|+ |Ωc| = 5 for simulation convenience.

For the generation of the proposed DPA-MIMO channel, we

first generate Lc common paths one of which is the LoS

path for all the sub-arrays. For any common path, the phase

variation across the sub-arrays at the TX/RX induced by

the sub-array spacing should be considered [11], i.e., for

common path i with ϑ
(i)
m,n = ϑ(i) and ψ

(i)
m,n = ψ(i), its com-

plex amplitude is calculated by α
(i)
m,n = α

(i)
1,1e

−j
(

ϕ(i)
r,m+ϕ

(i)
t,n

)

where ϕ
(i)
r,m = 2π

λc
(m− 1)

(
da +

(
N sub
r − 1

)
de
)
cos

(
ϑ(i)

)

and ϕ
(i)
t,n = 2π

λc
(n− 1)

(
da +

(
N sub
t − 1

)
de
)
cos

(
ψ(i)

)
. Then,

we generate independent (L− Lc) paths for each pair of the

TX and RX sub-arrays.

In Algorithm 1, the threshold parameters are set to be

δ1 = Nσ2
z and δ2 = 0.1Nσ2

z ; the maximal iteration

numbers are chosen as T1,JOMP = Lc and T2,JOMP =
(L+ 2− T1,JOMP)K . In Algorithm 2, we set the weight

β = 3.3, the iteration number TJSBL = 80 and the error

tolerance ǫ = 10−4. In the following, two types of SNRs

are considered: one is the pilot-to-noise ratio (PNR) defined

as 10 log10
(
Pp/σ

2
z

)
, and the other is the data-to-noise ratio

(DNR) defined as 10 log10
(
Pd/σ

2
z

)
. The performance metric

for channel estimation is the normalized MSE (NMSE) defined

as NMSE , 10log10

(

E

{
1

N tot
t N

tot
r

∥
∥
∥H− Ĥ

∥
∥
∥

2

F

})

. The hybrid



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 12

TABLE I
COMPARISION OF PILOT OVERHEAD AND COMPLEXITY FOR CHANNEL ESTIMATION ALGORITHMS

Category Algorithm Pilot Beam Overhead Computational Complexity*

Non-CS DFTB N tot
t N tot

r O
(

TDFTBKB2
)

CS

OMP

N beam
t N beam

r

O
(

T 3

OMPN
)

JOMP (proposed) O
(

(T 3

1,OMP + T 3

1,OMP)N
)

SBL O
(

TSBLN
3
)

JSBL-ℓ2 (proposed) O
(

TJSBLN
3
)

* The related symbols are listed as : N , Nbeam
t Nbeam

r , B , N sub
t N sub

r and K , MtMr .
Besides, TDFTB, TOMP, T1,JOMP (T2,JOMP), TSBL and TJSBL are the iteration numbers for DFTB,
OMP, JOMP, SBL, JSBL-ℓ2, respectively.

precoding schemes based on the channel estimates Ĥ are

evaluated through the SE defined in (39).

This section consists of the following two parts:

• In the first part, we compare the NMSE of the proposed

JOMP and JSBL-ℓ2 estimators with the conventional

OMP and SBL estimators by employing the designed

training beam patterns. Additionally, the non-cooperative

DFT codebook based channel estimator, named as DFTB,

is served as a benchmark. The comparison of pilot beam

overhead and computational complexity for the channel

estimators is summarized in Table I. On the one hand,

the SBL and the proposed JSBL-ℓ2 algorithms require

higher complexity than the DFTB, the OMP and the

proposed JOMP algorithms. On the other hand, the CS-

based algorithms embrace less pilot beam overhead than

the DFTB algorithm when N beam
t N beam

r < N tot
t N

tot
r .

• In the second part, we investigate the performance

of the proposed hybrid precoding scheme termed as

GSIC, the SDR based alternating optimization (SDR-AO)

scheme [33], the hybrid precoding scheme [12] and the

optimal fully-digital (FD) precoding scheme. We further

compare the SE realized through the proposed hybrid

beamformers based on the channel estimates obtained in

the previous part.

A. Performance Evaluation of Channel Estimation

In Fig. 5, we compare the NMSE versus PNR for a DPA-

MIMO setup with Mt = Mr = 4, N sub
t = N sub

r = 12,

Nbeam
t = 24, Nbeam

r = 36 (partial-training case), Lc = 3 and

L = 5. It is notable that the JSBL-ℓ2 estimator substantially

outperforms the other estimators at low PNR. We further

observe that the greedy JOMP estimator almost achieves the

same channel estimation performance as the SBL estimator. At

high PNR, the DFTB estimator with the full-training overhead

achieves better performance over the other CS-based methods.

In Fig. 6, we show the NMSE versus the common spar-

sity Lc varying from 1 to L for a DPA-MIMO setup with

Mt = Mr = 4, N sub
t = N sub

r = 12, Nbeam
t = 24,

Nbeam
r = 36 (partial-training case) and PNR = 5 dB.

For both the proposed JOMP and JSBL-ℓ2 estimators, better

channel estimation performance is obtained with an increasing

number of the common support Lc, while the OMP, SBL and

DFTB estimators keep the constant NMSE. This is because
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Fig. 5. NMSE versus PNR when Mt = Mr = 4, N sub
t = N sub

r = 12,

L = 5, Lc = 3, Nbeam
t = 24 and Nbeam

r = 36.
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Fig. 6. NMSE versus common sparsity Lc when Mt = Mr = 4, N sub
t =

N sub
r = 12, L = 5, PNR = 5 dB, Nbeam

t = 24 and Nbeam
r = 36.

the two customized estimators take advantage of the jointly

sparse characteristic of the DPA-MIMO channel to enhance

the quality of estimated channels. Moreover, for Lc ≥ 3,

the JSBL-ℓ2 estimator surpasses the DFTB estimator in the

accuracy of channel estimates.

In Fig. 7, we further investigate that with how much training

the proposed two CS-based methods can be competitive to
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(b) PNR = 20 dB

Fig. 7. NMSE versus number of training beams Nbeam = Nbeam
t = Nbeam

r

when Mt = Mr = 4, N sub
t = N sub

r = 12, L = 5 and Lc = 3.

the full-training based DFTB estimator for different PNRs.

The number of training beams at both ends is assumed to the

same as Nbeam for a DPA-MIMO setup with Mt =Mr = 4,

N sub
t = N sub

r = 12, Lc = 3 and L = 5. In Fig. 7(a),

with an increasing Nbeam, the NMSE of the proposed two

estimators decreases monotonically at PNR = 5 dB. More

specifically, the JOMP and JSBL-ℓ2 estimators can realize the

nearly same reconstruction accuracy of the DFTB estimator

with its 3
4 × 3

4 = 56.25% and 1
2 × 1

2 = 25% training overhead,

respectively. As shown in Fig. 7(b) at PNR = 20 dB, the

JOMP estimator finally approaches the same NMSE value as

the DFTB estimator with Nbeam = 48, while the JSBL-ℓ2
estimator still maintains the performance advantage with a

high PNR.

B. Performance Evaluation of Hybrid Precoding

First, we compare the SE versus DNR for a various

number of sub-arrays at the TX/RX with perfect CSI and

a fixed number of total antennas. We set the parameters as

N tot
t = N tot

r = 90, Lc = 3 and L = 5. It is observed from

Fig. 8(a) and Fig. 8(b) that there are distinct gaps between the
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(b) Mt = Mr = 6

Fig. 8. SE versus DNR with perfect CSI when N tot
t = N tot

r = 90 and
Ns = 3.

FD scheme and the other three hybrid precoding schemes,

which results from the beamforming gain loss of the sub-

array based structure compared with the FD structure [33].

We further find that the proposed GSIC scheme can suc-

cessfully surpass the SDR-AO and SVD-based schemes. The

efficiency of the proposed GSIC scheme is verified through

average central processing unit processing time. By using the

same configuration as the Matlab experiment demonstrated

in Fig. 8(b), the proposed GSIC scheme almost run 115

times faster than the SDR-AO scheme [33] while only about

1.5 times slower than the hybrid precoding scheme in [12].

Therefore, in the following, we only employ the proposed

GSIC scheme to design the hybrid beamformers based on the

estimated channels obtained in Subsection VI-A.

In Fig. 9, we investigate the SE versus DNR for a DPA-

MIMO setup with Mt =Mr = 4, N sub
t = N sub

r = 12, Ns = 4,

L = 5, Lc = 3, PNR = 5 dB, N beam
t = 24 and N beam

r =
36. Obviously, the improved channel estimation accuracy of

the proposed algorithms are reflected in their enhanced SEs.

Furthermore, the SE curve of the proposed JSBL-ℓ2 estimator

nearly coincides with that of the DFTB estimator. In addition,

the proposed less-complexity JOMP estimator can provide the
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Fig. 9. SE versus DNR when Mt = Mr = 4, N sub
t = N sub

r = 12, Ns = 4,

L = 5, Lc = 3, PNR = 5 dB, Nbeam
t = 24 and Nbeam

r = 36.

same SE as the SBL estimator.
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Fig. 10. SE versus number of common sparsity when Mt = Mr = 4,
N sub

t = N sub
r = 12, Ns = 4, L = 5, DNR = 5 dB, PNR = 5 dB,

Nbeam
t = 24 and Nbeam

r = 36.

In Fig. 10, we present the SE versus the common sparsity

Lc varing from 1 to L for a DPA-MIMO setup with Mt =
Mr = 4, N sub

t = N sub
r = 12, Ns = 4, L = 5, PNR = 5 dB,

N beam
t = 24 and N beam

r = 36. It is interesting that the SE of

any precoder decreases with an increasing number of common

supports. This mainly comes from that the spatial degrees of

freedom (DoFs) are reduced due to less independent scatterers

of the DPA-MIMO channels. Additionally, the SE curves of

the proposed JOMP and JSBL-ℓ2 estimators approach that of

the DFTB estimator as the number of the common supports

increases.

In Fig. 11, we depict the SE versus the number of training

beams for a DPA-MIMO setup with Mt = Mr = 4, N sub
t =

N sub
r = 12, Ns = 4, L = 5, Lc = 3, DNR = 5 dB and

PNR = 5 dB. The SE of the proposed JOMP and JSBL-ℓ2
estimators evidently boost towards the perfect CSI case with

an increasing number of training beams. Furthermore, the SE

of the proposed two estimators approximates that of the DFTB
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Fig. 11. SE versus number of training beams Nbeam = Nbeam
t = Nbeam

r

when Mt = Mr = 4, N sub
t = N sub

r = 12, Ns = 4, L = 5, Lc = 3,
DNR = 5 dB and PNR = 5 dB.

estimator (full-training case) with only its 3
4 × 3

4 = 56.25%
training overhead.

VII. CONCLUSION

In this paper, we have focused on modeling and analysis

of the narrowband DPA-MIMO based transceiver system, and

designed efficient channel estimation and hybrid precoding

schemes for such distributed array-of-sub-arrays architecture

working on mmWave bands. Based on the reasonable analysis

in Section II, the DPA-MIMO channel has high probability

to manifest a hidden structured sparsity in the beam-domain

channel vector due to the partially shared scatterers among the

distributed sub-arrays at mmWave frequencies at the TX/RX.

In light of this characteristic, we have formulated a structured

SMV problem that estimates the AoDs, AoAs and the cor-

responding gain of significant paths. In order to guarantee

the good recovery performance and decrease the training

feedback overhead, the open-loop training beam patterns were

designed through minimizing the total coherence of the equiv-

alent measurement matrix. The simulation and comparison

results have demonstrated that the proposed channel estimators

can better exploit the structured channel properties defined

in Definition 1 than the existing CS-based estimators such

as the OMP and SBL estimators, and the proposed hybrid

precoding method enjoys the low-complexity while achieving

good performance.

More realistic channel modeling for DPA-MIMO is ex-

pected for future research. Specifically, the channel parameters

including common and local scattering components can be

investigated by using ray-tracing tools, and the scatter evo-

lution on both sub-array and time axes should be also taken

into account [64]. In addition, interesting and practical topics

in DPA-MIMO applications cover many diversified situations,

such as multi-user channel acquisition and hybrid precoding

schemes [8], and optimal sub-array placement for preventing

blockage [42].
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APPENDIX A

DERIVATION OF (26)

Let s = x−c, A = (Γs)
−1

and B = (IK ⊗ Γc)
−1

, thus we

can transform the objective function in (26) to the following

min
x,c

1

λ
‖y −Φx‖22 + (x− c)

H
A (x− c) + cHBc. (50)

For the fixed x, we have an unconstrained quadratic function

only with respect to c and get its optimal solution as c⋆ =
(A+B)−1

Ax. After submitting the optimal c⋆ into (50), we

have

min
x

1

λ
‖y −Φx‖22 + xH

(

A−A (A+B)
−1

A
)

x

(a)
= min

x

1

λ
‖y −Φx‖22 + xH

(
A−1 +B−1

)−1
x

(b)
= yH

(
λIN +Φ

(
A−1 +B−1

)
ΦH

)−1
y,

(51)

where (a) follows from the Woodbury identity [57], and (b)

follows from the identity [39]

yH
(
λIN +ΦΓΦH

)−1
y = min

x

1

λ
‖y −Φx‖22 + xHΓ−1x,

(52)

with Γ = A−1 +B−1.

Obviously, the optimal value of x is expressed as

x⋆ =
(
λΓ−1 +ΦHΦ

)−1
ΦHy

= ΓΦH
(
λIN +ΦΓΦH

)−1
y.

(53)

Given the following matrix identity [57]

(A+B)
−1

A
(
A−1 +B−1

)
= B−1, (54)

we further obtain

s⋆ = A−1ΦH
(
λIN +ΦΓΦH

)−1
y, (55a)

c⋆ = B−1ΦH
(
λIN +ΦΓΦH

)−1
y. (55b)

APPENDIX B

ITERATIVE COMPUTATION OF Tn IN (46)

In order to compute Tn iteratively, we further express Rn as

Rn = Rn−1+
Pd

Nsσ2
z
Hṽnṽ

H
n HH . With the Sherman-Morrison

formula [57]

(
A+ τxxH

)−1
= A−1 − A−1τxxHA−1

1 + τxHA−1x
, (56)

we have

R−1
n = R−1

n−1 −
Pd

Nsσ2
z (1 + ρn)

R−1
n−1Hṽnṽ

H
n HHR−1

n−1,

(57)

where ρn = Pd

Nsσ2
z
ṽHn Tn−1ṽn. Thus, the matrix Tn can be

iteratively obtained by

Tn = Tn−1 −
Pd

Nsσ2
z (1 + ρn)

Tn−1ṽnṽ
H
n Tn−1. (58)
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